Theory of variational quantum simulation

Xiao Yuan1, Suguru Endo1, Qi Zhao2, Ying Li3, and Simon C. Benjamin1

1Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
2Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
3Graduate School of China Academy of Engineering Physics, Beijing 100193, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlan's variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.

Universal quantum computers will eventually solve various classically intractable problems, but the exciting challenge is to demonstrate the first real quantum advantage as soon as possible -- with NISQ (for Noisy Intermediate Scaled Quantum) devices. In this regime, we may only be able to manipulate hundreds or thousands of qubits and the operations will be imperfect (or 'noisy'). With such a limited noisy quantum computer, it is unclear how to demonstrate any quantum advantage in any practical task.

This work solves this problem by exploring hybrid algorithms that only solve the core challenging problem with the quantum hardware and the higher level problem with a classical computer. This can be called the quantum coprocessor model: the quantum device handles only the bits that the conventional computer cannot. By considering different variational principles, we show how to simulate real and imaginary time dynamics of closed and open systems. Our work can thus be applied for solving static problems or simulating the dynamics of chemistry and general many-body physics with near-term quantum computers. These are tasks that, until recently, would have been thought to need a full scale fault-tolerant quantum computer in the more distant future.

► BibTeX data

► References

[1] Roger Balian and Marcel Veneroni. Static and dynamic variational principles for expectation values of observables. Annals of Physics, 187 (1): 29 – 78, 1988. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​0003-4916(88)90280-1. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0003491688902801.
https:/​/​doi.org/​10.1016/​0003-4916(88)90280-1
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0003491688902801

[2] Víctor M. Pérez-García, Humberto Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller. Dynamics of bose-einstein condensates: Variational solutions of the gross-pitaevskii equations. Phys. Rev. A, 56: 1424–1432, Aug 1997. https:/​/​doi.org/​10.1103/​PhysRevA.56.1424. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.56.1424.
https:/​/​doi.org/​10.1103/​PhysRevA.56.1424

[3] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71: 463–512, Apr 1999. https:/​/​doi.org/​10.1103/​RevModPhys.71.463. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.71.463.
https:/​/​doi.org/​10.1103/​RevModPhys.71.463

[4] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett., 107: 070601, Aug 2011. https:/​/​doi.org/​10.1103/​PhysRevLett.107.070601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.107.070601.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.070601

[5] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93: 207204, Nov 2004. https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.93.207204.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204

[6] Tao Shi, Eugene Demler, and J. Ignacio Cirac. Variational study of fermionic and bosonic systems with non-gaussian states: Theory and applications. Annals of Physics, 390: 245 – 302, 2018. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​j.aop.2017.11.014. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491617303251.
https:/​/​doi.org/​10.1016/​j.aop.2017.11.014
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491617303251

[7] Laurens Vanderstraeten, Jutho Haegeman, and Frank Verstraete. Tangent-space methods for uniform matrix product states. SciPost Phys. Lect. Notes, page 7, 2019. https:/​/​doi.org/​10.21468/​SciPostPhysLectNotes.7. URL https:/​/​scipost.org/​10.21468/​SciPostPhysLectNotes.7.
https:/​/​doi.org/​10.21468/​SciPostPhysLectNotes.7

[8] Hans Feldmeier and Jürgen Schnack. Molecular dynamics for fermions. Rev. Mod. Phys., 72: 655–688, Jul 2000. https:/​/​doi.org/​10.1103/​RevModPhys.72.655. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.72.655.
https:/​/​doi.org/​10.1103/​RevModPhys.72.655

[9] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications, 2012. ISBN 9780486134598. URL https:/​/​books.google.co.uk/​books?id=KQ3DAgAAQBAJ.
https:/​/​books.google.co.uk/​books?id=KQ3DAgAAQBAJ

[10] T. Helgaker, P. Jorgensen, and J. Olsen. Molecular Electronic-Structure Theory. Wiley, 2013. ISBN 9781118531471. https:/​/​doi.org/​10.1002/​9781119019572. URL https:/​/​books.google.co.uk/​books?id=APjLWFFxWkQC.
https:/​/​doi.org/​10.1002/​9781119019572
https:/​/​books.google.co.uk/​books?id=APjLWFFxWkQC

[11] F. Verstraete, V. Murg, and J. I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57 (2): 143–224, 03 2008. https:/​/​doi.org/​10.1080/​14789940801912366. URL https:/​/​doi.org/​10.1080/​14789940801912366.
https:/​/​doi.org/​10.1080/​14789940801912366

[12] Yuto Ashida, Tao Shi, Mari Carmen Bañuls, J. Ignacio Cirac, and Eugene Demler. Variational principle for quantum impurity systems in and out of equilibrium: Application to kondo problems. Phys. Rev. B, 98: 024103, Jul 2018. https:/​/​doi.org/​10.1103/​PhysRevB.98.024103. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.98.024103.
https:/​/​doi.org/​10.1103/​PhysRevB.98.024103

[13] R. Jackiw and A. Kerman. Time-dependent variational principle and the effective action. Physics Letters A, 71 (2): 158 – 162, 1979. ISSN 0375-9601. https:/​/​doi.org/​10.1016/​0375-9601(79)90151-8. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0375960179901518.
https:/​/​doi.org/​10.1016/​0375-9601(79)90151-8
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0375960179901518

[14] L. Lehtovaara, J. Toivanen, and J. Eloranta. Solution of time-independent schrödinger equation by the imaginary time propagation method. Journal of Computational Physics, 221 (1): 148 – 157, 2007. ISSN 0021-9991. https:/​/​doi.org/​10.1016/​j.jcp.2006.06.006. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0021999106002798.
https:/​/​doi.org/​10.1016/​j.jcp.2006.06.006
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0021999106002798

[15] P Kramer. A review of the time-dependent variational principle. Journal of Physics: Conference Series, 99: 012009, feb 2008. https:/​/​doi.org/​10.1088/​1742-6596/​99/​1/​012009. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1742-6596/​99/​1/​012009

[16] Christina V Kraus and J Ignacio Cirac. Generalized hartree–fock theory for interacting fermions in lattices: numerical methods. New Journal of Physics, 12 (11): 113004, nov 2010. https:/​/​doi.org/​10.1088/​1367-2630/​12/​11/​113004. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​11/​113004

[17] Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549: 203 EP –, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[18] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595–600, 2018. https:/​/​doi.org/​10.1038/​s41567-018-0124-x. URL https:/​/​doi.org/​10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​10.1038/​s41567-018-0124-x

[19] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195–199, 2018. ISSN 0036-8075. https:/​/​doi.org/​10.1126/​science.aao4309. URL https:/​/​science.sciencemag.org/​content/​360/​6385/​195.
https:/​/​doi.org/​10.1126/​science.aao4309
https:/​/​science.sciencemag.org/​content/​360/​6385/​195

[20] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467–488, Jun 1982. ISSN 1572-9575. https:/​/​doi.org/​10.1007/​BF02650179. URL https:/​/​doi.org/​10.1007/​BF02650179.
https:/​/​doi.org/​10.1007/​BF02650179

[21] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. ISSN 0036-8075. https:/​/​doi.org/​10.1126/​science.273.5278.1073. URL http:/​/​science.sciencemag.org/​content/​273/​5278/​1073.
https:/​/​doi.org/​10.1126/​science.273.5278.1073
http:/​/​science.sciencemag.org/​content/​273/​5278/​1073

[22] Daniel S. Abrams and Seth Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett., 79: 2586–2589, Sep 1997. https:/​/​doi.org/​10.1103/​PhysRevLett.79.2586. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.79.2586.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.2586

[23] Joe O'Gorman and Earl T. Campbell. Quantum computation with realistic magic-state factories. Phys. Rev. A, 95: 032338, Mar 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.032338. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.032338.
https:/​/​doi.org/​10.1103/​PhysRevA.95.032338

[24] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549: 172 EP –, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23460.
https:/​/​doi.org/​10.1038/​nature23460

[25] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 2017. ISSN 0027-8424. https:/​/​doi.org/​10.1073/​pnas.1619152114. URL https:/​/​www.pnas.org/​content/​early/​2017/​06/​30/​1619152114.
https:/​/​doi.org/​10.1073/​pnas.1619152114
https:/​/​www.pnas.org/​content/​early/​2017/​06/​30/​1619152114

[26] James Wooten. Benchmarking of quantum processors with random circuits. arXiv preprint arXiv:1806.02736, 2018.
arXiv:1806.02736

[27] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. https:/​/​doi.org/​10.22331/​q-2018-08-06-79. URL https:/​/​doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[28] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
arXiv:1411.4028

[29] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, 07 2014. URL https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[30] Ya Wang, Florian Dolde, Jacob Biamonte, Ryan Babbush, Ville Bergholm, Sen Yang, Ingmar Jakobi, Philipp Neumann, Alán Aspuru-Guzik, James D. Whitfield, and Jörg Wrachtrup. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano, 9 (8): 7769–7774, 08 2015. https:/​/​doi.org/​10.1021/​acsnano.5b01651. URL https:/​/​doi.org/​10.1021/​acsnano.5b01651.
https:/​/​doi.org/​10.1021/​acsnano.5b01651

[31] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6: 031007, Jul 2016. https:/​/​doi.org/​10.1103/​PhysRevX.6.031007. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.6.031007.
https:/​/​doi.org/​10.1103/​PhysRevX.6.031007

[32] Yangchao Shen, Xiang Zhang, Shuaining Zhang, Jing-Ning Zhang, Man-Hong Yung, and Kihwan Kim. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A, 95: 020501, Feb 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.020501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.020501.
https:/​/​doi.org/​10.1103/​PhysRevA.95.020501

[33] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, feb 2016. https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[34] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O'Brien, and M. G. Thompson. Experimental bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett., 118: 100503, Mar 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.118.100503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.118.100503.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.100503

[35] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 8: 011021, Feb 2018a. https:/​/​doi.org/​10.1103/​PhysRevX.8.011021. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011021

[36] Raffaele Santagati, Jianwei Wang, Antonio A. Gentile, Stefano Paesani, Nathan Wiebe, Jarrod R. McClean, Sam Morley-Short, Peter J. Shadbolt, Damien Bonneau, Joshua W. Silverstone, David P. Tew, Xiaoqi Zhou, Jeremy L. O’Brien, and Mark G. Thompson. Witnessing eigenstates for quantum simulation of hamiltonian spectra. Science Advances, 4 (1), 2018. https:/​/​doi.org/​10.1126/​sciadv.aap9646. URL http:/​/​advances.sciencemag.org/​content/​4/​1/​eaap9646.
https:/​/​doi.org/​10.1126/​sciadv.aap9646
http:/​/​advances.sciencemag.org/​content/​4/​1/​eaap9646

[37] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242 EP –, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[38] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491–495, 2019. https:/​/​doi.org/​10.1038/​s41586-019-1040-7. URL https:/​/​doi.org/​10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[39] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8: 031022, Jul 2018. https:/​/​doi.org/​10.1103/​PhysRevX.8.031022. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031022.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031022

[40] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational quantum simulation of lattice models. Nature, 569 (7756): 355–360, May 2019. https:/​/​doi.org/​10.1038/​s41586-019-1177-4.
https:/​/​doi.org/​10.1038/​s41586-019-1177-4

[41] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7: 021050, Jun 2017. https:/​/​doi.org/​10.1103/​PhysRevX.7.021050. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.7.021050.
https:/​/​doi.org/​10.1103/​PhysRevX.7.021050

[42] Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace-search variational quantum eigensolver for excited states. arXiv preprint arXiv:1810.09434, 2018.
arXiv:1810.09434

[43] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum simulation of time-dependent hamiltonians and the convenient illusion of hilbert space. Phys. Rev. Lett., 106: 170501, Apr 2011. https:/​/​doi.org/​10.1103/​PhysRevLett.106.170501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.106.170501.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.170501

[44] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86: 153–185, Mar 2014. https:/​/​doi.org/​10.1103/​RevModPhys.86.153. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.86.153.
https:/​/​doi.org/​10.1103/​RevModPhys.86.153

[45] S. Kais, K.B. Whaley, A.R. Dinner, and S.A. Rice. Quantum Information and Computation for Chemistry. Advances in Chemical Physics. Wiley, 2014. ISBN 9781118742600. https:/​/​doi.org/​10.1002/​9781118742631. URL https:/​/​books.google.co.uk/​books?id=dCXPAgAAQBAJ.
https:/​/​doi.org/​10.1002/​9781118742631
https:/​/​books.google.co.uk/​books?id=dCXPAgAAQBAJ

[46] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan. Quantum computational chemistry. arXiv e-prints, art. arXiv:1808.10402, Aug 2018.
arXiv:1808.10402

[47] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum computing. Chemical Reviews, 08 2019. https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803. URL https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803.
https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803

[48] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 26, pages 376–385. Cambridge University Press, 1930. ISBN 0305-0041. https:/​/​doi.org/​10.1017/​S0305004100016108. URL https:/​/​www.cambridge.org/​core/​article/​note-on-exchange-phenomena-in-the-thomas-atom/​6C5FF7297CD96F49A8B8E9E3EA50E412.
https:/​/​doi.org/​10.1017/​S0305004100016108
https:/​/​www.cambridge.org/​core/​article/​note-on-exchange-phenomena-in-the-thomas-atom/​6C5FF7297CD96F49A8B8E9E3EA50E412

[49] J. Frenkel. Wave mechanics: advanced general theory. Clarendon Press Oxford, 1934.

[50] A.D. McLachlan. A variational solution of the time-dependent schrodinger equation. Molecular Physics, 8 (1): 39–44, 1964. https:/​/​doi.org/​10.1080/​00268976400100041.
https:/​/​doi.org/​10.1080/​00268976400100041

[51] PH Kramer and Marcos Saraceno. Geometry of the time-dependent variational principle in quantum mechanics. Springer, 1981. https:/​/​doi.org/​10.1007/​3-540-10579-4.
https:/​/​doi.org/​10.1007/​3-540-10579-4

[52] J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. Van Leuven. On the equivalence of time-dependent variational principles. Chemical Physics Letters, 149 (5): 547 – 550, 1988. ISSN 0009-2614. https:/​/​doi.org/​10.1016/​0009-2614(88)80380-4. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0009261488803804.
https:/​/​doi.org/​10.1016/​0009-2614(88)80380-4
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0009261488803804

[53] Jutho Haegeman, Tobias J. Osborne, and Frank Verstraete. Post-matrix product state methods: To tangent space and beyond. Phys. Rev. B, 88: 075133, Aug 2013. https:/​/​doi.org/​10.1103/​PhysRevB.88.075133. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.88.075133.
https:/​/​doi.org/​10.1103/​PhysRevB.88.075133

[54] Kentaro Heya, Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace variational quantum simulator. arXiv preprint arXiv:1904.08566, 2019.
arXiv:1904.08566

[55] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information, 5 (1): 75, 2019a. https:/​/​doi.org/​10.1038/​s41534-019-0187-2. URL https:/​/​doi.org/​10.1038/​s41534-019-0187-2.
https:/​/​doi.org/​10.1038/​s41534-019-0187-2

[56] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C. Benjamin. Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A, 99: 062304, Jun 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.062304. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.062304.
https:/​/​doi.org/​10.1103/​PhysRevA.99.062304

[57] Ming-Cheng Chen, Ming Gong, Xiao-Si Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, Shiyu Wang, Hui Deng, Futian Liang, Cheng-Zhi Peng, Simon C. Benjamin, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan. Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor. arXiv e-prints, art. arXiv:1905.03150, May 2019.
arXiv:1905.03150

[58] Kosuke Mitarai and Keisuke Fujii. Methodology for replacing indirect measurements with direct measurements. Phys. Rev. Research, 1: 013006, Aug 2019. https:/​/​doi.org/​10.1103/​PhysRevResearch.1.013006. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevResearch.1.013006.
https:/​/​doi.org/​10.1103/​PhysRevResearch.1.013006

[59] Artur K. Ekert, Carolina Moura Alves, Daniel K. L. Oi, Michał Horodecki, Paweł Horodecki, and L. C. Kwek. Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett., 88: 217901, May 2002. https:/​/​doi.org/​10.1103/​PhysRevLett.88.217901. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.88.217901.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.217901

[60] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan. Variational quantum simulation of general processes. arXiv preprint arXiv:1812.08778, 2018a.
arXiv:1812.08778

[61] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183 (8): 1760 – 1772, 2012. ISSN 0010-4655. https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512000835.
https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512000835

[62] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184 (4): 1234 – 1240, 2013. ISSN 0010-4655. https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512003955.
https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512003955

[63] Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95: 042308, Apr 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.042308. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.042308.
https:/​/​doi.org/​10.1103/​PhysRevA.95.042308

[64] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.180509.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509

[65] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8: 031027, Jul 2018b. https:/​/​doi.org/​10.1103/​PhysRevX.8.031027. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027

[66] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 8: 011021, Feb 2018b. https:/​/​doi.org/​10.1103/​PhysRevX.8.011021. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011021

[67] Matthew Otten and Stephen K. Gray. Recovering noise-free quantum observables. Phys. Rev. A, 99: 012338, Jan 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.012338. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.012338.
https:/​/​doi.org/​10.1103/​PhysRevA.99.012338

[68] Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122: 180501, May 2019b. https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.122.180501.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501

[69] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien. Low-cost error mitigation by symmetry verification. Phys. Rev. A, 98: 062339, Dec 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.062339. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.98.062339.
https:/​/​doi.org/​10.1103/​PhysRevA.98.062339

[70] Jarrod R McClean, Zhang Jiang, Nicholas C Rubin, Ryan Babbush, and Hartmut Neven. Decoding quantum errors with subspace expansions. arXiv preprint arXiv:1903.05786, 2019.
arXiv:1903.05786

Cited by

[1] Tatiana A. Bespalova and Oleksandr Kyriienko, "Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation", PRX Quantum 2 3, 030318 (2021).

[2] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner, "Variational quantum Boltzmann machines", Quantum Machine Intelligence 3 1, 7 (2021).

[3] Tianchen Zhao, Giuseppe Carleo, James Stokes, and Shravan Veerapaneni, "Natural evolution strategies and variational Monte Carlo", Machine Learning: Science and Technology 2 2, 02LT01 (2021).

[4] Pejman Jouzdani and Stefan Bringuier, "Hybrid Quantum-Classical Eigensolver without Variation or Parametric Gates", Quantum Reports 3 1, 137 (2021).

[5] Yuri Alexeev, Dave Bacon, Kenneth R. Brown, Robert Calderbank, Lincoln D. Carr, Frederic T. Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey V. Gorshkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail D. Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler, Martin J. Savage, and Jeff Thompson, "Quantum Computer Systems for Scientific Discovery", PRX Quantum 2 1, 017001 (2021).

[6] Andrey Kardashin, Anastasiia Pervishko, Jacob Biamonte, and Dmitry Yudin, "Numerical hardware-efficient variational quantum simulation of a soliton solution", Physical Review A 104 2, L020402 (2021).

[7] Shi-Yao Hou, Guanru Feng, Zipeng Wu, Hongyang Zou, Wei Shi, Jinfeng Zeng, Chenfeng Cao, Sheng Yu, Zikai Sheng, Xin Rao, Bing Ren, Dawei Lu, Junting Zou, Guoxing Miao, Jingen Xiang, and Bei Zeng, "SpinQ Gemini: a desktop quantum computing platform for education and research", EPJ Quantum Technology 8 1, 20 (2021).

[8] Laszlo Gyongyosi, "Adaptive Problem Solving Dynamics in Gate-Model Quantum Computers", Entropy 24 9, 1196 (2022).

[9] Tomotaka Kuwahara, Álvaro M. Alhambra, and Anurag Anshu, "Improved Thermal Area Law and Quasilinear Time Algorithm for Quantum Gibbs States", Physical Review X 11 1, 011047 (2021).

[10] Katherine Klymko, Carlos Mejuto-Zaera, Stephen J. Cotton, Filip Wudarski, Miroslav Urbanek, Diptarka Hait, Martin Head-Gordon, K. Birgitta Whaley, Jonathan Moussa, Nathan Wiebe, Wibe A. de Jong, and Norm M. Tubman, "Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware", PRX Quantum 3 2, 020323 (2022).

[11] Enrico Fontana, Nathan Fitzpatrick, David Muñoz Ramo, Ross Duncan, and Ivan Rungger, "Evaluating the noise resilience of variational quantum algorithms", Physical Review A 104 2, 022403 (2021).

[12] Tobias Haug, Kishor Bharti, and M.S. Kim, "Capacity and Quantum Geometry of Parametrized Quantum Circuits", PRX Quantum 2 4, 040309 (2021).

[13] Yuta Shingu, Yuya Seki, Shohei Watabe, Suguru Endo, Yuichiro Matsuzaki, Shiro Kawabata, Tetsuro Nikuni, and Hideaki Hakoshima, "Boltzmann machine learning with a variational quantum algorithm", Physical Review A 104 3, 032413 (2021).

[14] Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang, and Liang Shi, "Variational Quantum Simulation of Chemical Dynamics with Quantum Computers", Journal of Chemical Theory and Computation 18 4, 2105 (2022).

[15] Jonathan Wei Zhong Lau, Kian Hwee Lim, Harshank Shrotriya, and Leong Chuan Kwek, "NISQ computing: where are we and where do we go?", AAPPS Bulletin 32 1, 27 (2022).

[16] Dan-Bo Zhang and Tao Yin, "Collective optimization for variational quantum eigensolvers", Physical Review A 101 3, 032311 (2020).

[17] Suguru Endo, Jinzhao Sun, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational Quantum Simulation of General Processes", Physical Review Letters 125 1, 010501 (2020).

[18] Marcello Benedetti, Mattia Fiorentini, and Michael Lubasch, "Hardware-efficient variational quantum algorithms for time evolution", Physical Review Research 3 3, 033083 (2021).

[19] Pablo Rivas, Liang Zhao, and Javier Orduz, 2021 International Conference on Computational Science and Computational Intelligence (CSCI) 52 (2021) ISBN:978-1-6654-5841-2.

[20] Youle Wang, Guangxi Li, and Xin Wang, "Variational Quantum Gibbs State Preparation with a Truncated Taylor Series", arXiv:2005.08797, Physical Review Applied 16 5, 054035 (2021).

[21] Utkarsh Azad and Harjinder Singh, "Quantum chemistry calculations using energy derivatives on quantum computers", Chemical Physics 558, 111506 (2022).

[22] Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornborger, "Barren Plateaus Preclude Learning Scramblers", Physical Review Letters 126 19, 190501 (2021).

[23] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Neural predictor based quantum architecture search", Machine Learning: Science and Technology 2 4, 045027 (2021).

[24] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker, James Ang, and Ang Li, Proceedings of the 49th Annual International Symposium on Computer Architecture 59 (2022) ISBN:9781450386104.

[25] Yuta Shingu, Yuki Takeuchi, Suguru Endo, Shiro Kawabata, Shohei Watabe, Tetsuro Nikuni, Hideaki Hakoshima, and Yuichiro Matsuzaki, "Variational secure cloud quantum computing", Physical Review A 105 2, 022603 (2022).

[26] Ming-Cheng Chen, Ming Gong, Xiaosi Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, Shiyu Wang, Hui Deng, Futian Liang, Cheng-Zhi Peng, Simon C. Benjamin, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan, "Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor", Physical Review Letters 125 18, 180501 (2020).

[27] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[28] David Amaro, Matthias Rosenkranz, Nathan Fitzpatrick, Koji Hirano, and Mattia Fiorentini, "A case study of variational quantum algorithms for a job shop scheduling problem", EPJ Quantum Technology 9 1, 5 (2022).

[29] Weitang Li, Zigeng Huang, Changsu Cao, Yifei Huang, Zhigang Shuai, Xiaoming Sun, Jinzhao Sun, Xiao Yuan, and Dingshun Lv, "Toward practical quantum embedding simulation of realistic chemical systems on near-term quantum computers", Chemical Science 13 31, 8953 (2022).

[30] Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian Wu, Christopher Roth, Clemens Giuliani, Gabriel Pescia, Jannes Nys, Vladimir Vargas-Calderón, Nikita Astrakhantsev, and Giuseppe Carleo, "NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems", SciPost Physics Codebases 7 (2022).

[31] Xiaosi Xu, Simon C. Benjamin, and Xiao Yuan, "Variational Circuit Compiler for Quantum Error Correction", Physical Review Applied 15 3, 034068 (2021).

[32] Kunal Sharma, Sumeet Khatri, M Cerezo, and Patrick J Coles, "Noise resilience of variational quantum compiling", New Journal of Physics 22 4, 043006 (2020).

[33] Patrick Selig, Niall Murphy, Ashwin Sundareswaran R, David Redmond, and Simon Caton, 2021 International Conference on Rebooting Computing (ICRC) 24 (2021) ISBN:978-1-6654-2332-8.

[34] Tyler Volkoff and Patrick J Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[35] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson, "The Variational Quantum Eigensolver: A review of methods and best practices", Physics Reports 986, 1 (2022).

[36] Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, and Peter P. Orth, "Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression", Physical Review Research 4 2, 023097 (2022).

[37] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles, "Noise-induced barren plateaus in variational quantum algorithms", Nature Communications 12 1, 6961 (2021).

[38] Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark, "Unitary block optimization for variational quantum algorithms", Physical Review Research 4 2, 023072 (2022).

[39] Marco Pistoia, Syed Farhan Ahmad, Akshay Ajagekar, Alexander Buts, Shouvanik Chakrabarti, Dylan Herman, Shaohan Hu, Andrew Jena, Pierre Minssen, Pradeep Niroula, Arthur Rattew, Yue Sun, and Romina Yalovetzky, 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD) 1 (2021) ISBN:978-1-6654-4507-8.

[40] Shi-Xin Zhang, Zhou-Quan Wan, Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Variational Quantum-Neural Hybrid Eigensolver", Physical Review Letters 128 12, 120502 (2022).

[41] Xiao Yuan, Jinzhao Sun, Junyu Liu, Qi Zhao, and You Zhou, "Quantum Simulation with Hybrid Tensor Networks", Physical Review Letters 127 4, 040501 (2021).

[42] Alexander Miessen, Pauline J. Ollitrault, and Ivano Tavernelli, "Quantum algorithms for quantum dynamics: A performance study on the spin-boson model", Physical Review Research 3 4, 043212 (2021).

[43] Suguru Endo, Iori Kurata, and Yuya O. Nakagawa, "Calculation of the Green's function on near-term quantum computers", Physical Review Research 2 3, 033281 (2020).

[44] Tomasz Szołdra, Piotr Sierant, Maciej Lewenstein, and Jakub Zakrzewski, "Unsupervised detection of decoupled subspaces: Many-body scars and beyond", Physical Review B 105 22, 224205 (2022).

[45] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", Quantum 4, 263 (2020).

[46] Jacob L. Beckey, M. Cerezo, Akira Sone, and Patrick J. Coles, "Variational quantum algorithm for estimating the quantum Fisher information", Physical Review Research 4 1, 013083 (2022).

[47] Sebastian Brandhofer, Simon Devitt, and Ilia Polian, 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 1 (2021) ISBN:978-1-6654-0959-9.

[48] Keisuke Matsumoto, Yuta Shingu, Suguru Endo, Shiro Kawabata, Shohei Watabe, Tetsuro Nikuni, Hideaki Hakoshima, and Yuichiro Matsuzaki, "Calculation of Gibbs partition function with imaginary time evolution on near-term quantum computers", Japanese Journal of Applied Physics 61 4, 042002 (2022).

[49] Bo Peng and Karol Kowalski, "Variational quantum solver employing the PDS energy functional", Quantum 5, 473 (2021).

[50] Barnaby van Straaten and Bálint Koczor, "Measurement Cost of Metric-Aware Variational Quantum Algorithms", PRX Quantum 2 3, 030324 (2021).

[51] R. Sagastizabal, S. P. Premaratne, B. A. Klaver, M. A. Rol, V. Negîrneac, M. S. Moreira, X. Zou, S. Johri, N. Muthusubramanian, M. Beekman, C. Zachariadis, V. P. Ostroukh, N. Haider, A. Bruno, A. Y. Matsuura, and L. DiCarlo, "Variational preparation of finite-temperature states on a quantum computer", npj Quantum Information 7 1, 130 (2021).

[52] Kishor Bharti, Tobias Haug, Vlatko Vedral, and Leong-Chuan Kwek, "Noisy intermediate-scale quantum algorithm for semidefinite programming", Physical Review A 105 5, 052445 (2022).

[53] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8 1, 113 (2022).

[54] Nobuyuki Yoshioka, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, "Variational quantum algorithm for nonequilibrium steady states", Physical Review Research 2 4, 043289 (2020).

[55] Johanna Barzen, Quantum Computing in the Arts and Humanities 1 (2022) ISBN:978-3-030-95537-3.

[56] Taichi Kosugi, Yusuke Nishiya, Hirofumi Nishi, and Yu-ichiro Matsushita, "Imaginary-time evolution using forward and backward real-time evolution with a single ancilla: First-quantized eigensolver algorithm for quantum chemistry", Physical Review Research 4 3, 033121 (2022).

[57] Bálint Koczor and Simon C. Benjamin, "Quantum analytic descent", Physical Review Research 4 2, 023017 (2022).

[58] Manas Sajjan, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais, "Quantum machine learning for chemistry and physics", Chemical Society Reviews 51 15, 6475 (2022).

[59] Stefano Barison, Filippo Vicentini, and Giuseppe Carleo, "An efficient quantum algorithm for the time evolution of parameterized circuits", Quantum 5, 512 (2021).

[60] Shichuan Xue, Yizhi Wang, Junwei Zhan, Yaxuan Wang, Ru Zeng, Jiangfang Ding, Weixu Shi, Yong Liu, Yingwen Liu, Anqi Huang, Guangyao Huang, Chunlin Yu, Dongyang Wang, Xiang Fu, Xiaogang Qiang, Ping Xu, Mingtang Deng, Xuejun Yang, and Junjie Wu, "Variational Entanglement-Assisted Quantum Process Tomography with Arbitrary Ancillary Qubits", Physical Review Letters 129 13, 133601 (2022).

[61] Kaoru Mizuta, Mikiya Fujii, Shigeki Fujii, Kazuhide Ichikawa, Yutaka Imamura, Yukihiro Okuno, and Yuya O. Nakagawa, "Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials", Physical Review Research 3 4, 043121 (2021).

[62] Stuart M. Harwood, Dimitar Trenev, Spencer T. Stober, Panagiotis Barkoutsos, Tanvi P. Gujarati, Sarah Mostame, and Donny Greenberg, "Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing", ACM Transactions on Quantum Computing 3 1, 1 (2022).

[63] Yuan Yao, Pierre Cussenot, Richard A. Wolf, and Filippo Miatto, "Complex natural gradient optimization for optical quantum circuit design", Physical Review A 105 5, 052402 (2022).

[64] Chenfeng Cao and Xin Wang, "Noise-Assisted Quantum Autoencoder", Physical Review Applied 15 5, 054012 (2021).

[65] Trevor Keen, Thomas Maier, Steven Johnston, and Pavel Lougovski, "Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware", Quantum Science and Technology 5 3, 035001 (2020).

[66] Nikolay V. Tkachenko, James Sud, Yu Zhang, Sergei Tretiak, Petr M. Anisimov, Andrew T. Arrasmith, Patrick J. Coles, Lukasz Cincio, and Pavel A. Dub, "Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in the Variational Quantum Eigensolver", PRX Quantum 2 2, 020337 (2021).

[67] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, "Error mitigation with Clifford quantum-circuit data", Quantum 5, 592 (2021).

[68] Alexander M. Czajka, Zhong-Bo Kang, Henry Ma, and Fanyi Zhao, "Quantum simulation of chiral phase transitions", Journal of High Energy Physics 2022 8, 209 (2022).

[69] Markus Hauru, Maarten Van Damme, and Jutho Haegeman, "Riemannian optimization of isometric tensor networks", arXiv:2007.03638, SciPost Physics 10 2, 040 (2021).

[70] Zhimin He, Junjian Su, Chuangtao Chen, Minghua Pan, and Haozhen Situ, "Search space pruning for quantum architecture search", The European Physical Journal Plus 137 4, 491 (2022).

[71] Hedayat Alghassi, Amol Deshmukh, Noelle Ibrahim, Nicolas Robles, Stefan Woerner, and Christa Zoufal, "A variational quantum algorithm for the Feynman-Kac formula", Quantum 6, 730 (2022).

[72] Virginia N. Ciriano-Tejel, Michael A. Fogarty, Simon Schaal, Louis Hutin, Benoit Bertrand, Lisa Ibberson, M. Fernando Gonzalez-Zalba, Jing Li, Yann-Michel Niquet, Maud Vinet, and John J.L. Morton, "Spin Readout of a CMOS Quantum Dot by Gate Reflectometry and Spin-Dependent Tunneling", PRX Quantum 2 1, 010353 (2021).

[73] Mario Motta and Julia E. Rice, "Emerging quantum computing algorithms for quantum chemistry", WIREs Computational Molecular Science 12 3(2022).

[74] Pauline J. Ollitrault, Alexander Miessen, and Ivano Tavernelli, "Molecular Quantum Dynamics: A Quantum Computing Perspective", Accounts of Chemical Research 54 23, 4229 (2021).

[75] Cristina Cîrstoiu, Zoë Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Variational fast forwarding for quantum simulation beyond the coherence time", npj Quantum Information 6 1, 82 (2020).

[76] Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung, Abolfazl Bayat, and Xiaoting Wang, "Robust resource-efficient quantum variational ansatz through an evolutionary algorithm", Physical Review A 105 5, 052414 (2022).

[77] Laura Gentini, Alessandro Cuccoli, and Leonardo Banchi, "Variational Adiabatic Gauge Transformation on Real Quantum Hardware for Effective Low-Energy Hamiltonians and Accurate Diagonalization", Physical Review Applied 18 3, 034025 (2022).

[78] Chee Kong Lee, Pranay Patil, Shengyu Zhang, and Chang Yu Hsieh, "Neural-network variational quantum algorithm for simulating many-body dynamics", Physical Review Research 3 2, 023095 (2021).

[79] Bálint Koczor, "Exponential Error Suppression for Near-Term Quantum Devices", Physical Review X 11 3, 031057 (2021).

[80] Kunal Sharma, M. Cerezo, Zoë Holmes, Lukasz Cincio, Andrew Sornborger, and Patrick J. Coles, "Reformulation of the No-Free-Lunch Theorem for Entangled Datasets", Physical Review Letters 128 7, 070501 (2022).

[81] Kishor Bharti, "Fisher Information: A Crucial Tool for NISQ Research", Quantum Views 5, 61 (2021).

[82] Zhenhuan Liu, Pei Zeng, You Zhou, and Mile Gu, "Characterizing correlation within multipartite quantum systems via local randomized measurements", Physical Review A 105 2, 022407 (2022).

[83] Kian Hwee Lim, Tobias Haug, Leong Chuan Kwek, and Kishor Bharti, "Fast-forwarding with NISQ processors without feedback loop", Quantum Science and Technology 7 1, 015001 (2022).

[84] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo, "Quantum Natural Gradient", Quantum 4, 269 (2020).

[85] D. Zeuch and N. E. Bonesteel, "Efficient two-qubit pulse sequences beyond CNOT", Physical Review B 102 7, 075311 (2020).

[86] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Trainability of Dissipative Perceptron-Based Quantum Neural Networks", Physical Review Letters 128 18, 180505 (2022).

[87] Luca Crippa, Francesco Tacchino, Mario Chizzini, Antonello Aita, Michele Grossi, Alessandro Chiesa, Paolo Santini, Ivano Tavernelli, and Stefano Carretta, "Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers", Magnetochemistry 7 8, 117 (2021).

[88] Ting Zhang, Jinzhao Sun, Xiao-Xu Fang, Xiao-Ming Zhang, Xiao Yuan, and He Lu, "Experimental Quantum State Measurement with Classical Shadows", Physical Review Letters 127 20, 200501 (2021).

[89] Yong-Xin Yao, Niladri Gomes, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Thomas Iadecola, and Peter P. Orth, "Adaptive Variational Quantum Dynamics Simulations", PRX Quantum 2 3, 030307 (2021).

[90] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", Nature Reviews Physics 3 9, 625 (2021).

[91] Filipe Fontanela, Antoine Jacquier, and Mugad Oumgari, "Short Communication: A Quantum Algorithm for Linear PDEs Arising in Finance", SIAM Journal on Financial Mathematics 12 4, SC98 (2021).

[92] Jonathan Wei Zhong Lau, Tobias Haug, Leong Chuan Kwek, and Kishor Bharti, "NISQ Algorithm for Hamiltonian simulation via truncated Taylor series", SciPost Physics 12 4, 122 (2022).

[93] Niladri Gomes, Anirban Mukherjee, Feng Zhang, Thomas Iadecola, Cai‐Zhuang Wang, Kai‐Ming Ho, Peter P. Orth, and Yong‐Xin Yao, "Adaptive Variational Quantum Imaginary Time Evolution Approach for Ground State Preparation", Advanced Quantum Technologies 4 12, 2100114 (2021).

[94] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[95] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi, and Leonardo Banchi, "Noise-resilient variational hybrid quantum-classical optimization", Physical Review A 102 5, 052414 (2020).

[96] Ranyiliu Chen, Zhixin Song, Xuanqiang Zhao, and Xin Wang, "Variational quantum algorithms for trace distance and fidelity estimation", Quantum Science and Technology 7 1, 015019 (2022).

[97] Tobias Haug and Kishor Bharti, "Generalized quantum assisted simulator", Quantum Science and Technology 7 4, 045019 (2022).

[98] Zidu Liu, L.-M. Duan, and Dong-Ling Deng, "Solving quantum master equations with deep quantum neural networks", Physical Review Research 4 1, 013097 (2022).

[99] Kenji Kubo, Yuya O. Nakagawa, Suguru Endo, and Shota Nagayama, "Variational quantum simulations of stochastic differential equations", Physical Review A 103 5, 052425 (2021).

[100] Leonardo Banchi and Gavin E. Crooks, "Measuring Analytic Gradients of General Quantum Evolution with the Stochastic Parameter Shift Rule", Quantum 5, 386 (2021).

[101] Joseph C. Aulicino, Trevor Keen, and Bo Peng, "State preparation and evolution in quantum computing: A perspective from Hamiltonian moments", International Journal of Quantum Chemistry 122 5(2022).

[102] Julien Gacon, Christa Zoufal, Giuseppe Carleo, and Stefan Woerner, "Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information", Quantum 5, 567 (2021).

[103] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, "Programmable quantum simulations of spin systems with trapped ions", Reviews of Modern Physics 93 2, 025001 (2021).

[104] Chufan Lyu, Victor Montenegro, and Abolfazl Bayat, "Accelerated variational algorithms for digital quantum simulation of many-body ground states", Quantum 4, 324 (2020).

[105] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[106] Tyson Jones and Simon C. Benjamin, "Robust quantum compilation and circuit optimisation via energy minimisation", Quantum 6, 628 (2022).

[107] Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang, and Liang Shi, "Simulation of Condensed-Phase Spectroscopy with Near-Term Digital Quantum Computers", arXiv:2106.10767, Journal of Chemical Theory and Computation 17 11, 7178 (2021).

[108] M. Mahdian and H. Davoodi Yeganeh, "Toward a quantum computing algorithm to quantify classical and quantum correlation of system states", Quantum Information Processing 20 12, 393 (2021).

[109] Tirthak Patel, Daniel Silver, and Devesh Tiwari, 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) 334 (2022) ISBN:978-3-9819263-6-1.

[110] Laszlo Gyongyosi, "Approximation Method for Optimization Problems in Gate-Model Quantum Computers", Chaos, Solitons & Fractals: X 7, 100066 (2021).

[111] Kishor Bharti and Tobias Haug, "Quantum-assisted simulator", Physical Review A 104 4, 042418 (2021).

[112] Giulia Mazzola, Simon V. Mathis, Guglielmo Mazzola, and Ivano Tavernelli, "Gauge-invariant quantum circuits for U (1) and Yang-Mills lattice gauge theories", Physical Review Research 3 4, 043209 (2021).

[113] Jie Zhu, Yuya O Nakagawa, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo, "Calculating the Green’s function of two-site fermionic Hubbard model in a photonic system", New Journal of Physics 24 4, 043030 (2022).

[114] Taichi Kosugi and Yu-ichiro Matsushita, "Construction of Green's functions on a quantum computer: Quasiparticle spectra of molecules", Physical Review A 101 1, 012330 (2020).

[115] Shi-Ning Sun, Mario Motta, Ruslan N. Tazhigulov, Adrian T.K. Tan, Garnet Kin-Lic Chan, and Austin J. Minnich, "Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution", PRX Quantum 2 1, 010317 (2021).

[116] Maurice Weber, Abhinav Anand, Alba Cervera-Lierta, Jakob S. Kottmann, Thi Ha Kyaw, Bo Li, Alán Aspuru-Guzik, Ce Zhang, and Zhikuan Zhao, "Toward reliability in the NISQ era: Robust interval guarantee for quantum measurements on approximate states", Physical Review Research 4 3, 033217 (2022).

[117] Sheng-Jie Li, Jin-Min Liang, Shu-Qian Shen, and Ming Li, "Variational quantum algorithms for trace norms and their applications", Communications in Theoretical Physics 73 10, 105102 (2021).

[118] Kaito Wada, Rudy Raymond, Yu-ya Ohnishi, Eriko Kaminishi, Michihiko Sugawara, Naoki Yamamoto, and Hiroshi C. Watanabe, "Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits", Physical Review A 105 6, 062421 (2022).

[119] Kübra Yeter-Aydeniz, George Siopsis, and Raphael C Pooser, "Scattering in the Ising model with the quantum Lanczos algorithm * ", New Journal of Physics 23 4, 043033 (2021).

[120] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo, "Variational Quantum Algorithms for the Steady States of Open Quantum Systems ", Chinese Physics Letters 38 8, 080301 (2021).

[121] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational ansatz-based quantum simulation of imaginary time evolution", npj Quantum Information 5, 75 (2019).

[122] Andrew Arrasmith, Lukasz Cincio, Rolando D. Somma, and Patrick J. Coles, "Operator Sampling for Shot-frugal Optimization in Variational Algorithms", arXiv:2004.06252.

[123] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian G. Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", arXiv:2112.00760.

[124] Naoki Yamamoto, "On the natural gradient for variational quantum eigensolver", arXiv:1909.05074.

[125] Ada Warren, Linghua Zhu, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "Adaptive variational algorithms for quantum Gibbs state preparation", arXiv:2203.12757.

[126] Jinfeng Zeng, Chenfeng Cao, Chao Zhang, Pengxiang Xu, and Bei Zeng, "A variational quantum algorithm for Hamiltonian diagonalization", Quantum Science and Technology 6 4, 045009 (2021).

[127] Youle Wang, Benchi Zhao, and Xin Wang, "Quantum algorithms for estimating quantum entropies", arXiv:2203.02386.

[128] Yusuke Hama, "Quantum Circuits for Collective Amplitude Damping in Two-Qubit Systems", arXiv:2012.02410.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 14:29:23) and SAO/NASA ADS (last updated successfully 2022-10-04 14:29:24). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Theory of variational quantum simulation

  1. Pingback: Theory of variational quantum simulation – Quantum (via Qpute.com) – Quantum Computing