Separability for mixed states with operator Schmidt rank two

Gemma De las Cuevas1, Tom Drescher2, and Tim Netzer2

1Institute for Theoretical Physics, Technikerstr. 21a, A-6020 Innsbruck, Austria
2Department of Mathematics, Technikerstr. 13, A-6020 Innsbruck, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The operator Schmidt rank is the minimum number of terms required to express a state as a sum of elementary tensor factors. Here we provide a new proof of the fact that any bipartite mixed state with operator Schmidt rank two is separable, and can be written as a sum of two positive semidefinite matrices per site. Our proof uses results from the theory of free spectrahedra and operator systems, and illustrates the use of a connection between decompositions of quantum states and decompositions of nonnegative matrices. In the multipartite case, we prove that any Hermitian Matrix Product Density Operator (MPDO) of bond dimension two is separable, and can be written as a sum of at most four positive semidefinite matrices per site. This implies that these states can only contain classical correlations, and very few of them, as measured by the entanglement of purification. In contrast, MPDOs of bond dimension three can contain an unbounded amount of classical correlations.

The study of entanglement criteria is a “classic” problem in quantum information theory. Here we provide a new proof of the fact that if a mixed bipartite state can be expressed as a sum of two elementary tensor factors, then it is separable. In the multipartite case, we prove that any Hermitian Matrix Product Density Operator (MPDO) of bond dimension two is separable. This implies that these states can only contain classical correlations, and very few of them, as measured by the entanglement of purification. In contrast, MPDOs of bond dimension three can contain an unbounded amount of classical correlations.

► BibTeX data

► References

[1] A. Berman, M. Dür, and N. Shaked-Monderer. Open problems in the theory of completely positive and copositive matrices. Electron. J. Linear Algebra, 29:46, 2015. doi:10.13001/​1081-3810.2943.
https:/​/​doi.org/​10.13001/​1081-3810.2943

[2] A. Bluhm and I. Nechita. Joint measurability of quantum effects and the matrix diamond. 2018. arXiv:1807.01508.
https:/​/​doi.org/​10.1063/​1.5049125
arXiv:1807.01508

[3] D. Cariello. Separability for weak irreducible matrices. Quantum Inf. Comput., 14:1308, 2014. arXiv:1311.7275.
arXiv:1311.7275

[4] D. Cariello. Does Symmetry Imply PPT Property? Quantum Inf. Comput., 15:812, 2015. arXiv:1405.3634.
arXiv:1405.3634

[5] D. Cariello. Analytical techniques on multilinear problems. PhD thesis, Universidad Complutense de Madrid, 2017. URL: http:/​/​eprints.ucm.es/​43479/​1/​T38970.pdf.
http:/​/​eprints.ucm.es/​43479/​1/​T38970.pdf

[6] M. Christandl, A. Müller-Hermes, and M. M. Wolf. When Do Composed Maps Become Entanglement Breaking? 2018. arXiv:1807.01266.
https:/​/​doi.org/​10.1007/​s00023-019-00774-7
arXiv:1807.01266

[7] G. De las Cuevas, M. Hoogsteder Riera, and T. Netzer. Tensor decompositions on simplicial complexes with invariance. 2019. arXiv:1909.01737.
arXiv:1909.01737

[8] G. De las Cuevas and T. Netzer. Mixed states in one spatial dimension: decompositions and correspondence with nonnegative matrices. 2019. arXiv:1907.03664.
arXiv:1907.03664

[9] G. De las Cuevas, N. Schuch, D. Perez-Garcia, and J. I. Cirac. Purifications of multipartite states: limitations and constructive methods. New J. Phys., 15:123021, 2013. doi:10.1088/​1367-2630/​15/​12/​123021.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​12/​123021

[10] H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, and R. R. Thomas. Positive semidefinite rank. Math. Program., 15:133, 2015. doi:10.1007/​s10107-015-0922-1.
https:/​/​doi.org/​10.1007/​s10107-015-0922-1

[11] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds. STOC '12 Proc. of the 44th Symposium on Theory of Computing, page 95, 2012. doi:10.1145/​2213977.2213988.
https:/​/​doi.org/​10.1145/​2213977.2213988

[12] T. Fritz, T. Netzer, and A. Thom. Spectrahedral containment and operator systems with finite-dimensional realization. SIAM J. Appl. Algebra Geom., 1:556, 2016. doi:10.1137/​16M1100642.
https:/​/​doi.org/​10.1137/​16M1100642

[13] S. Gharibian. Strong NP-Hardness of the Quantum Separability Problem. Quantum Inf. Comput., 10:343, 2010. arXiv:0810.4507.
arXiv:0810.4507

[14] R. Gielerak. Schmidt decomposition of mixed-pure states for (d,infty) systems and some applications. 2018. arXiv:1803.09541.
arXiv:1803.09541

[15] J. Gouveia, P. A. Parrilo, and R. R. Thomas. Lifts of convex sets and cone factorizations. Math. Oper. Res., 38:248, 2013. doi:10.1287/​moor.1120.0575.
https:/​/​doi.org/​10.1287/​moor.1120.0575

[16] L. Gurvits. Classical deterministic compleixty of Edmonds' problem and quantum entanglement. In STOC '03: Proc. of the 35th Annual ACM Symposium on Theory of Computing, ACM, page 10, 2003. doi:10.1145/​780542.780545.
https:/​/​doi.org/​10.1145/​780542.780545

[17] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865, 2009. doi:10.1103/​RevModPhys.81.865.
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[18] J. W. Helton, I. Klep, and S. McCullough. The matricial relaxation of a linear matrix inequality. Math. Program., 138:401, 2013. doi:10.1007/​s10107-012-0525-z.
https:/​/​doi.org/​10.1007/​s10107-012-0525-z

[19] P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac. Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A, 62:032310, 2000. doi:10.1103/​PhysRevA.62.032310.
https:/​/​doi.org/​10.1103/​PhysRevA.62.032310

[20] M. Horodecki, P. W. Shor, and M. B. Ruskai. Entanglement Breaking Channels. Rev. Math. Phys., 15:629, 2003. doi:10.1142/​S0129055X03001709.
https:/​/​doi.org/​10.1142/​S0129055X03001709

[21] A. Jamiolkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys., 3:9, 1972. doi:10.1016/​0034-4877(72)90011-0.
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[22] N. Johnston. http:/​/​www.njohnston.ca/​2014/​06/​what-the-operator-schmidt-decomposition-tells-us-about-entanglement/​.
http:/​/​www.njohnston.ca/​2014/​06/​what-the-operator-schmidt-decomposition-tells-us-about-entanglement/​.

[23] B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein. Separability in 2xN composite quantum systems. Phys. Rev. A, 61:062302, 2000. doi:10.1103/​PhysRevA.61.062302.
https:/​/​doi.org/​10.1103/​PhysRevA.61.062302

[24] K. Chen and L.-A. Wu. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput., 3:193, 2003. arXiv:0205017.
arXiv:quant-ph/0205017

[25] M. Laurent and T. Piovesan. Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone. SIAM J. Optim., 25:2461, 2015. doi:10.1137/​14097865X.
https:/​/​doi.org/​10.1137/​14097865X

[26] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. doi:10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[27] T. Netzer. Free Semialgebraic Geometry. 2019. arXiv:1902.11170.
arXiv:1902.11170

[28] O. Rudolph. Some properties of the computable cross norm criterion for separability. Phys. Rev. A, 67:032312, 2003. doi:10.1103/​PhysRevA.67.032312.
https:/​/​doi.org/​10.1103/​PhysRevA.67.032312

[29] D. Sauerwein, N. R. Wallach, G. Gour, and B. Kraus. Transformations among Pure Multipartite Entangled States via Local Operations are Almost Never Possible. Phys. Rev. X, 8:031020, 2018. doi:10.1103/​PhysRevX.8.031020.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031020

[30] B. M. Terhal, M. Horodecki, D. W. Leung, and D. P. DiVincenzo. The entanglement of purification. J. Math. Phys., 43:4286, 2002. doi:10.1063/​1.1498001.
https:/​/​doi.org/​10.1063/​1.1498001

[31] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac. Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems. Phys. Rev. Lett., 93:207204, 2004. doi:10.1103/​PhysRevLett.93.207204.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204

[32] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci., 43:441, 1991. doi:10.1016/​0022-0000(91)90024-Y.
https:/​/​doi.org/​10.1016/​0022-0000(91)90024-Y

[33] M. Zwolak and G. Vidal. Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm. Phys. Rev. Lett., 93:207205, 2004. doi:10.1103/​PhysRevLett.93.207205.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207205

Cited by

[1] Gemma De las Cuevas and Tim Netzer, "Mixed states in one spatial dimension: decompositions and correspondence with nonnegative matrices", arXiv:1907.03664.

The above citations are from SAO/NASA ADS (last updated 2019-12-15 00:47:47). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2019-12-15 00:47:46).