Theory of variational quantum simulation

Xiao Yuan1, Suguru Endo1, Qi Zhao2, Ying Li3, and Simon C. Benjamin1

1Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
2Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
3Graduate School of China Academy of Engineering Physics, Beijing 100193, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlan's variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.

Universal quantum computers will eventually solve various classically intractable problems, but the exciting challenge is to demonstrate the first real quantum advantage as soon as possible -- with NISQ (for Noisy Intermediate Scaled Quantum) devices. In this regime, we may only be able to manipulate hundreds or thousands of qubits and the operations will be imperfect (or 'noisy'). With such a limited noisy quantum computer, it is unclear how to demonstrate any quantum advantage in any practical task.

This work solves this problem by exploring hybrid algorithms that only solve the core challenging problem with the quantum hardware and the higher level problem with a classical computer. This can be called the quantum coprocessor model: the quantum device handles only the bits that the conventional computer cannot. By considering different variational principles, we show how to simulate real and imaginary time dynamics of closed and open systems. Our work can thus be applied for solving static problems or simulating the dynamics of chemistry and general many-body physics with near-term quantum computers. These are tasks that, until recently, would have been thought to need a full scale fault-tolerant quantum computer in the more distant future.

► BibTeX data

► References

[1] Roger Balian and Marcel Veneroni. Static and dynamic variational principles for expectation values of observables. Annals of Physics, 187 (1): 29 - 78, 1988. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​0003-4916(88)90280-1. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0003491688902801.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0003-4916(88)90280-1
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0003491688902801

[2] Víctor M. Pérez-García, Humberto Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller. Dynamics of bose-einstein condensates: Variational solutions of the gross-pitaevskii equations. Phys. Rev. A, 56: 1424-1432, Aug 1997. https:/​/​doi.org/​10.1103/​PhysRevA.56.1424. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.56.1424.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.56.1424
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.56.1424

[3] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71: 463-512, Apr 1999. https:/​/​doi.org/​10.1103/​RevModPhys.71.463. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.71.463.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​RevModPhys.71.463
https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.71.463

[4] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett., 107: 070601, Aug 2011. https:/​/​doi.org/​10.1103/​PhysRevLett.107.070601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.107.070601.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.107.070601
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.107.070601

[5] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93: 207204, Nov 2004. https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.93.207204.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.93.207204

[6] Tao Shi, Eugene Demler, and J. Ignacio Cirac. Variational study of fermionic and bosonic systems with non-gaussian states: Theory and applications. Annals of Physics, 390: 245 - 302, 2018. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​j.aop.2017.11.014. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491617303251.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.aop.2017.11.014
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491617303251

[7] Laurens Vanderstraeten, Jutho Haegeman, and Frank Verstraete. Tangent-space methods for uniform matrix product states. SciPost Phys. Lect. Notes, page 7, 2019. https:/​/​doi.org/​10.21468/​SciPostPhysLectNotes.7. URL https:/​/​scipost.org/​10.21468/​SciPostPhysLectNotes.7.
https:/​/​doi.org/​https:/​/​doi.org/​10.21468/​SciPostPhysLectNotes.7
https:/​/​scipost.org/​10.21468/​SciPostPhysLectNotes.7

[8] Hans Feldmeier and Jürgen Schnack. Molecular dynamics for fermions. Rev. Mod. Phys., 72: 655-688, Jul 2000. https:/​/​doi.org/​10.1103/​RevModPhys.72.655. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.72.655.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​RevModPhys.72.655
https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.72.655

[9] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications, 2012. ISBN 9780486134598. URL https:/​/​books.google.co.uk/​books?id=KQ3DAgAAQBAJ.
https:/​/​books.google.co.uk/​books?id=KQ3DAgAAQBAJ

[10] T. Helgaker, P. Jorgensen, and J. Olsen. Molecular Electronic-Structure Theory. Wiley, 2013. ISBN 9781118531471. https:/​/​doi.org/​10.1002/​9781119019572. URL https:/​/​books.google.co.uk/​books?id=APjLWFFxWkQC.
https:/​/​doi.org/​https:/​/​doi.org/​10.1002/​9781119019572
https:/​/​books.google.co.uk/​books?id=APjLWFFxWkQC

[11] F. Verstraete, V. Murg, and J. I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57 (2): 143-224, 03 2008. https:/​/​doi.org/​10.1080/​14789940801912366. URL https:/​/​doi.org/​10.1080/​14789940801912366.
https:/​/​doi.org/​https:/​/​doi.org/​10.1080/​14789940801912366

[12] Yuto Ashida, Tao Shi, Mari Carmen Bañuls, J. Ignacio Cirac, and Eugene Demler. Variational principle for quantum impurity systems in and out of equilibrium: Application to kondo problems. Phys. Rev. B, 98: 024103, Jul 2018. https:/​/​doi.org/​10.1103/​PhysRevB.98.024103. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.98.024103.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevB.98.024103
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.98.024103

[13] R. Jackiw and A. Kerman. Time-dependent variational principle and the effective action. Physics Letters A, 71 (2): 158 - 162, 1979. ISSN 0375-9601. https:/​/​doi.org/​10.1016/​0375-9601(79)90151-8. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0375960179901518.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0375-9601(79)90151-8
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0375960179901518

[14] L. Lehtovaara, J. Toivanen, and J. Eloranta. Solution of time-independent schrödinger equation by the imaginary time propagation method. Journal of Computational Physics, 221 (1): 148 - 157, 2007. ISSN 0021-9991. https:/​/​doi.org/​10.1016/​j.jcp.2006.06.006. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0021999106002798.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.jcp.2006.06.006
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0021999106002798

[15] P Kramer. A review of the time-dependent variational principle. Journal of Physics: Conference Series, 99: 012009, feb 2008. https:/​/​doi.org/​10.1088/​1742-6596/​99/​1/​012009. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​https:/​/​doi.org/​10.1088/​1742-6596/​99/​1/​012009

[16] Christina V Kraus and J Ignacio Cirac. Generalized hartree–fock theory for interacting fermions in lattices: numerical methods. New Journal of Physics, 12 (11): 113004, nov 2010. https:/​/​doi.org/​10.1088/​1367-2630/​12/​11/​113004. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​https:/​/​doi.org/​10.1088/​1367-2630/​12/​11/​113004

[17] Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549: 203 EP -, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[18] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595-600, 2018. https:/​/​doi.org/​10.1038/​s41567-018-0124-x. URL https:/​/​doi.org/​10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​https:/​/​doi.org/​10.1038/​s41567-018-0124-x

[19] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195-199, 2018. ISSN 0036-8075. https:/​/​doi.org/​10.1126/​science.aao4309. URL https:/​/​science.sciencemag.org/​content/​360/​6385/​195.
https:/​/​doi.org/​https:/​/​doi.org/​10.1126/​science.aao4309
https:/​/​science.sciencemag.org/​content/​360/​6385/​195

[20] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467-488, Jun 1982. ISSN 1572-9575. https:/​/​doi.org/​10.1007/​BF02650179. URL https:/​/​doi.org/​10.1007/​BF02650179.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​BF02650179

[21] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073-1078, 1996. ISSN 0036-8075. https:/​/​doi.org/​10.1126/​science.273.5278.1073. URL http:/​/​science.sciencemag.org/​content/​273/​5278/​1073.
https:/​/​doi.org/​https:/​/​doi.org/​10.1126/​science.273.5278.1073
http:/​/​science.sciencemag.org/​content/​273/​5278/​1073

[22] Daniel S. Abrams and Seth Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett., 79: 2586-2589, Sep 1997. https:/​/​doi.org/​10.1103/​PhysRevLett.79.2586. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.79.2586.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.79.2586
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.79.2586

[23] Joe O'Gorman and Earl T. Campbell. Quantum computation with realistic magic-state factories. Phys. Rev. A, 95: 032338, Mar 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.032338. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.032338.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.95.032338
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.032338

[24] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549: 172 EP -, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23460.
https:/​/​doi.org/​10.1038/​nature23460

[25] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 2017. ISSN 0027-8424. https:/​/​doi.org/​10.1073/​pnas.1619152114. URL https:/​/​www.pnas.org/​content/​early/​2017/​06/​30/​1619152114.
https:/​/​doi.org/​https:/​/​doi.org/​10.1073/​pnas.1619152114
https:/​/​www.pnas.org/​content/​early/​2017/​06/​30/​1619152114

[26] James Wooten. Benchmarking of quantum processors with random circuits. arXiv preprint arXiv:1806.02736, 2018.
arXiv:1806.02736

[27] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. https:/​/​doi.org/​10.22331/​q-2018-08-06-79. URL https:/​/​doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[28] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
arXiv:1411.4028

[29] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, 07 2014. URL https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[30] Ya Wang, Florian Dolde, Jacob Biamonte, Ryan Babbush, Ville Bergholm, Sen Yang, Ingmar Jakobi, Philipp Neumann, Alán Aspuru-Guzik, James D. Whitfield, and Jörg Wrachtrup. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano, 9 (8): 7769-7774, 08 2015. https:/​/​doi.org/​10.1021/​acsnano.5b01651. URL https:/​/​doi.org/​10.1021/​acsnano.5b01651.
https:/​/​doi.org/​https:/​/​doi.org/​10.1021/​acsnano.5b01651

[31] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6: 031007, Jul 2016. https:/​/​doi.org/​10.1103/​PhysRevX.6.031007. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.6.031007.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.6.031007
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.6.031007

[32] Yangchao Shen, Xiang Zhang, Shuaining Zhang, Jing-Ning Zhang, Man-Hong Yung, and Kihwan Kim. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A, 95: 020501, Feb 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.020501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.020501.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.95.020501
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.020501

[33] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, feb 2016. https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[34] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O'Brien, and M. G. Thompson. Experimental bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett., 118: 100503, Mar 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.118.100503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.118.100503.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.118.100503
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.118.100503

[35] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 8: 011021, Feb 2018a. https:/​/​doi.org/​10.1103/​PhysRevX.8.011021. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.8.011021
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021

[36] Raffaele Santagati, Jianwei Wang, Antonio A. Gentile, Stefano Paesani, Nathan Wiebe, Jarrod R. McClean, Sam Morley-Short, Peter J. Shadbolt, Damien Bonneau, Joshua W. Silverstone, David P. Tew, Xiaoqi Zhou, Jeremy L. O’Brien, and Mark G. Thompson. Witnessing eigenstates for quantum simulation of hamiltonian spectra. Science Advances, 4 (1), 2018. https:/​/​doi.org/​10.1126/​sciadv.aap9646. URL http:/​/​advances.sciencemag.org/​content/​4/​1/​eaap9646.
https:/​/​doi.org/​https:/​/​doi.org/​10.1126/​sciadv.aap9646
http:/​/​advances.sciencemag.org/​content/​4/​1/​eaap9646

[37] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242 EP -, 09 2017. URL https:/​/​doi.org/​10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[38] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491-495, 2019. https:/​/​doi.org/​10.1038/​s41586-019-1040-7. URL https:/​/​doi.org/​10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[39] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8: 031022, Jul 2018. https:/​/​doi.org/​10.1103/​PhysRevX.8.031022. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031022.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.8.031022
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031022

[40] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational quantum simulation of lattice models. Nature, 569 (7756): 355-360, May 2019. https:/​/​doi.org/​10.1038/​s41586-019-1177-4.
https:/​/​doi.org/​https:/​/​doi.org/​10.1038/​s41586-019-1177-4

[41] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7: 021050, Jun 2017. https:/​/​doi.org/​10.1103/​PhysRevX.7.021050. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.7.021050.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.7.021050
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.7.021050

[42] Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace-search variational quantum eigensolver for excited states. arXiv preprint arXiv:1810.09434, 2018.
arXiv:1810.09434

[43] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum simulation of time-dependent hamiltonians and the convenient illusion of hilbert space. Phys. Rev. Lett., 106: 170501, Apr 2011. https:/​/​doi.org/​10.1103/​PhysRevLett.106.170501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.106.170501.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.106.170501
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.106.170501

[44] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86: 153-185, Mar 2014. https:/​/​doi.org/​10.1103/​RevModPhys.86.153. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.86.153.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​RevModPhys.86.153
https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.86.153

[45] S. Kais, K.B. Whaley, A.R. Dinner, and S.A. Rice. Quantum Information and Computation for Chemistry. Advances in Chemical Physics. Wiley, 2014. ISBN 9781118742600. https:/​/​doi.org/​10.1002/​9781118742631. URL https:/​/​books.google.co.uk/​books?id=dCXPAgAAQBAJ.
https:/​/​doi.org/​https:/​/​doi.org/​10.1002/​9781118742631
https:/​/​books.google.co.uk/​books?id=dCXPAgAAQBAJ

[46] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan. Quantum computational chemistry. arXiv e-prints, art. arXiv:1808.10402, Aug 2018.
arXiv:1808.10402

[47] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum computing. Chemical Reviews, 08 2019. https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803. URL https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803.
https:/​/​doi.org/​https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803

[48] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 26, pages 376-385. Cambridge University Press, 1930. ISBN 0305-0041. https:/​/​doi.org/​10.1017/​S0305004100016108. URL https:/​/​www.cambridge.org/​core/​article/​note-on-exchange-phenomena-in-the-thomas-atom/​6C5FF7297CD96F49A8B8E9E3EA50E412.
https:/​/​doi.org/​https:/​/​doi.org/​10.1017/​S0305004100016108
https:/​/​www.cambridge.org/​core/​article/​note-on-exchange-phenomena-in-the-thomas-atom/​6C5FF7297CD96F49A8B8E9E3EA50E412

[49] J. Frenkel. Wave mechanics: advanced general theory. Clarendon Press Oxford, 1934.

[50] A.D. McLachlan. A variational solution of the time-dependent schrodinger equation. Molecular Physics, 8 (1): 39-44, 1964. https:/​/​doi.org/​10.1080/​00268976400100041.
https:/​/​doi.org/​https:/​/​doi.org/​10.1080/​00268976400100041

[51] PH Kramer and Marcos Saraceno. Geometry of the time-dependent variational principle in quantum mechanics. Springer, 1981. https:/​/​doi.org/​10.1007/​3-540-10579-4.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​3-540-10579-4

[52] J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. Van Leuven. On the equivalence of time-dependent variational principles. Chemical Physics Letters, 149 (5): 547 - 550, 1988. ISSN 0009-2614. https:/​/​doi.org/​10.1016/​0009-2614(88)80380-4. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​0009261488803804.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0009-2614(88)80380-4
http:/​/​www.sciencedirect.com/​science/​article/​pii/​0009261488803804

[53] Jutho Haegeman, Tobias J. Osborne, and Frank Verstraete. Post-matrix product state methods: To tangent space and beyond. Phys. Rev. B, 88: 075133, Aug 2013. https:/​/​doi.org/​10.1103/​PhysRevB.88.075133. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.88.075133.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevB.88.075133
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.88.075133

[54] Kentaro Heya, Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace variational quantum simulator. arXiv preprint arXiv:1904.08566, 2019.
arXiv:1904.08566

[55] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information, 5 (1): 75, 2019a. https:/​/​doi.org/​10.1038/​s41534-019-0187-2. URL https:/​/​doi.org/​10.1038/​s41534-019-0187-2.
https:/​/​doi.org/​https:/​/​doi.org/​10.1038/​s41534-019-0187-2

[56] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C. Benjamin. Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A, 99: 062304, Jun 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.062304. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.062304.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.99.062304
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.062304

[57] Ming-Cheng Chen, Ming Gong, Xiao-Si Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, Shiyu Wang, Hui Deng, Futian Liang, Cheng-Zhi Peng, Simon C. Benjamin, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan. Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor. arXiv e-prints, art. arXiv:1905.03150, May 2019.
arXiv:1905.03150

[58] Kosuke Mitarai and Keisuke Fujii. Methodology for replacing indirect measurements with direct measurements. Phys. Rev. Research, 1: 013006, Aug 2019. https:/​/​doi.org/​10.1103/​PhysRevResearch.1.013006. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevResearch.1.013006.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevResearch.1.013006
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevResearch.1.013006

[59] Artur K. Ekert, Carolina Moura Alves, Daniel K. L. Oi, Michał Horodecki, Paweł Horodecki, and L. C. Kwek. Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett., 88: 217901, May 2002. https:/​/​doi.org/​10.1103/​PhysRevLett.88.217901. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.88.217901.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.88.217901
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.88.217901

[60] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan. Variational quantum simulation of general processes. arXiv preprint arXiv:1812.08778, 2018a.
arXiv:1812.08778

[61] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183 (8): 1760 - 1772, 2012. ISSN 0010-4655. https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512000835.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.cpc.2012.02.021
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512000835

[62] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184 (4): 1234 - 1240, 2013. ISSN 0010-4655. https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512003955.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.cpc.2012.11.019
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0010465512003955

[63] Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95: 042308, Apr 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.042308. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.042308.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.95.042308
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.95.042308

[64] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.180509.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.180509

[65] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8: 031027, Jul 2018b. https:/​/​doi.org/​10.1103/​PhysRevX.8.031027. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.8.031027
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031027

[66] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 8: 011021, Feb 2018b. https:/​/​doi.org/​10.1103/​PhysRevX.8.011021. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevX.8.011021
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.011021

[67] Matthew Otten and Stephen K. Gray. Recovering noise-free quantum observables. Phys. Rev. A, 99: 012338, Jan 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.012338. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.012338.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.99.012338
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.012338

[68] Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122: 180501, May 2019b. https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.122.180501.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.122.180501

[69] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien. Low-cost error mitigation by symmetry verification. Phys. Rev. A, 98: 062339, Dec 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.062339. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.98.062339.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.98.062339
https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.98.062339

[70] Jarrod R McClean, Zhang Jiang, Nicholas C Rubin, Ryan Babbush, and Hartmut Neven. Decoding quantum errors with subspace expansions. arXiv preprint arXiv:1903.05786, 2019.
arXiv:1903.05786

Cited by

[1] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational ansatz-based quantum simulation of imaginary time evolution", npj Quantum Information 5, 75 (2019).

[2] Ming-Cheng Chen, Ming Gong, Xiao-Si Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, Shiyu Wang, Hui Deng, Futian Liang, Cheng-Zhi Peng, Simon C. Benjamin, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan, "Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor", arXiv:1905.03150.

[3] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes", arXiv:1812.08778.

[4] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", arXiv:1909.09083.

[5] Nobuyuki Yoshioka, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, "Variational Quantum Algorithm for Non-equilibrium Steady States", arXiv:1908.09836.

[6] Taichi Kosugi and Yu-ichiro Matsushita, "Construction of Green's functions on a quantum computer: applications to molecular systems", arXiv:1908.03902.

[7] Kunal Sharma, Sumeet Khatri, M. Cerezo, and Patrick J. Coles, "Noise Resilience of Variational Quantum Compiling", arXiv:1908.04416.

[8] Xiaosi Xu, Jinzhao Sun, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational algorithms for linear algebra", arXiv:1909.03898.

[9] Suguru Endo, Iori Kurata, and Yuya O. Nakagawa, "Calculation of the Green's function on near-term quantum computers", arXiv:1909.12250.

[10] Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Variational Fast Forwarding for Quantum Simulation Beyond the Coherence Time", arXiv:1910.04292.

[11] Naoki Yamamoto, "On the natural gradient for variational quantum eigensolver", arXiv:1909.05074.

The above citations are from SAO/NASA ADS (last updated 2019-10-15 01:07:15). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2019-10-15 01:07:14).

1 thought on “Theory of variational quantum simulation

  1. Pingback: Theory of variational quantum simulation – Quantum (via Qpute.com) – Quantum Computing