Hamiltonian Simulation by Qubitization

Guang Hao Low1 and Isaac L. Chuang2

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Department of Electrical Engineering and Computer Science, Department of Physics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

We present the problem of approximating the time-evolution operator $e^{-i\hat{H}t}$ to error $\epsilon$, where the Hamiltonian $\hat{H}=(\langle G|\otimes\hat{\mathcal{I}})\hat{U}(|G\rangle\otimes\hat{\mathcal{I}})$ is the projection of a unitary oracle $\hat{U}$ onto the state $|G\rangle$ created by another unitary oracle. Our algorithm solves this with a query complexity $\mathcal{O}\big(t+\log({1/\epsilon})\big)$ to both oracles that is optimal with respect to all parameters in both the asymptotic and non-asymptotic regime, and also with low overhead, using at most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes important prior art considering Hamiltonians which are $d$-sparse or a linear combination of unitaries, leading to significant improvements in space and gate complexity, such as a quadratic speed-up for precision simulations. It also motivates useful new instances, such as where $\hat{H}$ is a density matrix. A key technical result is `qubitization', which uses the controlled version of these oracles to embed any $\hat{H}$ in an invariant $\text{SU}(2)$ subspace. A large class of operator functions of $\hat{H}$ can then be computed with optimal query complexity, of which $e^{-i\hat{H}t}$ is a special case.

► BibTeX data

► References

[1] S. Lloyd, ``Universal Quantum Simulators,'' Science 273, 1073 (1996).
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[2] D. Aharonov and A. Ta-Shma, ``Adiabatic quantum state generation and statistical zero knowledge,'' in Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, STOC '03 (ACM Press, New York, New York, USA, 2003) p. 20.
https:/​/​doi.org/​10.1145/​780542.780546

[3] A. M. Childs and N. Wiebe, ``Hamiltonian Simulation Using Linear Combinations of Unitary Operations,'' Quantum Information & Computation 12, 901 (2012).
http:/​/​dl.acm.org/​citation.cfm?id=2481569.2481570

[4] D. W. Berry and A. M. Childs, ``Black-box Hamiltonian simulation and unitary implementation,'' Quantum Information & Computation 12, 29 (2012).
http:/​/​dl.acm.org/​citation.cfm?id=2231036.2231040

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, ``Quantum principal component analysis,'' Nature Physics 10, 631 (2014).
https:/​/​doi.org/​10.1038/​nphys3029

[6] D. W. Berry, A. M. Childs, and R. Kothari, ``Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters,'' in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS '15 (IEEE, Washington, DC, USA, 2015) pp. 792-809.
https:/​/​doi.org/​10.1109/​FOCS.2015.54

[7] G. H. Low and I. L. Chuang, ``Optimal Hamiltonian Simulation by Quantum Signal Processing,'' Physical Review Letters 118, 010501 (2017a).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.010501

[8] A. W. Harrow, A. Hassidim, and S. Lloyd, ``Quantum Algorithm for Linear Systems of Equations,'' Physical Review Letters 103, 150502 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502

[9] A. M. Childs, R. Kothari, and R. D. Somma, ``Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision,'' SIAM Journal on Computing 46, 1920 (2017).
https:/​/​doi.org/​10.1137/​16M1087072

[10] A. N. Chowdhury and R. D. Somma, ``Quantum algorithms for Gibbs sampling and hitting-time estimation,'' Quantum Information & Computation 17, 41 (2017).
http:/​/​dl.acm.org/​citation.cfm?id=3179483.3179486

[11] F. G. Brandao and K. M. Svore, ``Quantum Speed-Ups for Solving Semidefinite Programs,'' 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) , 415 (2017).
https:/​/​doi.org/​10.1109/​FOCS.2017.45

[12] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, ``Introduction to Quantum Algorithms for Physics and Chemistry,'' in Quantum Information and Computation for Chemistry (John Wiley & Sons, Inc., 2014) pp. 67-106.
https:/​/​doi.org/​10.1002/​9781118742631.ch03

[13] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, ``Gate-count estimates for performing quantum chemistry on small quantum computers,'' Physical Review A 90, 022305 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.022305

[14] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer, ``The Trotter step size required for accurate quantum simulation of quantum chemistry,'' Quantum Information & Computation 15, 361 (2015).
http:/​/​dl.acm.org/​citation.cfm?id=2871401.2871402

[15] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, ``Elucidating reaction mechanisms on quantum computers,'' Proceedings of the National Academy of Sciences 114, 7555 (2017).
https:/​/​doi.org/​10.1073/​pnas.1619152114

[16] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik, ``Exponentially more precise quantum simulation of fermions in second quantization,'' New Journal of Physics 18, 033032 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​033032

[17] I. D. Kivlichan, N. Wiebe, R. Babbush, and A. Aspuru-Guzik, ``Bounding the costs of quantum simulation of many-body physics in real space,'' Journal of Physics A: Mathematical and Theoretical 50, 305301 (2017).
https:/​/​doi.org/​10.1088/​1751-8121/​aa77b8

[18] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, ``Scalable Quantum Simulation of Molecular Energies,'' Physical Review X 6, 031007 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.031007

[19] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, ``Superconducting quantum circuits at the surface code threshold for fault tolerance,'' Nature 508, 500 (2014).
https:/​/​doi.org/​10.1038/​nature13171

[20] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, ``Demonstration of a small programmable quantum computer with atomic qubits,'' Nature 536, 63 (2016).
https:/​/​doi.org/​10.1038/​nature18648

[21] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, ``Exponential improvement in precision for simulating sparse Hamiltonians,'' in Proceedings of the 46th Annual ACM Symposium on Theory of Computing - STOC '14, STOC '14 (ACM Press, New York, New York, USA, 2014) pp. 283-292.
https:/​/​doi.org/​10.1145/​2591796.2591854

[22] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, ``Simulating Hamiltonian Dynamics with a Truncated Taylor Series,'' Physical Review Letters 114, 090502 (2015b).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[23] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, ``Exponential algorithmic speedup by a quantum walk,'' in Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, STOC '03 (ACM Press, New York, New York, USA, 2003) p. 59.
https:/​/​doi.org/​10.1145/​780542.780552

[24] A. M. Childs, ``On the Relationship Between Continuous- and Discrete-Time Quantum Walk,'' Communications in Mathematical Physics 294, 581 (2010).
https:/​/​doi.org/​10.1007/​s00220-009-0930-1

[25] R. Kothari, Efficient algorithms in quantum query complexity, Ph.D. thesis, University of Waterloo (2014).
http:/​/​hdl.handle.net/​10012/​8625

[26] M. Szegedy, ``Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule,'' arXiv preprint quant-ph/​0401053 (2004a).
arXiv:quant-ph/0401053

[27] D. W. Berry and L. Novo, ``Corrected Quantum Walk for Optimal Hamiltonian Simulation,'' Quantum Information & Computation 16, 1295 (2016).
http:/​/​dl.acm.org/​citation.cfm?id=3179439.3179442

[28] S. Kimmel, C. Y.-Y. Lin, G. H. Low, M. Ozols, and T. J. Yoder, ``Hamiltonian simulation with optimal sample complexity,'' npj Quantum Information 3, 13 (2017).
https:/​/​doi.org/​10.1038/​s41534-017-0013-7

[29] S. Chakraborty, A. Gilyén, and S. Jeffery, ``The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation,'' arXiv preprint arXiv:1804.01973 (2018).
arXiv:1804.01973 http://arxiv.org/abs/1804.01973
https:/​/​arxiv.org/​abs/​1804.01973

[30] R. D. Somma and S. Boixo, ``Spectral Gap Amplification,'' SIAM Journal on Computing 42, 593 (2013).
https:/​/​doi.org/​10.1137/​120871997

[31] M. Szegedy, ``Quantum Speed-Up of Markov Chain Based Algorithms,'' in 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS '04 (IEEE, Washington, DC, USA, 2004) pp. 32-41.
https:/​/​doi.org/​10.1109/​FOCS.2004.53

[32] A. Daskin and S. Kais, ``An ancilla-based quantum simulation framework for non-unitary matrices,'' Quantum Information Processing 16, 33 (2017).
https:/​/​doi.org/​10.1007/​s11128-016-1452-3

[33] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer Tracts in Natural Philosophy, Vol. 13 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1967).
https:/​/​doi.org/​10.1007/​978-3-642-85643-3

[34] L. K. Grover, ``A fast quantum mechanical algorithm for database search,'' Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96 STOC '96, 212 (1996).
https:/​/​doi.org/​10.1145/​237814.237866

[35] T. J. Yoder, G. H. Low, and I. L. Chuang, ``Fixed-Point Quantum Search with an Optimal Number of Queries,'' Physical Review Letters 113, 210501 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210501

[36] J. McClellan, T. Parks, and L. Rabiner, ``A computer program for designing optimum FIR linear phase digital filters,'' IEEE Transactions on Audio and Electroacoustics 21, 506 (1973).
https:/​/​doi.org/​10.1109/​TAU.1973.1162525

[37] G. H. Low, T. J. Yoder, and I. L. Chuang, ``Methodology of Resonant Equiangular Composite Quantum Gates,'' Physical Review X 6, 041067 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.041067

[38] M. Abramowitz, I. A. Stegun, and Others, ``Handbook of mathematical functions,'' Applied mathematics series 55, 62 (1966).

[39] J. P. Boyd, ``Rootfinding for a transcendental equation without a first guess: Polynomialization of Kepler's equation through Chebyshev polynomial expansion of the sine,'' Applied Numerical Mathematics 57, 12 (2007).
https:/​/​doi.org/​10.1016/​j.apnum.2005.11.010

[40] A. M. Childs and R. Kothari, ``Limitations on the Simulation of Non-sparse Hamiltonians,'' Quantum Information & Computation 10, 669 (2010).
http:/​/​dl.acm.org/​citation.cfm?id=2011373.2011380

[41] R. D. Somma, ``A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation,'' Journal of Mathematical Physics 57, 062202 (2016).
https:/​/​doi.org/​10.1063/​1.4952761

[42] G. H. Low, T. J. Yoder, and I. L. Chuang, ``Quantum Imaging by Coherent Enhancement,'' Physical Review Letters 114, 100801 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.100801

[43] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, ``Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics,'' in Proceedings of the 51st Annual ACM Symposium on Theory of Computing - STOC '19 (ACM Press, New York, New York, USA, 2019) pp. 193-204.
https:/​/​doi.org/​10.1145/​3313276.3316366

[44] J. Haah, M. Hastings, R. Kothari, and G. H. Low, ``Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians,'' in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), FOCS '18 (IEEE, Washington, DC, USA, 2018) pp. 350-360.
https:/​/​doi.org/​10.1109/​FOCS.2018.00041

[45] A. M. Childs and Y. Su, ``Nearly optimal lattice simulation by product formulas,'' arXiv preprint arXiv:1901.00564 (2019).
arXiv:1901.00564

[46] G. H. Low and I. L. Chuang, ``Hamiltonian Simulation by Uniform Spectral Amplification,'' arXiv preprint arXiv:1707.05391 (2017b).
arXiv:1707.05391

[47] G. H. Low, ``Hamiltonian simulation with nearly optimal dependence on spectral norm,'' in Proceedings of the 51st Annual ACM Symposium on Theory of Computing - STOC '19 (ACM Press, New York, New York, USA, 2019) pp. 491-502.
https:/​/​doi.org/​10.1145/​3313276.3316386

[48] G. H. Low and N. Wiebe, ``Hamiltonian Simulation in the Interaction Picture,'' arXiv preprint arXiv:1805.00675 (2018).
arXiv:1805.00675

[49] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, ``Toward the first quantum simulation with quantum speedup,'' Proceedings of the National Academy of Sciences 115, 9456 (2018).
https:/​/​doi.org/​10.1073/​pnas.1801723115

[50] J. Haah, ``Product Decomposition of Periodic Functions in Quantum Signal Processing,'' arXiv preprint arXiv:1806.10236 (2018).
arXiv:1806.10236

[51] L. J. Karam and J. H. McClellan, ``Chebyshev digital FIR filter design,'' Signal Processing 76, 17 (1999).
https:/​/​doi.org/​10.1016/​S0165-1684(98)00244-8

Cited by

[1] Andrew M. Childs, Aaron Ostrander, and Yuan Su, "Faster quantum simulation by randomization", arXiv:1805.08385, Quantum 3, 182 (2019).

[2] Andrew M. Childs and Yuan Su, "Nearly Optimal Lattice Simulation by Product Formulas", Physical Review Letters 123 5, 050503 (2019).

[3] Yuan Su, "Framework for Hamiltonian simulation and beyond: standard-form encoding, qubitization, and quantum signal processing", Quantum Views 3, 21 (2019).

[4] Alessandro Roggero and Joseph Carlson, "Dynamic linear response quantum algorithm", Physical Review C 100 3, 034610 (2019).

[5] Vedran Dunjko and Hans J. Briegel, "Machine learning & artificial intelligence in the quantum domain: a review of recent progress", Reports on Progress in Physics 81 7, 074001 (2018).

[6] Vedran Dunjko and Hans J. Briegel, "Machine learning \& artificial intelligence in the quantum domain", arXiv:1709.02779.

[7] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402.

[8] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976.

[9] Vijay Balasubramanian, Matthew DeCross, Arjun Kar, and Onkar Parrikar, "Quantum Complexity of Time Evolution with Chaotic Hamiltonians", arXiv:1905.05765.

[10] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven, "Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity", Physical Review X 8 4, 041015 (2018).

[11] Nicholas P. Bauman, Eric J. Bylaska, Sriram Krishnamoorthy, Guang Hao Low, Nathan Wiebe, Christopher E. Granade, Martin Roetteler, Matthias Troyer, and Karol Kowalski, "Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms", Journal of Chemical Physics 151 1, 014107 (2019).

[12] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, "Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization", arXiv:1902.10673.

[13] Sathyawageeswar Subramanian, Stephen Brierley, and Richard Jozsa, "Implementing smooth functions of a Hermitian matrix on a quantum computer", Journal of Physics Communications 3 6, 065002 (2019).

[14] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe, "Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics", arXiv:1806.01838.

[15] William M. Kirby and Peter J. Love, "Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers", arXiv:1904.02260.

[16] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low, "Quantum algorithm for simulating real time evolution of lattice Hamiltonians", arXiv:1801.03922.

[17] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, "Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization", arXiv:1902.02134.

[18] Joran van Apeldoorn and András Gilyén, "Improvements in Quantum SDP-Solving with Applications", arXiv:1804.05058.

[19] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su, "Toward the first quantum simulation with quantum speedup", arXiv:1711.10980.

[20] Patrick Rebentrost, Maria Schuld, Leonard Wossnig, Francesco Petruccione, and Seth Lloyd, "Quantum gradient descent and Newton's method for constrained polynomial optimization", arXiv:1612.01789.

[21] Mario Motta, Erika Ye, Jarrod R. McClean, Zhendong Li, Austin J. Minnich, Ryan Babbush, and Garnet Kin-Lic Chan, "Low rank representations for quantum simulation of electronic structure", arXiv:1808.02625.

[22] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan, "Low-Depth Quantum Simulation of Materials", Physical Review X 8 1, 011044 (2018).

[23] Earl Campbell, "Random Compiler for Fast Hamiltonian Simulation", Physical Review Letters 123 7, 070503 (2019).

[24] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery, "The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation", arXiv:1804.01973.

[25] Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer, "Trading T-gates for dirty qubits in state preparation and unitary synthesis", arXiv:1812.00954.

[26] Ryan Babbush, Dominic W. Berry, and Hartmut Neven, "Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization", Physical Review A 99 4, 040301 (2019).

[27] Dominic W. Berry, Mária Kieferová, Artur Scherer, Yuval R. Sanders, Guang Hao Low, Nathan Wiebe, Craig Gidney, and Ryan Babbush, "Improved techniques for preparing eigenstates of fermionic Hamiltonians", npj Quantum Information 4, 22 (2018).

[28] Guang Hao Low and Nathan Wiebe, "Hamiltonian Simulation in the Interaction Picture", arXiv:1805.00675.

[29] Guang Hao Low, Nicholas P. Bauman, Christopher E. Granade, Bo Peng, Nathan Wiebe, Eric J. Bylaska, Dave Wecker, Sriram Krishnamoorthy, Martin Roetteler, Karol Kowalski, Matthias Troyer, and Nathan A. Baker, "Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers", arXiv:1904.01131.

[30] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan, "Low Depth Quantum Simulation of Electronic Structure", arXiv:1706.00023.

[31] András Gilyén and Tongyang Li, "Distributional property testing in a quantum world", arXiv:1902.00814.

[32] Changpeng Shao, "An Improved Algorithm for Quantum Principal Component Analysis", arXiv:1903.03999.

[33] Zhikuan Zhao, "Quantum Statistical Inference", arXiv:1812.04877.

[34] M. B. Hastings, "Duality in Quantum Quenches and Classical Approximation Algorithms: Pretty Good or Very Bad", arXiv:1904.13339.

[35] Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naïri Usher, and Leonard Wossnig, "Quantum linear systems algorithms: a primer", arXiv:1802.08227.

[36] Daniel Litinski, "A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery", arXiv:1808.02892.

[37] Seth Lloyd and Reevu Maity, "Efficient implementation of unitary transformations", arXiv:1901.03431.

[38] Guang Hao Low and Isaac L. Chuang, "Hamiltonian Simulation by Uniform Spectral Amplification", arXiv:1707.05391.

[39] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guoming Wang, "Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision", Communications in Mathematical Physics 356 3, 1057 (2017).

[40] Alessandro Roggero and Joseph Carlson, "Linear Response on a Quantum Computer", arXiv:1804.01505.

[41] Oleksandr Kyriienko, "Quantum inverse iteration algorithm for near-term quantum devices", arXiv:1901.09988.

[42] David B. Kaplan and Jesse R. Stryker, "Gauss's Law, Duality, and the Hamiltonian Formulation of U(1) Lattice Gauge Theory", arXiv:1806.08797.

[43] Guang Hao Low, "Hamiltonian simulation with nearly optimal dependence on spectral norm", arXiv:1807.03967.

[44] Sam McArdle, Alex Mayorov, Xiao Shan, Simon Benjamin, and Xiao Yuan, "Quantum computation of molecular vibrations", arXiv:1811.04069.

[45] Teng Bian, Daniel Murphy, Rongxin Xia, Ammar Daskin, and Sabre Kais, "Quantum computing methods for electronic states of the water molecule", Molecular Physics 117 15-16, 2069 (2019).

[46] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf, "Quantum SDP-Solvers: Better upper and lower bounds", arXiv:1705.01843.

[47] Yuval R. Sanders, Guang Hao Low, Artur Scherer, and Dominic W. Berry, "Black-box quantum state preparation without arithmetic", arXiv:1807.03206, Physical Review Letters 122 2, 020502 (2018).

[48] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes", arXiv:1812.08778.

[49] David Poulin, Alexei Kitaev, Damian S. Steiger, Matthew B. Hastings, and Matthias Troyer, "Quantum Algorithm for Spectral Measurement with a Lower Gate Count", Physical Review Letters 121 1, 010501 (2018).

[50] Ronald de Wolf, "Quantum Computing: Lecture Notes", arXiv:1907.09415.

[51] Andrew M. Childs and Jin-Peng Liu, "Quantum spectral methods for differential equations", arXiv:1901.00961.

[52] Natalie Klco and Martin J. Savage, "Digitization of Scalar Fields for Quantum Computing", arXiv:1808.10378, Physical Review A 99 5, 052335 (2018).

[53] Ammar Daskin and Sabre Kais, "A generalized circuit for the Hamiltonian dynamics through the truncated series", Quantum Information Processing 17 12, 328 (2018).

[54] Shantanav Chakraborty, Kyle Luh, and Jérémie Roland, "On analog quantum algorithms for the mixing of Markov chains", arXiv:1904.11895.

[55] Ian D. Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik, "Bounding the costs of quantum simulation of many-body physics in real space", Journal of Physics A Mathematical General 50 30, 305301 (2017).

[56] Mária Kieferová, Artur Scherer, and Dominic W. Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", Physical Review A 99 4, 042314 (2019).

[57] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe, "Time-dependent Hamiltonian simulation with $L^1$-norm scaling", arXiv:1906.07115.

[58] Guoming Wang, "Quantum algorithm for linear regression", arXiv:1402.0660, Physical Review A 96 1, 012335 (2017).

[59] Jeongwan Haah, "Product Decomposition of Periodic Functions in Quantum Signal Processing", arXiv:1806.10236.

[60] Yimin Ge, Jordi Tura, and J. Ignacio Cirac, "Faster ground state preparation and high-precision ground energy estimation with fewer qubits", arXiv:1712.03193, Journal of Mathematical Physics 60 2, 022202 (2017).

[61] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in Hamiltonian simulation", arXiv:1808.03623, Physical Review A 99 1, 012334 (2018).

[62] Ammar Daskin and Sabre Kais, "Direct application of the phase estimation algorithm to find the eigenvalues of the Hamiltonians", Chemical Physics 514, 87 (2018).

[63] Alessandro Roggero and Alessandro Baroni, "Short-depth circuits for efficient expectation value estimation", arXiv:1905.08383.

[64] M. B. Hastings, "The Short Path Algorithm Applied to a Toy Model", arXiv:1901.03884.

[65] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang, "Methodology of Resonant Equiangular Composite Quantum Gates", Physical Review X 6 4, 041067 (2016).

[66] Leonardo Novo and Dominic W. Berry, "Improved Hamiltonian simulation via a truncated Taylor series and corrections", arXiv:1611.10033.

[67] Chunhao Wang and Leonard Wossnig, "A quantum algorithm for simulating non-sparse Hamiltonians", arXiv:1803.08273.

[68] Rolando D. Somma, "Quantum eigenvalue estimation via time series analysis", arXiv:1907.11748.

[69] Alex Parent, Martin Roetteler, and Michele Mosca, "Improved reversible and quantum circuits for Karatsuba-based integer multiplication", arXiv:1706.03419.

[70] François Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme, "Efficient state initialization by a quantum spectral filtering algorithm", Physical Review A 95 4, 042331 (2017).

[71] Riley W. Chien, Sha Xue, Tarini S. Hardikar, Kanav Setia, and James D. Whitfield, "Analysis of Superfast Encoding Performance for Electronic Structure Simulations", arXiv:1907.02976.

[72] M. B. Hastings, "Classical and Quantum Algorithms for Tensor Principal Component Analysis", arXiv:1907.12724.

[73] Jarrod R. McClean, Fabian M. Faulstich, Qinyi Zhu, Bryan O'Gorman, Yiheng Qiu, Steven R. White, Ryan Babbush, and Lin Lin, "Discontinuous Galerkin discretization for quantum simulation of chemistry", arXiv:1909.00028.

[74] Ian D. Kivlichan, Christopher E. Granade, and Nathan Wiebe, "Phase estimation with randomized Hamiltonians", arXiv:1907.10070.

[75] Alexander Engel, Graeme Smith, and Scott E. Parker, "A Quantum Algorithm for the Vlasov Equation", arXiv:1907.09418.

[76] Sathyawageeswar Subramanian and Min-Hsiu Hsieh, "Quantum algorithm for estimating Renyi entropies of quantum states", arXiv:1908.05251.

The above citations are from Crossref's cited-by service (last updated 2019-09-22 08:33:33) and SAO/NASA ADS (last updated 2019-09-22 08:33:34). The list may be incomplete as not all publishers provide suitable and complete citation data.