An information-theoretic treatment of quantum dichotomies

Francesco Buscemi1, David Sutter2, and Marco Tomamichel3

1Graduate School of Informatics, Nagoya University, Nagoya, Japan
2Institute for Theoretical Physics, ETH Zurich, Switzerland
3Centre for Quantum Software and Information and School of Computer Science, University of Technology Sydney, Sydney

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Given two pairs of quantum states, we want to decide if there exists a quantum channel that transforms one pair into the other. The theory of quantum statistical comparison and quantum relative majorization provides necessary and sufficient conditions for such a transformation to exist, but such conditions are typically difficult to check in practice. Here, by building upon work by Keiji Matsumoto, we relax the problem by allowing for small errors in one of the transformations. In this way, a simple sufficient condition can be formulated in terms of one-shot relative entropies of the two pairs. In the asymptotic setting where we consider sequences of state pairs, under some mild convergence conditions, this implies that the quantum relative entropy is the only relevant quantity deciding when a pairwise state transformation is possible. More precisely, if the relative entropy of the initial state pair is strictly larger compared to the relative entropy of the target state pair, then a transformation with exponentially vanishing error is possible. On the other hand, if the relative entropy of the target state is strictly larger, then any such transformation will have an error converging exponentially to one. As an immediate consequence, we show that the rate at which pairs of states can be transformed into each other is given by the ratio of their relative entropies. We discuss applications to the resource theories of athermality and coherence, where our results imply an exponential strong converse for general state interconversion.

► BibTeX data

► References

[1] P. Alberti and A. Uhlmann. ``A problem relating to positive linear maps on matrix algebras''. Reports on Mathematical Physics 18(2): 163–176 (1980).

[2] P. M. Alberti and A. Uhlmann. Stochasticity and partial order. volume 9 of Mathematics and Its Applications, Deutscher Verlag der Wissenschaften (1982).

[3] A. Anshu, M. Berta, R. Jain, and M. Tomamichel. ``A minimax approach to one-shot entropy inequalities''. Preprint, arXiv: 1906.00333 (2019).

[4] K. M. R. Audenaert, M. Mosonyi, and F. Verstraete. ``Quantum State Discrimination Bounds for Finite Sample Size''. Journal of Mathematical Physics 53(12): 122205 (2012).

[5] D. Blackwell. ``Equivalent Comparisons of Experiments''. The Annals of Mathematical Statistics 24(2): 265–272 (1953).

[6] F. G. S. L. Brandao, M. Horodecki, N. H. Y. Ng, J. Oppenheim, and S. Wehner. ``The Second Laws of Quantum Thermodynamics''. Proceedings of the National Academy of Sciences USA 112(11): 3275–3279 (2014).

[7] F. Buscemi. ``Fully quantum second-law–like statements from the theory of statistical comparisons''. Preprint, arXiv: 1505.00535v1.

[8] F. Buscemi. ``Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency''. Communications in Mathematical Physics 310(3): 625–647 (2012).

[9] F. Buscemi and N. Datta. ``The Quantum Capacity of Channels With Arbitrarily Correlated Noise''. IEEE Transactions on Information Theory 56(3): 1447–1460 (2010).

[10] F. Buscemi and G. Gour. ``Quantum relative Lorenz curves''. Physical Review A 95(1) (2017).

[11] A. Chefles. ``Deterministic Quantum State Transformations''. Physics Letters A 270(1-2): 14–19 (2000).

[12] A. Chefles, R. Jozsa, and A. Winter. ``On the Existence of Physical Transformations between Sets of Quantum States''. International Journal of Quantum Information 02(01): 11–21 (2004).

[13] H.-C. Cheng and M.-H. Hsieh. ``Moderate deviation analysis for classical-quantum channels and quantum hypothesis testing''. IEEE Transactions on Information Theory 64(2): 1385–1403 (2018).

[14] E. Chitambar. ``Dephasing-covariant operations enable asymptotic reversibility of quantum resources''. Physical Review A 97(5) (2018).

[15] E. Chitambar and G. Gour. ``Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence''. Physical Review Letters 117(3) (2016).

[16] E. Chitambar and G. Gour. ``Quantum resource theories''. Reviews of Modern Physics 91(2) (2019).

[17] C. T. Chubb, V. Y. F. Tan, and M. Tomamichel. ``Moderate Deviation Analysis for Classical Communication over Quantum Channels''. Communications in Mathematical Physics 355(3): 1283–1315 (2017).

[18] C. T. Chubb, M. Tomamichel, and K. Korzekwa. ``Beyond the thermodynamic limit: finite-size corrections to state interconversion rates''. Quantum 2: 108 (2018).

[19] C. T. Chubb, M. Tomamichel, and K. Korzekwa. ``Moderate deviation analysis of majorization-based resource interconversion''. Physical Review A 99(3): 032332 (2019).

[20] J. E. Cohen, J. H. B. Kempermann, and G. Zbaganu. Comparisons of Stochastic Matrices with Applications in Information Theory, Statistics, Economics and Population. Birkhäuser (1998).

[21] G. Dahl. ``Matrix majorization''. Linear Algebra and its Applications 288: 53 – 73 (1999).

[22] N. Datta. ``Min- and Max- Relative Entropies and a New Entanglement Monotone''. IEEE Transactions on Information Theory 55(6): 2816–2826 (2009).

[23] G. Gour, D. Jennings, F. Buscemi, R. Duan, and I. Marvian. ``Quantum majorization and a complete set of entropic conditions for quantum thermodynamics''. Nature Communications 9(1) (2018).

[24] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press (1934).

[25] F. Hiai and D. Petz. ``The Proper Formula for Relative Entropy and its Asymptotics in Quantum Probability''. Communications in Mathematical Physics 143(1): 99–114 (1991).

[26] M. Horodecki and J. Oppenheim. ``Fundamental limitations for quantum and nanoscale thermodynamics''. Nature Communications 4(1) (2013).

[27] A. Jenčová. ``Comparison of Quantum Binary Experiments''. Reports on Mathematical Physics 70(2): 237–249 (2012).

[28] A. Jenčová. ``Comparison of quantum channels and statistical experiments''. In Proc. IEEE ISIT 2016, pages 2249–2253, (2016).

[29] J. Körner and K. Marton. ``Comparison of two noisy channels''. Colloquia Mathematica Societatis Janos Bolyai, Topics in Information Theory 16: 411–424, (1977).

[30] K. Korzekwa, C. T. Chubb, and M. Tomamichel. ``Avoiding Irreversibility: Engineering Resonant Conversions of Quantum Resources''. Physical Review Letters 122(11): 110403 (2019).

[31] W. Kumagai and M. Hayashi. ``Second Order Asymptotics of Optimal Approximate Conversion for Probability Distributions and Entangled States and Its Application to LOCC Cloning''. Preprint, arXiv: 1306.4166 (2013).

[32] L. Le Cam. ``Sufficiency and Approximate Sufficiency''. The Annals of Mathematical Statistics 35(4): 1419–1455 (1964).

[33] K. Li. ``Second-Order Asymptotics for Quantum Hypothesis Testing''. Annals of Statistics 42(1): 171–189 (2014).

[34] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and Its Applications. Springer (2011).

[35] I. Marvian and R. W. Spekkens. ``How to quantify coherence: Distinguishing speakable and unspeakable notions''. Physical Review A 94(5) (2016).

[36] K. Matsumoto. ``A quantum version of randomization criterion''. Preprint, arXiv: 1012.2650 (2010).

[37] K. Matsumoto. ``Reverse Test and Characterization of Quantum Relative Entropy''. Preprint, arXiv: 1010.1030 (2010).

[38] K. Matsumoto. ``An example of a quantum statistical model which cannot be mapped to a less informative one by any trace preserving positive map''. Preprint, arXiv: 1409.5658 (2014).

[39] K. Matsumoto. ``On the condition of conversion of classical probability distribution families into quantum families''. Preprint, arXiv: 1412.3680 (2014).

[40] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel. ``On Quantum Rényi Entropies: A New Generalization and Some Properties''. Journal of Mathematical Physics 54(12): 122203 (2013).

[41] M. A. Nielsen. ``Conditions for a Class of Entanglement Transformations''. Physical Review Letters 83(2): 436–439 (1999).

[42] T. Ogawa and H. Nagaoka. ``Strong Converse and Stein's Lemma in Quantum Hypothesis Testing''. IEEE Transactions on Information Theory 46(7): 2428–2433 (2000).

[43] D. Petz. ``Quasi-entropies for Finite Quantum Systems''. Reports on Mathematical Physics 23(1): 57–65 (1986).

[44] D. Reeb, M. J. Kastoryano, and M. M. Wolf. ``Hilbert's projective metric in quantum information theory''. Journal of Mathematical Physics 52(8): 082201 (2011).

[45] B. Regula, K. Fang, X. Wang, and G. Adesso. ``One-Shot Coherence Distillation''. Physical Review Letters 121(1) (2018).

[46] B. Regula, V. Narasimhachar, F. Buscemi, and M. Gu. ``Coherence manipulation with dephasing-covariant operations''. Preprint, arXiv: 1907.08606 (2019).

[47] J. M. Renes. ``Relative submajorization and its use in quantum resource theories''. Journal of Mathematical Physics 57(12): 122202 (2016).

[48] R. Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, (2005). Available at arXiv: quant-ph/​0512258.

[49] T. Sagawa, P. Faist, K. Kato, K. Matsumoto, H. Nagaoka, and F. G. S. L. Brandao. ``Asymptotic Reversibility of Thermal Operations for Interacting Quantum Spin Systems via Generalized Quantum Stein's Lemma''. Preprint, arXiv: 1907.05650.

[50] C. E. Shannon. ``A note on a partial ordering for communication channels''. Information and control 1(4): 390–397 (1958).

[51] V. Siddhu and R. B. Griffiths. ``Degradable Quantum Channels using Pure-State to Product-of-Pure-State Isometries''. Physical Review A 94(5): 052331 (2016).

[52] M. Tomamichel. Quantum Information Processing with Finite Resources — Mathematical Foundations. volume 5 of SpringerBriefs in Mathematical Physics, Springer International Publishing (2016).

[53] M. Tomamichel, R. Colbeck, and R. Renner. ``A Fully Quantum Asymptotic Equipartition Property''. IEEE Transactions on Information Theory 55(12): 5840–5847 (2009).

[54] M. Tomamichel and M. Hayashi. ``A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks''. IEEE Transactions on Information Theory 59(11): 7693–7710 (2013).

[55] E. Torgersen. Comparison of statistical experiments. volume 36 of Encyclopedia of Mathematics and its Applications, Cambridge University Press (1991).

[56] E. N. Torgersen. ``Comparison of experiments when the parameter space is finite''. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 16(3): 219–249 (1970).

[57] X. Wang and M. M. Wilde. ``Resource theory of asymmetric distinguishability''. Preprint, arXiv: 1905.11629 (2019).

[58] M. M. Wilde, A. Winter, and D. Yang. ``Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy''. Communications in Mathematical Physics 331(2): 593–622 (2014).

Cited by

[1] Robert Salzmann, Nilanjana Datta, Gilad Gour, Xin Wang, and Mark M Wilde, "Symmetric distinguishability as a quantum resource", New Journal of Physics 23 8, 083016 (2021).

[2] Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, and Kamil Korzekwa, "Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics", PRX Quantum 5 2, 020335 (2024).

[3] Francesco Buscemi, Kodai Kobayashi, Shintaro Minagawa, Paolo Perinotti, and Alessandro Tosini, "Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication", Quantum 7, 1035 (2023).

[4] Wenbin Zhou and Francesco Buscemi, "General state transitions with exact resource morphisms: a unified resource-theoretic approach", Journal of Physics A: Mathematical and Theoretical 53 44, 445303 (2020).

[5] Anna Jencova, "A General Theory of Comparison of Quantum Channels (and Beyond)", IEEE Transactions on Information Theory 67 6, 3945 (2021).

[6] Mark M. Wilde, "On distinguishability distillation and dilution exponents", Quantum Information Processing 21 12, 392 (2022).

[7] Sagnik Chakraborty, Dariusz Chruściński, Gniewomir Sarbicki, and Frederik vom Ende, "On the Alberti-Uhlmann Condition for Unital Channels", Quantum 4, 360 (2020).

[8] Paul Boes, Nelly H.Y. Ng, and Henrik Wilming, "Variance of Relative Surprisal as Single-Shot Quantifier", PRX Quantum 3 1, 010325 (2022).

[9] Roberto Rubboli and Marco Tomamichel, "Fundamental Limits on Correlated Catalytic State Transformations", Physical Review Letters 129 12, 120506 (2022).

[10] Fumio Hiai and Milán Mosonyi, "Quantum Rényi Divergences and the Strong Converse Exponent of State Discrimination in Operator Algebras", Annales Henri Poincaré 24 5, 1681 (2023).

[11] Bartosz Regula, "Tight constraints on probabilistic convertibility of quantum states", Quantum 6, 817 (2022).

[12] Bartosz Regula, Kaifeng Bu, Ryuji Takagi, and Zi-Wen Liu, "Benchmarking one-shot distillation in general quantum resource theories", Physical Review A 101 6, 062315 (2020).

[13] Giovanni Ferrari, Ludovico Lami, Thomas Theurer, and Martin B. Plenio, "Asymptotic State Transformations of Continuous Variable Resources", Communications in Mathematical Physics 398 1, 291 (2023).

[14] Bartosz Regula, Ludovico Lami, and Mark M. Wilde, "Postselected Quantum Hypothesis Testing", IEEE Transactions on Information Theory 70 5, 3453 (2024).

[15] Soorya Rethinasamy and Mark M. Wilde, "Relative entropy and catalytic relative majorization", Physical Review Research 2 3, 033455 (2020).

[16] Chandan Datta, Tulja Varun Kondra, Marek Miller, and Alexander Streltsov, "Catalysis of entanglement and other quantum resources", Reports on Progress in Physics 86 11, 116002 (2023).

[17] Bartosz Regula, Varun Narasimhachar, Francesco Buscemi, and Mile Gu, "Coherence manipulation with dephasing-covariant operations", Physical Review Research 2 1, 013109 (2020).

[18] Naoto Shiraishi and Takahiro Sagawa, "Quantum Thermodynamics of Correlated-Catalytic State Conversion at Small Scale", Physical Review Letters 126 15, 150502 (2021).

[19] Francesco Buscemi, Kodai Kobayashi, and Shintaro Minagawa, "A complete and operational resource theory of measurement sharpness", Quantum 8, 1235 (2024).

[20] Gergely Bunth and Péter Vrana, "Asymptotic relative submajorization of multiple-state boxes", Letters in Mathematical Physics 111 4, 94 (2021).

[21] Thomas Theurer, Elia Zanoni, Carlo Maria Scandolo, and Gilad Gour, "Thermodynamic state convertibility is determined by qubit cooling and heating", New Journal of Physics 25 12, 123017 (2023).

[22] Christopher Perry, Peter Vrana, and Albert H. Werner, "The Semiring of Dichotomies and Asymptotic Relative Submajorization", IEEE Transactions on Information Theory 68 1, 311 (2022).

[23] Bartosz Regula, "Probabilistic Transformations of Quantum Resources", Physical Review Letters 128 11, 110505 (2022).

[24] Bartosz Regula, Ludovico Lami, and Mark M. Wilde, "Overcoming entropic limitations on asymptotic state transformations through probabilistic protocols", Physical Review A 107 4, 042401 (2023).

[25] Xin Wang and Mark M. Wilde, "Resource theory of asymmetric distinguishability", Physical Review Research 1 3, 033170 (2019).

[26] Philippe Faist, Takahiro Sagawa, Kohtaro Kato, Hiroshi Nagaoka, and Fernando G. S. L. Brandão, "Macroscopic Thermodynamic Reversibility in Quantum Many-Body Systems", Physical Review Letters 123 25, 250601 (2019).

[27] Soorya Rethinasamy and Mark M. Wilde, "Relative Entropy and Catalytic Relative Majorization", arXiv:1912.04254, (2019).

[28] Michele Dall'Arno, Francesco Buscemi, and Valerio Scarani, "Extension of the Alberti-Ulhmann criterion beyond qubit dichotomies", Quantum 4, 233 (2020).

[29] Christopher Perry, Péter Vrana, and Albert H. Werner, "The semiring of dichotomies and asymptotic relative submajorization", arXiv:2004.10587, (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-26 15:28:09) and SAO/NASA ADS (last updated successfully 2024-05-26 15:28:10). The list may be incomplete as not all publishers provide suitable and complete citation data.