Hamiltonian Simulation by Qubitization

Guang Hao Low1 and Isaac L. Chuang2

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Department of Electrical Engineering and Computer Science, Department of Physics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present the problem of approximating the time-evolution operator $e^{-i\hat{H}t}$ to error $\epsilon$, where the Hamiltonian $\hat{H}=(\langle G|\otimes\hat{\mathcal{I}})\hat{U}(|G\rangle\otimes\hat{\mathcal{I}})$ is the projection of a unitary oracle $\hat{U}$ onto the state $|G\rangle$ created by another unitary oracle. Our algorithm solves this with a query complexity $\mathcal{O}\big(t+\log({1/\epsilon})\big)$ to both oracles that is optimal with respect to all parameters in both the asymptotic and non-asymptotic regime, and also with low overhead, using at most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes important prior art considering Hamiltonians which are $d$-sparse or a linear combination of unitaries, leading to significant improvements in space and gate complexity, such as a quadratic speed-up for precision simulations. It also motivates useful new instances, such as where $\hat{H}$ is a density matrix. A key technical result is `qubitization', which uses the controlled version of these oracles to embed any $\hat{H}$ in an invariant $\text{SU}(2)$ subspace. A large class of operator functions of $\hat{H}$ can then be computed with optimal query complexity, of which $e^{-i\hat{H}t}$ is a special case.

► BibTeX data

► References

[1] S. Lloyd, ``Universal Quantum Simulators,'' Science 273, 1073 (1996).
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[2] D. Aharonov and A. Ta-Shma, ``Adiabatic quantum state generation and statistical zero knowledge,'' in Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, STOC '03 (ACM Press, New York, New York, USA, 2003) p. 20.
https:/​/​doi.org/​10.1145/​780542.780546

[3] A. M. Childs and N. Wiebe, ``Hamiltonian Simulation Using Linear Combinations of Unitary Operations,'' Quantum Information & Computation 12, 901 (2012).
http:/​/​dl.acm.org/​citation.cfm?id=2481569.2481570

[4] D. W. Berry and A. M. Childs, ``Black-box Hamiltonian simulation and unitary implementation,'' Quantum Information & Computation 12, 29 (2012).
http:/​/​dl.acm.org/​citation.cfm?id=2231036.2231040

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, ``Quantum principal component analysis,'' Nature Physics 10, 631 (2014).
https:/​/​doi.org/​10.1038/​nphys3029

[6] D. W. Berry, A. M. Childs, and R. Kothari, ``Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters,'' in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS '15 (IEEE, Washington, DC, USA, 2015) pp. 792–809.
https:/​/​doi.org/​10.1109/​FOCS.2015.54

[7] G. H. Low and I. L. Chuang, ``Optimal Hamiltonian Simulation by Quantum Signal Processing,'' Physical Review Letters 118, 010501 (2017a).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.010501

[8] A. W. Harrow, A. Hassidim, and S. Lloyd, ``Quantum Algorithm for Linear Systems of Equations,'' Physical Review Letters 103, 150502 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502

[9] A. M. Childs, R. Kothari, and R. D. Somma, ``Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision,'' SIAM Journal on Computing 46, 1920 (2017).
https:/​/​doi.org/​10.1137/​16M1087072

[10] A. N. Chowdhury and R. D. Somma, ``Quantum algorithms for Gibbs sampling and hitting-time estimation,'' Quantum Information & Computation 17, 41 (2017).
http:/​/​dl.acm.org/​citation.cfm?id=3179483.3179486

[11] F. G. Brandao and K. M. Svore, ``Quantum Speed-Ups for Solving Semidefinite Programs,'' 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) , 415 (2017).
https:/​/​doi.org/​10.1109/​FOCS.2017.45

[12] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, ``Introduction to Quantum Algorithms for Physics and Chemistry,'' in Quantum Information and Computation for Chemistry (John Wiley & Sons, Inc., 2014) pp. 67–106.
https:/​/​doi.org/​10.1002/​9781118742631.ch03

[13] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, ``Gate-count estimates for performing quantum chemistry on small quantum computers,'' Physical Review A 90, 022305 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.022305

[14] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer, ``The Trotter step size required for accurate quantum simulation of quantum chemistry,'' Quantum Information & Computation 15, 361 (2015).
http:/​/​dl.acm.org/​citation.cfm?id=2871401.2871402

[15] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, ``Elucidating reaction mechanisms on quantum computers,'' Proceedings of the National Academy of Sciences 114, 7555 (2017).
https:/​/​doi.org/​10.1073/​pnas.1619152114

[16] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik, ``Exponentially more precise quantum simulation of fermions in second quantization,'' New Journal of Physics 18, 033032 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​033032

[17] I. D. Kivlichan, N. Wiebe, R. Babbush, and A. Aspuru-Guzik, ``Bounding the costs of quantum simulation of many-body physics in real space,'' Journal of Physics A: Mathematical and Theoretical 50, 305301 (2017).
https:/​/​doi.org/​10.1088/​1751-8121/​aa77b8

[18] P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, ``Scalable Quantum Simulation of Molecular Energies,'' Physical Review X 6, 031007 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.031007

[19] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, ``Superconducting quantum circuits at the surface code threshold for fault tolerance,'' Nature 508, 500 (2014).
https:/​/​doi.org/​10.1038/​nature13171

[20] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, ``Demonstration of a small programmable quantum computer with atomic qubits,'' Nature 536, 63 (2016).
https:/​/​doi.org/​10.1038/​nature18648

[21] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, ``Exponential improvement in precision for simulating sparse Hamiltonians,'' in Proceedings of the 46th Annual ACM Symposium on Theory of Computing - STOC '14, STOC '14 (ACM Press, New York, New York, USA, 2014) pp. 283–292.
https:/​/​doi.org/​10.1145/​2591796.2591854

[22] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, ``Simulating Hamiltonian Dynamics with a Truncated Taylor Series,'' Physical Review Letters 114, 090502 (2015b).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[23] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, ``Exponential algorithmic speedup by a quantum walk,'' in Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, STOC '03 (ACM Press, New York, New York, USA, 2003) p. 59.
https:/​/​doi.org/​10.1145/​780542.780552

[24] A. M. Childs, ``On the Relationship Between Continuous- and Discrete-Time Quantum Walk,'' Communications in Mathematical Physics 294, 581 (2010).
https:/​/​doi.org/​10.1007/​s00220-009-0930-1

[25] R. Kothari, Efficient algorithms in quantum query complexity, Ph.D. thesis, University of Waterloo (2014).
http:/​/​hdl.handle.net/​10012/​8625

[26] M. Szegedy, ``Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule,'' arXiv preprint quant-ph/​0401053 (2004a).
arXiv:quant-ph/0401053

[27] D. W. Berry and L. Novo, ``Corrected Quantum Walk for Optimal Hamiltonian Simulation,'' Quantum Information & Computation 16, 1295 (2016).
http:/​/​dl.acm.org/​citation.cfm?id=3179439.3179442

[28] S. Kimmel, C. Y.-Y. Lin, G. H. Low, M. Ozols, and T. J. Yoder, ``Hamiltonian simulation with optimal sample complexity,'' npj Quantum Information 3, 13 (2017).
https:/​/​doi.org/​10.1038/​s41534-017-0013-7

[29] S. Chakraborty, A. Gilyén, and S. Jeffery, ``The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation,'' arXiv preprint arXiv:1804.01973 (2018).
arXiv:1804.01973 http://arxiv.org/abs/1804.01973
https:/​/​arxiv.org/​abs/​1804.01973

[30] R. D. Somma and S. Boixo, ``Spectral Gap Amplification,'' SIAM Journal on Computing 42, 593 (2013).
https:/​/​doi.org/​10.1137/​120871997

[31] M. Szegedy, ``Quantum Speed-Up of Markov Chain Based Algorithms,'' in 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS '04 (IEEE, Washington, DC, USA, 2004) pp. 32–41.
https:/​/​doi.org/​10.1109/​FOCS.2004.53

[32] A. Daskin and S. Kais, ``An ancilla-based quantum simulation framework for non-unitary matrices,'' Quantum Information Processing 16, 33 (2017).
https:/​/​doi.org/​10.1007/​s11128-016-1452-3

[33] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer Tracts in Natural Philosophy, Vol. 13 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1967).
https:/​/​doi.org/​10.1007/​978-3-642-85643-3

[34] L. K. Grover, ``A fast quantum mechanical algorithm for database search,'' Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96 STOC '96, 212 (1996).
https:/​/​doi.org/​10.1145/​237814.237866

[35] T. J. Yoder, G. H. Low, and I. L. Chuang, ``Fixed-Point Quantum Search with an Optimal Number of Queries,'' Physical Review Letters 113, 210501 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210501

[36] J. McClellan, T. Parks, and L. Rabiner, ``A computer program for designing optimum FIR linear phase digital filters,'' IEEE Transactions on Audio and Electroacoustics 21, 506 (1973).
https:/​/​doi.org/​10.1109/​TAU.1973.1162525

[37] G. H. Low, T. J. Yoder, and I. L. Chuang, ``Methodology of Resonant Equiangular Composite Quantum Gates,'' Physical Review X 6, 041067 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.041067

[38] M. Abramowitz, I. A. Stegun, and Others, ``Handbook of mathematical functions,'' Applied mathematics series 55, 62 (1966).

[39] J. P. Boyd, ``Rootfinding for a transcendental equation without a first guess: Polynomialization of Kepler's equation through Chebyshev polynomial expansion of the sine,'' Applied Numerical Mathematics 57, 12 (2007).
https:/​/​doi.org/​10.1016/​j.apnum.2005.11.010

[40] A. M. Childs and R. Kothari, ``Limitations on the Simulation of Non-sparse Hamiltonians,'' Quantum Information & Computation 10, 669 (2010).
http:/​/​dl.acm.org/​citation.cfm?id=2011373.2011380

[41] R. D. Somma, ``A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation,'' Journal of Mathematical Physics 57, 062202 (2016).
https:/​/​doi.org/​10.1063/​1.4952761

[42] G. H. Low, T. J. Yoder, and I. L. Chuang, ``Quantum Imaging by Coherent Enhancement,'' Physical Review Letters 114, 100801 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.100801

[43] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, ``Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics,'' in Proceedings of the 51st Annual ACM Symposium on Theory of Computing - STOC '19 (ACM Press, New York, New York, USA, 2019) pp. 193–204.
https:/​/​doi.org/​10.1145/​3313276.3316366

[44] J. Haah, M. Hastings, R. Kothari, and G. H. Low, ``Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians,'' in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), FOCS '18 (IEEE, Washington, DC, USA, 2018) pp. 350–360.
https:/​/​doi.org/​10.1109/​FOCS.2018.00041

[45] A. M. Childs and Y. Su, ``Nearly optimal lattice simulation by product formulas,'' arXiv preprint arXiv:1901.00564 (2019).
arXiv:1901.00564

[46] G. H. Low and I. L. Chuang, ``Hamiltonian Simulation by Uniform Spectral Amplification,'' arXiv preprint arXiv:1707.05391 (2017b).
arXiv:1707.05391

[47] G. H. Low, ``Hamiltonian simulation with nearly optimal dependence on spectral norm,'' in Proceedings of the 51st Annual ACM Symposium on Theory of Computing - STOC '19 (ACM Press, New York, New York, USA, 2019) pp. 491–502.
https:/​/​doi.org/​10.1145/​3313276.3316386

[48] G. H. Low and N. Wiebe, ``Hamiltonian Simulation in the Interaction Picture,'' arXiv preprint arXiv:1805.00675 (2018).
arXiv:1805.00675

[49] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, ``Toward the first quantum simulation with quantum speedup,'' Proceedings of the National Academy of Sciences 115, 9456 (2018).
https:/​/​doi.org/​10.1073/​pnas.1801723115

[50] J. Haah, ``Product Decomposition of Periodic Functions in Quantum Signal Processing,'' arXiv preprint arXiv:1806.10236 (2018).
arXiv:1806.10236

[51] L. J. Karam and J. H. McClellan, ``Chebyshev digital FIR filter design,'' Signal Processing 76, 17 (1999).
https:/​/​doi.org/​10.1016/​S0165-1684(98)00244-8

Cited by

[1] Shantanav Chakraborty, Kyle Luh, and Jérémie Roland, "Analog quantum algorithms for the mixing of Markov chains", Physical Review A 102 2, 022423 (2020).

[2] Anirban N. Chowdhury, Rolando D. Somma, and Yiğit Subaşı, "Computing partition functions in the one-clean-qubit model", Physical Review A 103 3, 032422 (2021).

[3] Jessica Lemieux, Bettina Heim, David Poulin, Krysta Svore, and Matthias Troyer, "Efficient Quantum Walk Circuits for Metropolis-Hastings Algorithm", Quantum 4, 287 (2020).

[4] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush, "Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction", PRX Quantum 2 3, 030305 (2021).

[5] Riley W. Chien, Sha Xue, Tarini S. Hardikar, Kanav Setia, and James D. Whitfield, "Analysis of superfast encoding performance for electronic structure simulations", Physical Review A 100 3, 032337 (2019).

[6] P A M Casares and M A Martin-Delgado, "A quantum interior-point predictor–corrector algorithm for linear programming", Journal of Physics A: Mathematical and Theoretical 53 44, 445305 (2020).

[7] Olivia Di Matteo, Anna McCoy, Peter Gysbers, Takayuki Miyagi, R. M. Woloshyn, and Petr Navrátil, "Improving Hamiltonian encodings with the Gray code", Physical Review A 103 4, 042405 (2021).

[8] Alessandro Roggero, Andy C. Y. Li, Joseph Carlson, Rajan Gupta, and Gabriel N. Perdue, "Quantum computing for neutrino-nucleus scattering", Physical Review D 101 7, 074038 (2020).

[9] Kianna Wan, "Exponentially faster implementations of Select(H) for fermionic Hamiltonians", Quantum 5, 380 (2021).

[10] Nicholas P. Bauman, Guang Hao Low, and Karol Kowalski, "Quantum simulations of excited states with active-space downfolded Hamiltonians", The Journal of Chemical Physics 151 23, 234114 (2019).

[11] Fan-Xu Meng, Xu-Tao Yu, and Zai-Chen Zhang, "Improved quantum algorithm for MMSE-based massive MIMO uplink detection", Quantum Information Processing 19 8, 267 (2020).

[12] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu, "Theory of Trotter Error with Commutator Scaling", Physical Review X 11 1, 011020 (2021).

[13] Mahmoud Mahdian and H. Davoodi Yeganeh, "Incoherent quantum algorithm dynamics of an open system with near-term devices", Quantum Information Processing 19 9, 285 (2020).

[14] Hefeng Wang and Sixia Yu, "Quantum algorithm for preparing the ground state of a physical system through multi-step quantum resonant transitions", Quantum Information Processing 20 1, 40 (2021).

[15] Karuna Kadian, Sunita Garhwal, and Ajay Kumar, "Quantum walk and its application domains: A systematic review", Computer Science Review 41, 100419 (2021).

[16] Alexander Engel, Graeme Smith, and Scott E. Parker, "Quantum algorithm for the Vlasov equation", Physical Review A 100 6, 062315 (2019).

[17] Leonardo Novo, Juani Bermejo-Vega, and Raúl García-Patrón, "Quantum advantage from energy measurements of many-body quantum systems", Quantum 5, 465 (2021).

[18] Yuval R. Sanders, Dominic W. Berry, Pedro C.S. Costa, Louis W. Tessler, Nathan Wiebe, Craig Gidney, Hartmut Neven, and Ryan Babbush, "Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization", PRX Quantum 1 2, 020312 (2020).

[19] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe, "Time-dependent Hamiltonian simulation withL1-norm scaling", arXiv:1906.07115, Quantum 4, 254 (2020).

[20] Burak Şahinoğlu and Rolando D. Somma, "Hamiltonian simulation in the low-energy subspace", npj Quantum Information 7 1, 119 (2021).

[21] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402, Reviews of Modern Physics 92 1, 015003 (2020).

[22] Daan Camps and Roel Van Beeumen, "Approximate quantum circuit synthesis using block encodings", Physical Review A 102 5, 052411 (2020).

[23] William M. Kirby and Peter J. Love, "Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers", Physical Review Letters 123 20, 200501 (2019).

[24] Yuan Su, "Framework for Hamiltonian simulation and beyond: standard-form encoding, qubitization, and quantum signal processing", Quantum Views 3, 21 (2019).

[25] Jeongwan Haah, "Product Decomposition of Periodic Functions in Quantum Signal Processing", arXiv:1806.10236, Quantum 3, 190 (2019).

[26] Shi-Jie Pan, Lin-Chun Wan, Hai-Ling Liu, Qing-Le Wang, Su-Juan Qin, Qiao-Yan Wen, and Fei Gao, "Improved quantum algorithm for A-optimal projection", Physical Review A 102 5, 052402 (2020).

[27] Shantanav Chakraborty, Leonardo Novo, and Jérémie Roland, "Finding a marked node on any graph via continuous-time quantum walks", Physical Review A 102 2, 022227 (2020).

[28] Anthony Ciavarella, "Algorithm for quantum computation of particle decays", Physical Review D 102 9, 094505 (2020).

[29] Andrew M. Childs and Yuan Su, "Nearly Optimal Lattice Simulation by Product Formulas", Physical Review Letters 123 5, 050503 (2019).

[30] Yingkai Ouyang, David R. White, and Earl T. Campbell, "Compilation by stochastic Hamiltonian sparsification", Quantum 4, 235 (2020).

[31] Ryan Babbush, Dominic W. Berry, Jarrod R. McClean, and Hartmut Neven, "Quantum simulation of chemistry with sublinear scaling in basis size", npj Quantum Information 5 1, 92 (2019).

[32] Suguru Endo, Jinzhao Sun, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational Quantum Simulation of General Processes", Physical Review Letters 125 1, 010501 (2020).

[33] Anthony Ciavarella, Natalie Klco, and Martin J. Savage, "Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis", Physical Review D 103 9, 094501 (2021).

[34] Jingwei Wen, Guoqing Qin, Chao Zheng, Shijie Wei, Xiangyu Kong, Tao Xin, and Guilu Long, "Observation of information flow in the anti-𝒫𝒯-symmetric system with nuclear spins", npj Quantum Information 6 1, 28 (2020).

[35] Leonardo Novo, "Bridging gaps between random approaches to quantum simulation", Quantum Views 4, 33 (2020).

[36] Trevor Keen, Thomas Maier, Steven Johnston, and Pavel Lougovski, "Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware", Quantum Science and Technology 5 3, 035001 (2020).

[37] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low, "Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians", arXiv:1801.03922, SIAM Journal on Computing FOCS18-250 (2021).

[38] Yanbing Zhang, Tingting Song, and Zhihao Wu, "An improved quantum algorithm for support matrix machines", Quantum Information Processing 20 7, 229 (2021).

[39] Mark Steudtner and Stephanie Wehner, "Estimating exact energies in quantum simulation without Toffoli gates", Physical Review A 101 5, 052329 (2020).

[40] Kenneth Choi, Dean Lee, Joey Bonitati, Zhengrong Qian, and Jacob Watkins, "Rodeo Algorithm for Quantum Computing", Physical Review Letters 127 4, 040505 (2021).

[41] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[42] Matthew B. Hastings, "Classical and Quantum Algorithms for Tensor Principal Component Analysis", arXiv:1907.12724, Quantum 4, 237 (2020).

[43] A. Roggero, "Spectral-density estimation with the Gaussian integral transform", Physical Review A 102 2, 022409 (2020).

[44] Yuan Su, Hsin-Yuan Huang, and Earl T. Campbell, "Nearly tight Trotterization of interacting electrons", arXiv:2012.09194, Quantum 5, 495 (2021).

[45] Alexander F. Shaw, Pavel Lougovski, Jesse R. Stryker, and Nathan Wiebe, "Quantum Algorithms for Simulating the Lattice Schwinger Model", Quantum 4, 306 (2020).

[46] Javier Argüello-Luengo, Tao Shi, and Alejandro González-Tudela, "Engineering analog quantum chemistry Hamiltonians using cold atoms in optical lattices", Physical Review A 103 4, 043318 (2021).

[47] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin, "Efficient phase-factor evaluation in quantum signal processing", Physical Review A 103 4, 042419 (2021).

[48] Andrew M. Childs, Aaron Ostrander, and Yuan Su, "Faster quantum simulation by randomization", arXiv:1805.08385, Quantum 3, 182 (2019).

[49] Yutaka Shikano, Hiroshi C. Watanabe, Ken M. Nakanishi, and Yu-ya Ohnishi, "Post-Hartree–Fock method in quantum chemistry for quantum computer", The European Physical Journal Special Topics 230 4, 1037 (2021).

[50] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf, "Quantum SDP-Solvers: Better upper and lower bounds", arXiv:1705.01843, Quantum 4, 230 (2020).

[51] Dong An, Di Fang, and Lin Lin, "Time-dependent unbounded Hamiltonian simulation with vector norm scaling", Quantum 5, 459 (2021).

[52] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, "Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization", Quantum 4, 296 (2020).

[53] Andrew Zhao, Andrew Tranter, William M. Kirby, Shu Fay Ung, Akimasa Miyake, and Peter J. Love, "Measurement reduction in variational quantum algorithms", Physical Review A 101 6, 062322 (2020).

[54] Lin Lin and Yu Tong, "Near-optimal ground state preparation", Quantum 4, 372 (2020).

[55] Michael Kreshchuk, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary, and Peter J. Love, "Simulating hadronic physics on noisy intermediate-scale quantum devices using basis light-front quantization", Physical Review A 103 6, 062601 (2021).

[56] Sam McArdle, "Learning from Physics Experiments with Quantum Computers: Applications in Muon Spectroscopy", PRX Quantum 2 2, 020349 (2021).

[57] Mario Motta, Erika Ye, Jarrod R. McClean, Zhendong Li, Austin J. Minnich, Ryan Babbush, and Garnet Kin-Lic Chan, "Low rank representations for quantum simulation of electronic structure", arXiv:1808.02625, npj Quantum Information 7 1, 83 (2021).

[58] Koen Groenland, Freek Witteveen, Kareljan Schoutens, and Rene Gerritsma, "Signal processing techniques for efficient compilation of controlled rotations in trapped ions", New Journal of Physics 22 6, 063006 (2020).

[59] Jessica Lemieux, Guillaume Duclos-Cianci, David Sénéchal, and David Poulin, "Resource estimate for quantum many-body ground-state preparation on a quantum computer", Physical Review A 103 5, 052408 (2021).

[60] I. Meyerov, A. Liniov, M. Ivanchenko, and S. Denisov, "Modeling Complex Quantum Dynamics: Evolution of Numerical Algorithms in the HPC Context", Lobachevskii Journal of Mathematics 41 8, 1509 (2020).

[61] Ljubomir Budinski, "Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method", Quantum Information Processing 20 2, 57 (2021).

[62] Guoming Wang, Dax Enshan Koh, Peter D. Johnson, and Yudong Cao, "Minimizing Estimation Runtime on Noisy Quantum Computers", PRX Quantum 2 1, 010346 (2021).

[63] Alexander Engel, Graeme Smith, and Scott E. Parker, "Linear embedding of nonlinear dynamical systems and prospects for efficient quantum algorithms", Physics of Plasmas 28 6, 062305 (2021).

[64] Thomas E. Baker and David Poulin, "Density functionals and Kohn-Sham potentials with minimal wavefunction preparations on a quantum computer", Physical Review Research 2 4, 043238 (2020).

[65] Sofiene Jerbi, Lea M. Trenkwalder, Hendrik Poulsen Nautrup, Hans J. Briegel, and Vedran Dunjko, "Quantum Enhancements for Deep Reinforcement Learning in Large Spaces", PRX Quantum 2 1, 010328 (2021).

[66] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer, "Quantum computing enhanced computational catalysis", Physical Review Research 3 3, 033055 (2021).

[67] Michael P. Kaicher, Simon B. Jäger, Pierre-Luc Dallaire-Demers, and Frank K. Wilhelm, "Roadmap for quantum simulation of the fractional quantum Hall effect", Physical Review A 102 2, 022607 (2020).

[68] David B. Kaplan and Jesse R. Stryker, "Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory", Physical Review D 102 9, 094515 (2020).

[69] Rolando D Somma, "Quantum eigenvalue estimation via time series analysis", arXiv:1907.11748, New Journal of Physics 21 12, 123025 (2019).

[70] Changpeng Shao, "Quantum speedup of Bayes’ classifiers", Journal of Physics A: Mathematical and Theoretical 53 4, 045301 (2020).

[71] Abhoy Kole and Indranil Sengupta, 2020 IEEE International Test Conference India 1 (2020) ISBN:978-1-7281-7458-7.

[72] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor, "Faster Digital Quantum Simulation by Symmetry Protection", arXiv:2006.16248, PRX Quantum 2 1, 010323 (2021).

[73] Lin Lin and Yu Tong, "Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems", Quantum 4, 361 (2020).

[74] Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang, "Resilience of Quantum Random Access Memory to Generic Noise", PRX Quantum 2 2, 020311 (2021).

[75] Zane M. Rossi and Isaac L. Chuang, "Quantum hypothesis testing with group structure", Physical Review A 104 1, 012425 (2021).

[76] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan, "Quantum Algorithms for Quantum Chemistry and Quantum Materials Science", Chemical Reviews 120 22, 12685 (2020).

[77] Patrick Rall, "Quantum algorithms for estimating physical quantities using block encodings", Physical Review A 102 2, 022408 (2020).

[78] Qingfeng Wang, Ming Li, Christopher Monroe, and Yunseong Nam, "Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry", Quantum 5, 509 (2021).

[79] Vijay Balasubramanian, Matthew DeCross, Arjun Kar, and Onkar Parrikar, "Quantum complexity of time evolution with chaotic Hamiltonians", Journal of High Energy Physics 2020 1, 134 (2020).

[80] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, "Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization", Quantum 3, 208 (2019).

[81] Thomas E. Baker, "Lanczos recursion on a quantum computer for the Green's function and ground state", Physical Review A 103 3, 032404 (2021).

[82] Alessandro Roggero, Chenyi Gu, Alessandro Baroni, and Thomas Papenbrock, "Preparation of excited states for nuclear dynamics on a quantum computer", Physical Review C 102 6, 064624 (2020).

[83] Matthew B. Hastings, "Duality in Quantum Quenches and Classical Approximation Algorithms: Pretty Good or Very Bad", Quantum 3, 201 (2019).

[84] Alessandro Roggero and Joseph Carlson, "Dynamic linear response quantum algorithm", Physical Review C 100 3, 034610 (2019).

[85] A. Roggero and A. Baroni, "Short-depth circuits for efficient expectation-value estimation", Physical Review A 101 2, 022328 (2020).

[86] Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett M. Morris, Simon C. Benjamin, and Charlotte M. Deane, "The prospects of quantum computing in computational molecular biology", WIREs Computational Molecular Science 11 1(2021).

[87] Mario Motta, Tanvi P. Gujarati, Julia E. Rice, Ashutosh Kumar, Conner Masteran, Joseph A. Latone, Eunseok Lee, Edward F. Valeev, and Tyler Y. Takeshita, "Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer", Physical Chemistry Chemical Physics 22 42, 24270 (2020).

[88] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner, "Enabling accuracy-aware Quantum compilers using symbolic resource estimation", Proceedings of the ACM on Programming Languages 4 OOPSLA, 1 (2020).

[89] Alicia B. Magann, Matthew D. Grace, Herschel A. Rabitz, and Mohan Sarovar, "Digital quantum simulation of molecular dynamics and control", Physical Review Research 3 2, 023165 (2021).

[90] Vedran Dunjko and Hans J. Briegel, "Machine learning & artificial intelligence in the quantum domain: a review of recent progress", Reports on Progress in Physics 81 7, 074001 (2018).

[91] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan, "Low-Depth Quantum Simulation of Materials", Physical Review X 8 1, 011044 (2018).

[92] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe, "Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics", arXiv:1806.01838.

[93] Guang Hao Low and Nathan Wiebe, "Hamiltonian Simulation in the Interaction Picture", arXiv:1805.00675.

[94] Earl Campbell, "Random Compiler for Fast Hamiltonian Simulation", Physical Review Letters 123 7, 070503 (2019).

[95] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery, "The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation", arXiv:1804.01973.

[96] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven, "Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity", Physical Review X 8 4, 041015 (2018).

[97] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu, "A Theory of Trotter Error", arXiv:1912.08854.

[98] Guang Hao Low and Isaac L. Chuang, "Hamiltonian Simulation by Uniform Spectral Amplification", arXiv:1707.05391.

[99] Guoming Wang, "Quantum algorithm for linear regression", arXiv:1402.0660, Physical Review A 96 1, 012335 (2017).

[100] David Poulin, Alexei Kitaev, Damian S. Steiger, Matthew B. Hastings, and Matthias Troyer, "Quantum Algorithm for Spectral Measurement with a Lower Gate Count", Physical Review Letters 121 1, 010501 (2018).

[101] Joran van Apeldoorn and András Gilyén, "Improvements in Quantum SDP-Solving with Applications", arXiv:1804.05058.

[102] Vedran Dunjko and Hans J. Briegel, "Machine learning \& artificial intelligence in the quantum domain", arXiv:1709.02779.

[103] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su, "Toward the first quantum simulation with quantum speedup", arXiv:1711.10980.

[104] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guoming Wang, "Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision", Communications in Mathematical Physics 356 3, 1057 (2017).

[105] Natalie Klco and Martin J. Savage, "Digitization of scalar fields for quantum computing", arXiv:1808.10378, Physical Review A 99 5, 052335 (2019).

[106] Dominic W. Berry, Mária Kieferová, Artur Scherer, Yuval R. Sanders, Guang Hao Low, Nathan Wiebe, Craig Gidney, and Ryan Babbush, "Improved techniques for preparing eigenstates of fermionic Hamiltonians", npj Quantum Information 4, 22 (2018).

[107] Patrick Rebentrost, Maria Schuld, Leonard Wossnig, Francesco Petruccione, and Seth Lloyd, "Quantum gradient descent and Newton's method for constrained polynomial optimization", arXiv:1612.01789.

[108] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976.

[109] Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naïri Usher, and Leonard Wossnig, "Quantum linear systems algorithms: a primer", arXiv:1802.08227.

[110] Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer, "Trading T-gates for dirty qubits in state preparation and unitary synthesis", arXiv:1812.00954.

[111] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang, "Methodology of Resonant Equiangular Composite Quantum Gates", Physical Review X 6 4, 041067 (2016).

[112] Ryan Babbush, Dominic W. Berry, and Hartmut Neven, "Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization", Physical Review A 99 4, 040301 (2019).

[113] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan, "Low Depth Quantum Simulation of Electronic Structure", arXiv:1706.00023.

[114] Guang Hao Low, Nicholas P. Bauman, Christopher E. Granade, Bo Peng, Nathan Wiebe, Eric J. Bylaska, Dave Wecker, Sriram Krishnamoorthy, Martin Roetteler, Karol Kowalski, Matthias Troyer, and Nathan A. Baker, "Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers", arXiv:1904.01131.

[115] Ian D. Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik, "Bounding the costs of quantum simulation of many-body physics in real space", Journal of Physics A Mathematical General 50 30, 305301 (2017).

[116] Daniel Litinski, "A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery", arXiv:1808.02892.

[117] Yimin Ge, Jordi Tura, and J. Ignacio Cirac, "Faster ground state preparation and high-precision ground energy estimation with fewer qubits", arXiv:1712.03193, Journal of Mathematical Physics 60 2, 022202 (2019).

[118] Teng Bian, Daniel Murphy, Rongxin Xia, Ammar Daskin, and Sabre Kais, "Quantum computing methods for electronic states of the water molecule", Molecular Physics 117 15-16, 2069 (2019).

[119] Nicholas P. Bauman, Eric J. Bylaska, Sriram Krishnamoorthy, Guang Hao Low, Nathan Wiebe, Christopher E. Granade, Martin Roetteler, Matthias Troyer, and Karol Kowalski, "Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms", Journal of Chemical Physics 151 1, 014107 (2019).

[120] Mária Kieferová, Artur Scherer, and Dominic W. Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", Physical Review A 99 4, 042314 (2019).

[121] Guang Hao Low, "Hamiltonian simulation with nearly optimal dependence on spectral norm", arXiv:1807.03967.

[122] Alessandro Roggero and Joseph Carlson, "Linear Response on a Quantum Computer", arXiv:1804.01505.

[123] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", arXiv:1808.03623, Physical Review A 99 1, 012334 (2019).

[124] Ronald de Wolf, "Quantum Computing: Lecture Notes", arXiv:1907.09415.

[125] Leonardo Novo and Dominic W. Berry, "Improved Hamiltonian simulation via a truncated Taylor series and corrections", arXiv:1611.10033.

[126] András Gilyén, Seth Lloyd, Iman Marvian, Yihui Quek, and Mark M. Wilde, "Quantum algorithm for Petz recovery channels and pretty good measurements", arXiv:2006.16924.

[127] Rui Chao, Dawei Ding, Andras Gilyen, Cupjin Huang, and Mario Szegedy, "Finding Angles for Quantum Signal Processing with Machine Precision", arXiv:2003.02831.

[128] Sathyawageeswar Subramanian and Min-Hsiu Hsieh, "Quantum algorithm for estimating Renyi entropies of quantum states", arXiv:1908.05251.

[129] Yuval R. Sanders, Guang Hao Low, Artur Scherer, and Dominic W. Berry, "Black-Box Quantum State Preparation without Arithmetic", arXiv:1807.03206, Physical Review Letters 122 2, 020502 (2019).

[130] Laura Clinton, Johannes Bausch, and Toby Cubitt, "Hamiltonian Simulation Algorithms for Near-Term Quantum Hardware", arXiv:2003.06886.

[131] Ian D. Kivlichan, Christopher E. Granade, and Nathan Wiebe, "Phase estimation with randomized Hamiltonians", arXiv:1907.10070.

[132] Jarrod R. McClean, Fabian M. Faulstich, Qinyi Zhu, Bryan O'Gorman, Yiheng Qiu, Steven R. White, Ryan Babbush, and Lin Lin, "Discontinuous Galerkin discretization for quantum simulation of chemistry", New Journal of Physics 22 9, 093015 (2020).

[133] Sathyawageeswar Subramanian, Stephen Brierley, and Richard Jozsa, "Implementing smooth functions of a Hermitian matrix on a quantum computer", Journal of Physics Communications 3 6, 065002 (2019).

[134] Alex Parent, Martin Roetteler, and Michele Mosca, "Improved reversible and quantum circuits for Karatsuba-based integer multiplication", arXiv:1706.03419.

[135] Alexander Buser, Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu, "Quantum simulation of gauge theory via orbifold lattice", arXiv:2011.06576.

[136] Andrew M. Childs and Jin-Peng Liu, "Quantum Spectral Methods for Differential Equations", Communications in Mathematical Physics 375 2, 1427 (2020).

[137] Seth Lloyd and Reevu Maity, "Efficient implementation of unitary transformations", arXiv:1901.03431.

[138] Jinfeng Zeng, Chenfeng Cao, Chao Zhang, Pengxiang Xu, and Bei Zeng, "A variational quantum algorithm for Hamiltonian diagonalization", arXiv:2008.09854.

[139] András Gilyén and Tongyang Li, "Distributional property testing in a quantum world", arXiv:1902.00814.

[140] Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, Supartha Podder, and Daochen Wang, "Symmetries, graph properties, and quantum speedups", arXiv:2006.12760.

[141] Zhikuan Zhao, "Quantum Statistical Inference", arXiv:1812.04877.

[142] Bojia Duan, Jiabin Yuan, Chao-Hua Yu, Jianbang Huang, and Chang-Yu Hsieh, "A survey on HHL algorithm: From theory to application in quantum machine learning", Physics Letters A 384, 126595 (2020).

[143] François Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme, "Efficient state initialization by a quantum spectral filtering algorithm", Physical Review A 95 4, 042331 (2017).

[144] Ammar Daskin and Sabre Kais, "A generalized circuit for the Hamiltonian dynamics through the truncated series", Quantum Information Processing 17 12, 328 (2018).

[145] Changpeng Shao, "An Improved Algorithm for Quantum Principal Component Analysis", arXiv:1903.03999.

[146] Patrick Rall, "Faster Coherent Quantum Algorithms for Phase, Energy, and Amplitude Estimation", arXiv:2103.09717.

[147] Qisheng Wang, Zhicheng Zhang, Kean Chen, Ji Guan, Wang Fang, and Mingsheng Ying, "Quantum Algorithm for Fidelity Estimation", arXiv:2103.09076.

[148] Andrew Shaw, "Classical-Quantum Noise Mitigation for NISQ Hardware", arXiv:2105.08701.

[149] Bill Poirier and Jonathan Jerke, "Full-Dimensional Schrödinger Wavefunction Calculations using Tensors and Quantum Computers: the Cartesian component-separated approach", arXiv:2105.03787.

[150] Seth Lloyd, Bobak T. Kiani, David R. M. Arvidsson-Shukur, Samuel Bosch, Giacomo De Palma, William M. Kaminsky, Zi-Wen Liu, and Milad Marvian, "Hamiltonian singular value transformation and inverse block encoding", arXiv:2104.01410.

[151] M. B. Hastings, "The Short Path Algorithm Applied to a Toy Model", arXiv:1901.03884.

[152] Yihui Quek and Patrick Rebentrost, "Fast algorithm for quantum polar decomposition, pretty-good measurements, and the Procrustes problem", arXiv:2106.07634.

[153] Nolan J. Coble and Matthew Coudron, "Quasi-polynomial time approximation of output probabilities of geometrically-local, shallow quantum circuits", arXiv:2012.05460.

[154] Chenyi Zhang, Jiaqi Leng, and Tongyang Li, "Quantum Algorithms for Escaping from Saddle Points", arXiv:2007.10253.

[155] Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu, "Toward simulating superstring/M-theory on a quantum computer", Journal of High Energy Physics 2021 7, 140 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2021-07-31 06:25:06) and SAO/NASA ADS (last updated successfully 2021-07-31 06:25:08). The list may be incomplete as not all publishers provide suitable and complete citation data.