Heat-Bath Algorithmic Cooling with optimal thermalization strategies

Álvaro M. Alhambra1, Matteo Lostaglio2, and Christopher Perry3

1Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
2ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain
3QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Heat-Bath Algorithmic Cooling is a set of techniques for producing highly pure quantum systems by utilizing a surrounding heat-bath and unitary interactions. These techniques originally used the thermal environment only to fully thermalize ancillas at the environment temperature. Here we extend HBAC protocols by optimizing over the thermalization strategy. We find, for any $d$-dimensional system in an arbitrary initial state, provably optimal cooling protocols with surprisingly simple structure and exponential convergence to the ground state. Compared to the standard ones, these schemes can use fewer or no ancillas and exploit memory effects to enhance cooling. We verify that the optimal protocols are robusts to various deviations from the ideal scenario. For a single target qubit, the optimal protocol can be well approximated with a Jaynes-Cummings interaction between the system and a single thermal bosonic mode for a wide range of environmental temperatures. This admits an experimental implementation close to the setup of a micromaser, with a performance competitive with leading proposals in the literature. The proposed protocol provides an experimental setup that illustrates how non-Markovianity can be harnessed to improve cooling. On the technical side we 1. introduce a new class of states called $maximally$ $active$ $states$ and discuss their thermodynamic significance in terms of optimal unitary control, 2. introduce a new set of thermodynamic processes, called $\textit{$\beta$-permutations}$, whose access is sufficient to simulate a generic thermalization process, 3. show how to use abstract toolbox developed within the resource theory approach to thermodynamics to perform challenging optimizations, while combining it with open quantum system dynamics tools to approximate optimal solutions within physically realistic setups.

Access to pure `cold' quantum states is crucial in the realization of quantum technologies and the observation of quantum effects. Algorithmic cooling plays a prominent role in this task: it is a technique that uses a combination of unitary pulses and thermalizations to cool down a system. Standard techniques use the environment only to realize full thermalizations by thermal contact. Here, we overcome this limitation by providing the tools to optimize over generic thermalization strategies. This leads to optimal cooling protocols that, exploiting memory effects in the dynamics of the thermalization process, yield much more efficient cooling, beyond standard bounds. We illustrate the general results by providing an explicit cooling scheme involving simple light-matter interaction models widely realized in experiments.

► BibTeX data

► References

[1] David P DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik: Progress of Physics, 48 (9-11): 771-783, 2000. 10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E.
https:/​/​doi.org/​10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E

[2] Yong-Chun Liu, Yun-Feng Xiao, Xingsheng Luan, and Chee Wei Wong. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett., 110: 153606, Apr 2013. 10.1103/​PhysRevLett.110.153606.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.153606

[3] Leonard J Schulman and Umesh V Vazirani. Molecular scale heat engines and scalable quantum computation. In Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 322-329. ACM, 1999. 10.1145/​301250.301332.
https:/​/​doi.org/​10.1145/​301250.301332

[4] P Oscar Boykin, Tal Mor, Vwani Roychowdhury, Farrokh Vatan, and Rutger Vrijen. Algorithmic cooling and scalable nmr quantum computers. Proceedings of the National Academy of Sciences, 99 (6): 3388-3393, 2002. 10.1073/​pnas.241641898.
https:/​/​doi.org/​10.1073/​pnas.241641898

[5] Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt. Laser cooling of trapped ions. JOSA B, 20 (5): 1003-1015, 2003. 10.1364/​JOSAB.20.001003.
https:/​/​doi.org/​10.1364/​JOSAB.20.001003

[6] Sergio O Valenzuela, William D Oliver, David M Berns, Karl K Berggren, Leonid S Levitov, and Terry P Orlando. Microwave-induced cooling of a superconducting qubit. Science, 314 (5805): 1589-1592, 2006. https:/​/​doi.org/​10.1126/​science.1134008.
https:/​/​doi.org/​https:/​/​doi.org/​10.1126/​science.1134008

[7] Matteo Lostaglio. Thermodynamic laws for populations and quantum coherence: A self-contained introduction to the resource theory approach to thermodynamics. arXiv preprint arXiv:1807.11549, 2018.
arXiv:1807.11549

[8] Leonard J Schulman, Tal Mor, and Yossi Weinstein. Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett., 94 (12): 120501, 2005. 10.1103/​PhysRevLett.94.120501.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.120501

[9] Nayeli Azucena Rodríguez-Briones and Raymond Laflamme. Achievable polarization for heat-bath algorithmic cooling. Phys. Rev. Lett., 116 (17): 170501, 2016. 10.1103/​PhysRevLett.116.170501.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.170501

[10] Nayeli A Rodriguez-Briones, Jun Li, Xinhua Peng, Tal Mor, Yossi Weinstein, and Raymond Laflamme. Heat-bath algorithmic cooling with correlated qubit-environment interactions. New Journal of Physics, 19 (11): 113047, 2017. 10.1088/​1367-2630/​aa8fe0.
https:/​/​doi.org/​10.1088/​1367-2630/​aa8fe0

[11] Albert W Overhauser. Aw overhauser, phys. rev. 89, 689 (1953). Phys. Rev., 89: 689, 1953. 10.1103/​PhysRev.89.689.
https:/​/​doi.org/​10.1103/​PhysRev.89.689

[12] Matteo Lostaglio, Álvaro M. Alhambra, and Christopher Perry. Elementary Thermal Operations. Quantum, 2: 52, February 2018. ISSN 2521-327X. 10.22331/​q-2018-02-08-52.
https:/​/​doi.org/​10.22331/​q-2018-02-08-52

[13] M. Horodecki and J. Oppenheim. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun., 4: 2059, June 2013. 10.1038/​ncomms3059.
https:/​/​doi.org/​10.1038/​ncomms3059

[14] Francesco Ticozzi and Lorenza Viola. Quantum resources for purification and cooling: fundamental limits and opportunities. Scientific Reports, 4: 5192, 2014. 10.1038/​srep05192.
https:/​/​doi.org/​10.1038/​srep05192

[15] Ralph Silva, Gonzalo Manzano, Paul Skrzypczyk, and Nicolas Brunner. Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys. Rev. E, 94 (3): 032120, 2016. 10.1103/​PhysRevE.94.032120.
https:/​/​doi.org/​10.1103/​PhysRevE.94.032120

[16] Fernando G. S. L. Brandão, Michał Horodecki, Jonathan Oppenheim, Joseph M. Renes, and Robert W. Spekkens. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett., 111: 250404, Dec 2013. 10.1103/​PhysRevLett.111.250404.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.250404

[17] MH Naderi, M Soltanolkotabi, and R Roknizadeh. A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent jaynes-cummings model. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 32 (3): 397, 2005. 10.1140/​epjd/​e2004-00197-8.
https:/​/​doi.org/​10.1140/​epjd/​e2004-00197-8

[18] Johan Åberg. Catalytic coherence. Phys. Rev. Lett., 113: 150402, Oct 2014. 10.1103/​PhysRevLett.113.150402.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.150402

[19] P Filipowicz, J Javanainen, and P Meystre. Theory of a microscopic maser. Phys. Rev. A, 34 (4): 3077, 1986. 10.1103/​PhysRevA.34.3077.
https:/​/​doi.org/​10.1103/​PhysRevA.34.3077

[20] Herbert Walther, Benjamin TH Varcoe, Berthold-Georg Englert, and Thomas Becker. Cavity quantum electrodynamics. Reports on Progress in Physics, 69 (5): 1325, 2006. 10.1088/​0034-4885/​69/​5/​R02.
https:/​/​doi.org/​10.1088/​0034-4885/​69/​5/​R02

[21] DA Rodrigues, J Imbers, and AD Armour. Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser. Phys. Rev. Lett., 98 (6): 067204, 2007. 10.1103/​PhysRevLett.98.067204.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.067204

[22] Ernst Ruch, Rudolf Schranner, and Thomas H Seligman. Generalization of a theorem by hardy, littlewood, and polya. Journal of Mathematical Analysis and Applications, 76 (1): 222-229, 1980. 10.1016/​0022-247X(80)90075-X.
https:/​/​doi.org/​10.1016/​0022-247X(80)90075-X

[23] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A, 5: 147-151, 1946.

[24] Paweł Mazurek and Michał Horodecki. Decomposability and convex structure of thermal processes. New Journal of Physics, 20 (5): 053040, 2018. 10.1088/​1367-2630/​aac057.
https:/​/​doi.org/​10.1088/​1367-2630/​aac057

[25] Michael Marc Wolf, J Eisert, TS Cubitt, and J Ignacio Cirac. Assessing non-markovian quantum dynamics. Physical review letters, 101 (15): 150402, 2008. 10.1103/​PhysRevLett.101.150402.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.150402

[26] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and Th. Beth. Thermodynamic cost of reliability and low temperatures: Tightening Landauer's principle and the second law. Int. J. Theor. Phys., 39 (12): 2717-2753, 2000. 10.1023/​A:1026422630734.
https:/​/​doi.org/​10.1023/​A:1026422630734

[27] Piotr Ć wikliński, Michał Studziński, Michał Horodecki, and Jonathan Oppenheim. Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics. Phys. Rev. Lett., 115: 210403, Nov 2015. 10.1103/​PhysRevLett.115.210403.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.210403

[28] Matteo Lostaglio, Kamil Korzekwa, David Jennings, and Terry Rudolph. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X, 5 (2): 021001, 2015. 10.1103/​PhysRevX.5.021001.
https:/​/​doi.org/​10.1103/​PhysRevX.5.021001

[29] M Scala, B Militello, A Messina, J Piilo, and S Maniscalco. Microscopic derivation of the jaynes-cummings model with cavity losses. Phys. Rev. A, 75 (1): 013811, 2007. 10.1103/​PhysRevA.75.013811.
https:/​/​doi.org/​10.1103/​PhysRevA.75.013811

Cited by

[1] Matteo Lostaglio, "An introductory review of the resource theory approach to thermodynamics", Reports on Progress in Physics 82 11, 114001 (2019).

[2] Fabien Clivaz, Ralph Silva, Géraldine Haack, Jonatan Bohr Brask, Nicolas Brunner, and Marcus Huber, "Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling", arXiv:1903.04970, Physical Review Letters 123 17, 170605 (2019).

[3] Martí Perarnau-Llobet, "Optimal Heat-Bath Algorithmic Cooling", Quantum Views 3, 25 (2019).

[4] Tiago Debarba, Gonzalo Manzano, Yelena Guryanova, Marcus Huber, and Nicolai Friis, "Work estimation and work fluctuations in the presence of non-ideal measurements", arXiv:1902.08568, New Journal of Physics 21 11, 113002 (2019).

[5] Paul Boes, Rodrigo Gallego, Nelly H. Y. Ng, Jens Eisert, and Henrik Wilming, "By-passing fluctuation theorems", arXiv:1904.01314.

[6] Georgios Styliaris, Álvaro M. Alhambra, and Paolo Zanardi, "Mixing of quantum states under Markovian dissipation and coherent control", Physical Review A 99 4, 042333 (2019).

[7] Teng Ma, Ming-Jing Zhao, Shao-Ming Fei, and Man-Hong Yung, "Necessity for quantum coherence of nondegeneracy in energy flow", arXiv:1802.08821, Physical Review A 99 6, 062303 (2018).

[8] A. Serafini, M. Lostaglio, S. Longden, U. Shackerley-Bennett, C. -Y. Hsieh, and G. Adesso, "Gaussian Thermal Operations and the Limits of Algorithmic Cooling", arXiv:1909.06123.

The above citations are from Crossref's cited-by service (last updated 2019-12-14 22:02:01) and SAO/NASA ADS (last updated 2019-12-14 22:02:02). The list may be incomplete as not all publishers provide suitable and complete citation data.