Single-shot energetic-based estimator for entanglement in a half-parity measurement setup
1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
2CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
3Université de Genève, Department of Applied Physics, Chemin de Pinchat 22, CH-1211 Genève 4, Switzerland
Published: | 2019-07-15, volume 3, page 166 |
Eprint: | arXiv:1807.02487v3 |
Doi: | https://doi.org/10.22331/q-2019-07-15-166 |
Citation: | Quantum 3, 166 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Producing and certifying entanglement between distant qubits is a highly desirable skill for quantum information technologies. Here we propose a new strategy to monitor and characterize entanglement genesis in a half parity measurement setup, that relies on the continuous readout of an energetic observable which is the half-parity observable itself. Based on a quantum-trajectory approach, we theoretically analyze the statistics of energetic fluctuations for a pair of continuously monitored qubits. We quantitatively relate these energetic fluctuations to the rate of entanglement produced between the qubits, and build an energetic-based estimator to assess the presence of entanglement in the circuit. Remarkably, this estimator is valid at the single-trajectory level and shows to be robust against finite detection efficiency. Our work paves the road towards a fundamental understanding of the stochastic energetic processes associated with entanglement genesis, and opens new perspectives for witnessing quantum correlations thanks to quantum thermodynamic quantities.
► BibTeX data
► References
[1] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
https://doi.org/10.1103/PhysRevLett.67.661
[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
https://doi.org/10.1103/PhysRevLett.70.1895
[3] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
https://doi.org/10.1103/PhysRevLett.81.5932
[4] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
https://doi.org/10.1103/PhysRevLett.86.5188
[5] C. I. Nielsen M., Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press, 2010).
[6] K. Lalumière, J. M. Gambetta, and A. Blais, Phys. Rev. A 81, 040301 (2010).
https://doi.org/10.1103/PhysRevA.81.040301
[7] L. Tornberg and G. Johansson, Physical Review A 82, 012329 (2010).
https://doi.org/10.1103/physreva.82.012329
[8] A. Chantasri, M. E. Kimchi-Schwartz, N. Roch, I. Siddiqi, and A. N. Jordan, Phys. Rev. X 6, 041052 (2016).
https://doi.org/10.1103/PhysRevX.6.041052
[9] B. Royer, S. Puri, and A. Blais, Science Advances 4, eaau1695 (2018).
https://doi.org/10.1126/sciadv.aau1695
[10] B. Trauzettel, A. N. Jordan, C. W. J. Beenakker, and M. Büttiker, Phys. Rev. B 73, 235331 (2006).
https://doi.org/10.1103/PhysRevB.73.235331
[11] N. S. Williams and A. N. Jordan, Phys. Rev. A 78, 062322 (2008).
https://doi.org/10.1103/PhysRevA.78.062322
[12] G. Haack, H. Förster, and M. Büttiker, Phys. Rev. B 82, 155303 (2010).
https://doi.org/10.1103/PhysRevB.82.155303
[13] C. Meyer zu Rheda, G. Haack, and A. Romito, Phys. Rev. B 90, 155438 (2014).
https://doi.org/10.1103/PhysRevB.90.155438
[14] D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Y. M. Blanter, K. W. Lehnert, R. N. Schouten, and L. DiCarlo, Nature 502, 350 (2013).
https://doi.org/10.1038/nature12513
[15] N. Roch, M. E. Schwartz, F. Motzoi, C. Macklin, R. Vijay, A. W. Eddins, A. N. Korotkov, K. B. Whaley, M. Sarovar, and I. Siddiqi, Phys. Rev. Lett. 112, 170501 (2014).
https://doi.org/10.1103/PhysRevLett.112.170501
[16] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W. Murch, and I. Siddiqi, Nature 511, 570 (2014).
https://doi.org/10.1038/nature13559
[17] Q. Ficheux, S. Jezouin, P. Campagne-Ibarcq, P. Rouchon, and B. Huard, in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017) p. QF5A.2.
https://doi.org/10.1364/QIM.2017.QF5A.2
[18] M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch, Phys. Rev. Lett. 121, 030604 (2018).
https://doi.org/10.1103/PhysRevLett.121.030604
[19] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffèves, Phys. Rev. Lett. 118, 260603 (2017a).
https://doi.org/10.1103/PhysRevLett.118.260603
[20] C. Elouard and A. N. Jordan, Phys. Rev. Lett. 120, 260601 (2018).
https://doi.org/10.1103/PhysRevLett.120.260601
[21] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M. Campisi, (2018), arXiv:1806.07814.
https://doi.org/10.1103/PhysRevLett.122.070603
arXiv:1806.07814
[22] X. Ding, J. Yi, Y. W. Kim, and P. Talkner, Phys. Rev. E 98, 042122 (2018).
https://doi.org/10.1103/PhysRevE.98.042122
[23] C. Elouard, D. A. Herrera-Martí, M. Clusel, and A. Auffèves, npj Quantum Information 3, 9 (2017b).
https://doi.org/10.1038/s41534-017-0008-4
[24] G. Manzano, J. M. Horowitz, and J. M. R. Parrondo, Phys. Rev. E 92, 032129 (2015).
https://doi.org/10.1103/PhysRevE.92.032129
[25] J. J. Alonso, E. Lutz, and A. Romito, Phys. Rev. Lett. 116, 080403 (2016).
https://doi.org/10.1103/PhysRevLett.116.080403
[26] C. Elouard and H. Mohammady, Work, heat and entropy production along quantum trajectories (2018) arXiv:1805.08305.
https://doi.org/10.1007/978-3-319-99046-0_15
arXiv:1805.08305
[27] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, Nature 429, 734 EP (2004).
https://doi.org/10.1038/nature02570
[28] H. M. Wiseman, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, 205 (1996).
https://doi.org/10.1088/1355-5111/8/1/015
[29] K. Jacobs and D. A. Steck, Contemporary Physics 47, 279 (2006).
https://doi.org/10.1080/00107510601101934
[30] S. Pilgram and M. Büttiker, Phys. Rev. Lett. 89, 200401 (2002).
https://doi.org/10.1103/PhysRevLett.89.200401
[31] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999).
https://doi.org/10.1103/PhysRevB.60.5737
[32] C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag Berlin Heidelberg, 1985).
[33] D. T. Gillespie, American Journal of Physics 64, 225 (1996).
https://doi.org/10.1119/1.18210
[34] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
https://doi.org/10.1103/PhysRevLett.80.2245
[35] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. X 5, 031019 (2015).
https://doi.org/10.1103/PhysRevX.5.031019
[36] K. Abdelkhalek, Y. Nakata, and D. Reeb, Fundamental energy cost for quantum measurement, ArXiv:1609.06981.
arXiv:1609.06981
[37] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffèves, Physical Review Letters 118, 260603 (2017c).
https://doi.org/10.1103/physrevlett.118.260603
[38] J. Yi, P. Talkner, and Y. W. Kim, Phys. Rev. E 96, 022108 (2017).
https://doi.org/10.1103/PhysRevE.96.022108
[39] M. B. Plenio and S. Virmani, Quantum Info. Comput. 7, 1 (2007).
http://dl.acm.org/citation.cfm?id=2011706.2011707
[40] J. Anders, D. Kaszlikowski, C. Lunkes, T. Ohshima, and V. Vedral, New Journal of Physics 8, 140 (2006).
https://doi.org/10.1088/1367-2630/8/8/140
[41] J. Anders, Phys. Rev. A 77, 062102 (2008).
https://doi.org/10.1103/PhysRevA.77.062102
[42] M. Huber, M. Perarnau-Llobet, K. V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, and A. Acín, New Journal of Physics 17, 065008 (2015).
https://doi.org/10.1088/1367-2630/17/6/065008
http://stacks.iop.org/1367-2630/17/i=6/a=065008
[43] D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, Phys. Rev. E 91, 032118 (2015).
https://doi.org/10.1103/PhysRevE.91.032118
[44] N. Friis, M. Huber, and M. Perarnau-Llobet, Phys. Rev. E 93, 042135 (2016).
https://doi.org/10.1103/PhysRevE.93.042135
[45] F. Giazotto and M. J. Martínez-Pérez, Nature 492, 401 (2012).
https://doi.org/10.1038/nature11702
[46] S. Jezouin, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, and F. Pierre, Science 342, 601 (2013).
https://doi.org/10.1126/science.1241912
[47] S. Gasparinetti, K. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, and J. Pekola, Physical Review Applied 3, 014007 (2015).
https://doi.org/10.1103/PhysRevApplied.3.014007
[48] Z. Iftikhar, A. Anthore, S. Jezouin, F. D. Parmentier, Y. Jin, A. Cavanna, A. Ouerghi, U. Gennser, and F. Pierre, Nature Communications 7, 12908 (2016).
https://doi.org/10.1038/ncomms12908
[49] A. Fornieri and F. Giazotto, Nature Nanotechnology 12, 944 (2017).
https://doi.org/10.1038/nnano.2017.204
[50] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E. Feldman, A. Stern, and V. Umansky, Nature 545, 75 (2017).
https://doi.org/10.1038/nature22052
[51] D. M. T. van Zanten, D. M. Basko, I. M. Khaymovich, J. P. Pekola, H. Courtois, and C. B. Winkelmann, Phys. Rev. Lett. 116, 166801 (2016).
https://doi.org/10.1103/PhysRevLett.116.166801
Cited by
[1] Alexia Auffèves, "A short story of quantum and information thermodynamics", SciPost Physics Lecture Notes 27 (2021).
[2] Alain Sarlette, "Deducing entanglement from signal fluctuations", Quantum Views 3, 23 (2019).
[3] M. H. Mohammady, A. Auffèves, and J. Anders, "Energetic footprints of irreversibility in the quantum regime", Communications Physics 3 1, 89 (2020).
[4] Gonzalo Manzano and Roberta Zambrini, "Quantum thermodynamics under continuous monitoring: A general framework", AVS Quantum Science 4 2, 025302 (2022).
[5] Teng Ma, Ming-Jing Zhao, Shao-Ming Fei, and Man-Hong Yung, "Necessity for quantum coherence of nondegeneracy in energy flow", Physical Review A 99 6, 062303 (2019).
[6] Teng Ma, Ming-Jing Zhao, Shao-Ming Fei, and Man-Hong Yung, "Necessity for quantum coherence of nondegeneracy in energy flow", arXiv:1802.08821, (2018).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-08 08:31:09) and SAO/NASA ADS (last updated successfully 2023-06-08 08:31:10). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: Perspective in Quantum Views by Alain Sarlette "Deducing entanglement from signal fluctuations"