Whenever a quantum environment emerges as a classical system, it behaves like a measuring apparatus

Caterina Foti1,2, Teiko Heinosaari3, Sabrina Maniscalco3, and Paola Verrucchi4,1,2

1Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino (FI), Italy
2INFN, Sezione di Firenze, I-50019, Sesto Fiorentino (FI), Italy
3QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FIN-20014, Turku, Finland
4ISC-CNR, at Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino (FI), Italy

We study the dynamics of a quantum system $\Gamma$ with an environment $\Xi$ made of $N$ elementary quantum components. We aim at answering the following questions: can the evolution of $\Gamma$ be characterized by some general features when $N$ becomes very large, regardless of the specific form of its interaction with each and every component of $\Xi$? In other terms: should we expect all quantum systems with a macroscopic environment to undergo a somehow similar evolution? And if yes, of what type? In order to answer these questions we use well established results from large-$N$ quantum field theories, particularly referring to the conditions ensuring a large-$N$ quantum model to be effectively described by a classical theory. We demonstrate that the fulfillment of these conditions, when properly imported into the framework of the open quantum systems dynamics, guarantees that the evolution of $\Gamma$ is always of the same type of that expected if $\Xi$ were a measuring apparatus, no matter the details of the actual interaction. On the other hand, such details are found to determine the specific basis w.r.t. which $\Gamma$ undergoes the decoherence dictated by the dynamical description of the quantum measurement process. This result wears two hats: on the one hand it clarifies the physical origin of the formal statement that, under certain conditions, any channel from $\rho_\Gamma$ to $\rho_\Xi$ takes the form of a measure-and-prepare map, as recently shown in Ref. [1]; on the other hand, it formalizes the qualitative argument that the reason why we do not observe state superpositions is the continual measurement performed by the environment.

► BibTeX data

► References

[1] F.G.S.L. Brandao, M. Piani, and P. Horodecki. Generic emergence of classical features in quantum darwinism. Nature Communications, 6: 7908, 2015. 10.1038/​ncomms8908.
https:/​/​doi.org/​10.1038/​ncomms8908

[2] W. H. Zurek. Quantum darwinism. Nature Physics, 5: 181, 2009. 10.1038/​nphys1202.
https:/​/​doi.org/​10.1038/​nphys1202

[3] R. Horodecki, J.K. Korbicz, and P. Horodecki. Quantum origins of objectivity. Phys. Rev. A, 91: 032122, 2015. 10.1103/​PhysRevA.91.032122.
https:/​/​doi.org/​10.1103/​PhysRevA.91.032122

[4] P. Busch, P. Lahti, J. P. Pellonp, and K. Ylinen. Quantum Measurement. Springer Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319433873, 9783319433875. 10.1007/​978-3-319-43389-9.
https:/​/​doi.org/​10.1007/​978-3-319-43389-9

[5] M. Ozawa. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25 (1): 79-87, 1984. 10.1063/​1.526000.
https:/​/​doi.org/​10.1063/​1.526000

[6] P. Liuzzo Scorpo, A. Cuccoli, and P. Verrucchi. Parametric description of the quantum measurement process. EPL (Europhysics Letters), 111 (4): 40008, 2015a. 10.1209/​0295-5075/​111/​40008.
https:/​/​doi.org/​10.1209/​0295-5075/​111/​40008

[7] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press, 2012. 10.1017/​CBO9781139031103.
https:/​/​doi.org/​10.1017/​CBO9781139031103

[8] Laurence G. Yaffe. Large n limits as classical mechanics. Rev. Mod. Phys., 54: 407-435, 1982. 10.1103/​RevModPhys.54.407.
https:/​/​doi.org/​10.1103/​RevModPhys.54.407

[9] D. Braun, F. Haake, and W.T. Strunz. Universality of decoherence. Phys. Rev. Lett., 86: 2913-2917, 2001. 10.1103/​PhysRevLett.86.2913.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.2913

[10] G. Chiribella and G.M. D'Ariano. Quantum information becomes classical when distributed to many users. Phys. Rev. Lett., 97: 250503, 2006. 10.1103/​PhysRevLett.97.250503.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.250503

[11] F. Galve, R. Zambrini, and S. Maniscalco. Non-markovianity hinders quantum darwinism. Scientific Reports, 6: 19607, 2016. 10.1038/​srep19607.
https:/​/​doi.org/​10.1038/​srep19607

[12] G.L. Giorgi, F. Galve, and R. Zambrini. Quantum darwinism and non-markovian dissipative dynamics from quantum phases of the spin-1/​2 $xx$ model. Phys. Rev. A, 92: 022105, 2015. 10.1103/​PhysRevA.92.022105.
https:/​/​doi.org/​10.1103/​PhysRevA.92.022105

[13] L. Rigovacca, A. Farace, A. De Pasquale, and V. Giovannetti. Gaussian discriminating strength. Phys. Rev. A, 92: 042331, 2015. 10.1103/​PhysRevA.92.042331.
https:/​/​doi.org/​10.1103/​PhysRevA.92.042331

[14] P.A. Knott, T. Tufarelli, M. Piani, and G. Adesso. Generic emergence of objectivity of observables in infinite dimensions. Phys. Rev. Lett., 121: 160401, 2018. 10.1103/​PhysRevLett.121.160401.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.160401

[15] J. K. Korbicz, E. A. Aguilar, P. Ć wikliński, and P. Horodecki. Generic appearance of objective results in quantum measurements. Phys. Rev. A, 96: 032124, 2017. 10.1103/​PhysRevA.96.032124.
https:/​/​doi.org/​10.1103/​PhysRevA.96.032124

[16] G. Pleasance and B.M. Garraway. Application of quantum darwinism to a structured environment. Phys. Rev. A, 96: 062105, 2017. 10.1103/​PhysRevA.96.062105.
https:/​/​doi.org/​10.1103/​PhysRevA.96.062105

[17] P. Busch, P.J. Lahti, and P Mittelstaedt. The quantum theory of measurement. Springer-Verlag, Berlin, 1996. 10.1007/​978-3-540-37205-9.
https:/​/​doi.org/​10.1007/​978-3-540-37205-9

[18] D. Calvani, A. Cuccoli, N. I. Gidopoulos, and P. Verrucchi. Parametric representation of open quantum systems and cross-over from quantum to classical environment. Proceedings of the National Academy of Sciences, 110 (17): 6748-6753, 2013a. 10.1073/​pnas.1217776110.
https:/​/​doi.org/​10.1073/​pnas.1217776110

[19] D. Calvani. The Parametric Representation of an Open Quantum System. PhD thesis, Università degli Studi di Firenze, 2012.

[20] D. Calvani, A. Cuccoli, N. I. Gidopoulos, and P. Verrucchi. Dynamics of open quantum systems using parametric representation with coherent states. Open Systems & Information Dynamics, 20 (3): 1340002, 2013b. 10.1142/​S1230161213400027.
https:/​/​doi.org/​10.1142/​S1230161213400027

[21] P. Liuzzo Scorpo, A. Cuccoli, and P. Verrucchi. Getting information via a quantum measurement: The role of decoherence. Int. J. Theor. Phys., 54 (12): 4356-4366, 2015b. ISSN 1572-9575. 10.1007/​s10773-015-2548-8.
https:/​/​doi.org/​10.1007/​s10773-015-2548-8

[22] C. Foti, A. Cuccoli, and P. Verrucchi. Quantum dynamics of a macroscopic magnet operating as an environment of a mechanical oscillator. Phys. Rev. A, 94: 062127, 2016. 10.1103/​PhysRevA.94.062127.
https:/​/​doi.org/​10.1103/​PhysRevA.94.062127

[23] M.A.C. Rossi, C. Foti, A. Cuccoli, J. Trapani, P. Verrucchi, and M.G.A. Paris. Effective description of the short-time dynamics in open quantum systems. Phys. Rev. A, 96: 032116, 2017. 10.1103/​PhysRevA.96.032116.
https:/​/​doi.org/​10.1103/​PhysRevA.96.032116

[24] W.M. Zhang, D.H. Feng, and R. Gilmore. Coherent states: Theory and some applications. Rev. Mod. Phys., 62: 867-927, 1990. 10.1103/​RevModPhys.62.867.
https:/​/​doi.org/​10.1103/​RevModPhys.62.867

[25] A.M. Perelomov. Coherent states for arbitrary Lie group. Communications in Mathematical Physics, 26 (3): 222-236, 1972. ISSN 0010-3616. 10.1007/​BF01645091.
https:/​/​doi.org/​10.1007/​BF01645091

[26] E. H. Lieb. The classical limit of quantum spin systems. Communications in Mathematical Physics, 31 (4): 327-340, 1973. 10.1007/​BF01646493.
https:/​/​doi.org/​10.1007/​BF01646493

[27] S. Gnutzmann and M. Kus. Coherent states and the classical limit on irreducible su(3) representations. Journal of Physics A: Mathematical and General, 31 (49): 9871, 1998. 10.1088/​0305-4470/​31/​49/​011.
https:/​/​doi.org/​10.1088/​0305-4470/​31/​49/​011

[28] L. Querini. How quantum dynamics shape macroscopic evidences. Master thesis, University of Florence, 2016.

[29] C. Foti. On the macroscopic limit of quantum systems. PhD thesis, Università degli Studi di Firenze, 2019.

[30] M. Schlosshauer. Decoherence and the Quantum-To-Classical Transition. The Frontiers Collection. Springer, 2007. 10.1007/​978-3-540-35775-9.
https:/​/​doi.org/​10.1007/​978-3-540-35775-9

[31] F. A. Berezin. Models of gross-neveu type are quantization of a classical mechanics with nonlinear phase space. Comm. Math. Phys., 63 (2): 131-153, 1978. 10.1007/​BF01220849.
https:/​/​doi.org/​10.1007/​BF01220849

Cited by

[1] A. De Pasquale, C. Foti, A. Cuccoli, V. Giovannetti, and P. Verrucchi, "Dynamical model for positive-operator-valued measures", Physical Review A 100 1, 012130 (2019).

[2] Guillermo García-Pérez, Dario A. Chisholm, Matteo A. C. Rossi, G. Massimo Palma, and Sabrina Maniscalco, "Decoherence without entanglement and Quantum Darwinism", arXiv:1907.12447.

The above citations are from SAO/NASA ADS (last updated 2019-09-22 04:09:07). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2019-09-22 04:09:06).