Quantizing time: Interacting clocks and systems

Alexander R. H. Smith1 and Mehdi Ahmadi2

1Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA
2Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, California 95053, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

This article generalizes the conditional probability interpretation of time in which time evolution is realized through entanglement between a clock and a system of interest. This formalism is based upon conditioning a solution to the Wheeler-DeWitt equation on a subsystem of the Universe, serving as a clock, being in a state corresponding to a time $t$. Doing so assigns a conditional state to the rest of the Universe $|\psi_S(t)\rangle$, referred to as the system. We demonstrate that when the total Hamiltonian appearing in the Wheeler-DeWitt equation contains an interaction term coupling the clock and system, the conditional state $|\psi_S(t)\rangle$ satisfies a time-nonlocal Schrödinger equation in which the system Hamiltonian is replaced with a self-adjoint integral operator. This time-nonlocal Schrödinger equation is solved perturbatively and three examples of clock-system interactions are examined. One example considered supposes that the clock and system interact via Newtonian gravity, which leads to the system's Hamiltonian developing corrections on the order of $G/c^4$ and inversely proportional to the distance between the clock and system.

Time appears in quantum theory as a classical parameter that is external to the theory itself. If we seek a quantum description of spacetime, such a formulation will not suffice — time must enter the theory in the same way as other dynamical quantities, like position and momentum.

Such a reformulation of quantum theory was put forward by Don Page and William Wootters in 1982, which begins by partitioning the Universe into two parts: a clock and a system comprised of everything else. Then any statement we would ordinarily make regarding the time dependence of the system takes the form, “The quantum state of the system is $\psi(t)$, if a measurement of the clock reads the time $t$”. The crucial difference in this formulation of quantum theory is that it makes no reference to an external background time; instead, time appears as an operational concept defined in terms of the measurement of a physical clock. An entangled state is assigned to the clock and system and the usual dynamics of quantum theory, as described by the Schrödinger equation, emerge from quantum correlations between the clock and system.

This article explores the effects of when the Universe cannot be partitioned cleanly into two parts, that is, when the clock and system interact. In some situations we should expect such an interaction given that gravity couples to everything! It is shown that such clock-system interactions lead to a more general quantum dynamics described by a time-nonlocal modification to the Schrödinger equation. This temporal nonlocality implies that the way in which the system changes in time depends not just on its current state, but also on its state in the future and the past. Three different clock-system interactions are examined to explore the effects of this temporal nonlocality. The first interaction considered leads to the system’s Hamiltonian developing a particular time dependence. The second example supposes that the clock and system interact via Newtonian gravity, which leads to corrections to the system’s Hamiltonian at order $G / c^4$ and is inversely proportional to the distance separating the clock and system. The third interaction gives an example of a qubit clock interacting with another qubit.

► BibTeX data

► References

[1] C. J. Isham, Canonical Quantum Gravity and the Problem of Time, edited by L. A. Ibort, M. A. Rodríguez, 157 (1993).
https:/​/​doi.org/​10.1007/​978-94-011-1980-1_6

[2] K. V. Kuchař, Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, edited by G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).
http:/​/​inspirehep.net/​record/​967799?ln=en

[3] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983).
https:/​/​doi.org/​10.1103/​PhysRevD.27.2885

[4] W. K. Wootters, Int. J. Theor. Phys. 23, 701 (1984).
https:/​/​doi.org/​10.1007/​BF02214098

[5] D. N. Page, ITP preprint NSF-ITP-89-18 (1989).
http:/​/​inspirehep.net/​record/​25248?ln=en

[6] D. N. Page, in Physical Origins of Time Asymmetry, edited by J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek, 287 (Cambridge University Press, Cambridge, 1994).
https:/​/​www.cambridge.org/​us/​academic/​subjects/​physics/​history-philosophy-and-foundations-physics/​physical-origins-time-asymmetry?format=PB

[7] C. E. Dolby, arXiv:gr-qc/​0406034.
arXiv:gr-qc/0406034

[8] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. D 79, 945933 (2015).
https:/​/​doi.org/​10.1103/​PhysRevD.92.045033

[9] R. Gambini, R. A. Porto, and J. Pullin,.

[10] R. Gambini, R. A. Porto, and J. Pullin, New J. Phys. 6, 45 (2004).
https:/​/​doi.org/​10.1088/​1367-2630/​6/​1/​045

[11] R. Gambini, R. A. Porto, S. Torterolo, and J. Pullin, Phys. Rev. D 79, 041501 (2009).
https:/​/​doi.org/​10.1103/​PhysRevD.79.041501

[12] R. Gambini, R. A. Porto, and J. Pullin, Phys. Rev. Lett. 93, 24041 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.93.240401

[13] J. Leon and L. Maccone, L. Found. Phys. 47, 1597 (2017).
https:/​/​doi.org/​10.1007/​s10701-017-0115-2

[14] T. Martinelli and D. O. Soares-Pinto, Phys. Rev. A 99, 042124 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.042124

[15] L. R. S. Mendes and D. O. Soares-Pinto, arXiv:1806.09669.
arXiv:1806.09669

[16] A. H. R. Smith and M. Ahmadi, arXiv:1904.12390.
arXiv:1904.12390

[17] V. Corbin and N. J. Cornish, Found. Phys. 39, 474 (2009).
https:/​/​doi.org/​10.1007/​s10701-009-9298-5

[18] E. Moreva, G. Brida, M. Gramegna, V. Giovannetti, L. Maccone, and M. Genovese, Phys. Rev. A 89, 052122 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.89.052122

[19] C. Marletto and V. Vedral, Phys. Rev. D 95, 043510 (2017).
https:/​/​doi.org/​10.1103/​PhysRevD.95.043510

[20] A. Boette, R. Rossignoli, N. Gigena, and M. Cerezo, Phys. Rev. A 93, 062127 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.062127

[21] K. L. H. Bryan and A. J. M. Medved, Found. Phys. 48, 48 (2018).
https:/​/​doi.org/​10.1007/​s10701-017-0128-x

[22] C. Rovelli, Quantum Gravity, (Cambridge University Press, Cambridge, 2004).
https:/​/​www.cambridge.org/​us/​academic/​subjects/​physics/​cosmology-relativity-and-gravitation/​quantum-gravity?format=PB#ohIMJrBHQlmhXwL1.97

[23] C. Kiefer, Quantum Gravity, (Oxford University Press, Oxford, 2012).
https:/​/​global.oup.com/​academic/​product/​quantum-gravity-9780199585205?cc=us&lang=en&

[24] P. A. M. Dirac, Lectures on Quantum Mechanics, (Dover Publications, New York, 1964).
https:/​/​store.doverpublications.com/​0486417131.html

[25] P. A. M. Dirac, Proc. Camb. Philos. Soc. 29, 389 (1933).
https:/​/​doi.org/​10.1017/​S0305004100016431

[26] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, (North-Holland, Amsterdam, 1982).
https:/​/​doi.org/​10.1007/​978-88-7642-378-9

[27] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 22, 3439 (1994).
https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439

[28] P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, (Springer-Verlag, Berlin, Heidelberg, 1995).
https:/​/​doi.org/​10.1007/​978-3-540-49239-9
https:/​/​www.springer.com/​gp/​book/​9783662140345

[29] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. 247, 135 (1996).
https:/​/​doi.org/​10.1006/​aphy.1996.0040

[30] B. C. Hall, Quantum Theory for Mathematicians, (Springer-Verlag, New York, 2013).
https:/​/​doi.org/​10.1007/​978-1-4614-7116-5

[31] W. G. Unruh and R. M. Wald, Phys. Rev. D 40, 2598 (1989).
https:/​/​doi.org/​10.1103/​PhysRevD.40.2598

[32] B. S. DeWitt, On Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, edited by T. Piran, 6, (World Scientific, Singapore, 1999).
https:/​/​doi.org/​10.1142/​4044

[33] K. Yosida, Functional Analysis, (Springer-Verlag, Berlin, Heidelberg, 1980).
https:/​/​doi.org/​10.1007/​978-3-642-61859-8

[34] P. Busch, Math. Phys., Anal. and Geom. 2, 83 (1999).
https:/​/​doi.org/​10.1023/​A:1009822315406

[35] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).
https:/​/​doi.org/​10.1103/​RevModPhys.79.555

[36] D. Šafránek, M. Ahmadi, and I. Fuentes, New J. Phys. 17, 033012 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​3/​033012

[37] A. Peres, Quantum Theory: Concepts and Methods, (Kluwer Academic Publishers, Springer, Dordrecht, 1995).
https:/​/​doi.org/​10.1007/​0-306-47120-5

[38] S. Massar and P. Spindel, Phys. Rev. Lett. 100, 190401 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.190401

[39] M. P. Woods, R. Silva, and J. Oppenheim, J. Ann. Henri Poincaré 20, 125 (2018).
https:/​/​doi.org/​10.1007/​s00023-018-0736-9

Cited by

[1] Maximilian P E Lock and Ivette Fuentes, "Quantum and classical effects in a light-clock falling in Schwarzschild geometry", Classical and Quantum Gravity 36 17, 175007 (2019).

[2] Ismael L. Paiva, Amit Te’eni, Bar Y. Peled, Eliahu Cohen, and Yakir Aharonov, "Non-inertial quantum clock frames lead to non-Hermitian dynamics", Communications Physics 5 1, 298 (2022).

[3] Piotr T. Grochowski, Alexander R. H. Smith, Andrzej Dragan, and Kacper Dębski, "Quantum time dilation in atomic spectra", Physical Review Research 3 2, 023053 (2021).

[4] Alexander R. H. Smith and Mehdi Ahmadi, "Quantum clocks observe classical and quantum time dilation", Nature Communications 11 1, 5360 (2020).

[5] Philipp A Höhn and Augustin Vanrietvelde, "How to switch between relational quantum clocks", New Journal of Physics 22 12, 123048 (2020).

[6] Huan Cao, Marc-Olivier Renou, Chao Zhang, Gaël Massé, Xavier Coiteux-Roy, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Elie Wolfe, "Experimental Demonstration that No Tripartite-Nonlocal Causal Theory Explains Nature’s Correlations", Physical Review Letters 129 15, 150402 (2022).

[7] T. Favalli and A. Smerzi, "A model of quantum spacetime", AVS Quantum Science 4 4, 044403 (2022).

[8] Shuang Xu, Wei-Jiang Gong, H. Z. Shen, and X. X. Yi, "Effective decoherence of realistic clocks: General theory and application to a topological insulator", Physical Review A 103 3, 032207 (2021).

[9] N. L. Diaz, J. M. Matera, and R. Rossignoli, "History state formalism for scalar particles", Physical Review D 100 12, 125020 (2019).

[10] Veronika Baumann, Flavio Del Santo, Alexander R. H. Smith, Flaminia Giacomini, Esteban Castro-Ruiz, and Caslav Brukner, "Generalized probability rules from a timeless formulation of Wigner's friend scenarios", Quantum 5, 524 (2021).

[11] Leandro R. S. Mendes and Diogo O. Soares-Pinto, "Time as a consequence of internal coherence", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 2231, 20190470 (2019).

[12] Mischa Woods, "The Page-Wootters mechanism 36 years on: a consistent formulation which accounts for interacting systems", Quantum Views 3, 16 (2019).

[13] I. L. Paiva, M. Nowakowski, and E. Cohen, "Dynamical nonlocality in quantum time via modular operators", Physical Review A 105 4, 042207 (2022).

[14] David Edward Bruschi, Symeon Chatzinotas, Frank K. Wilhelm, and Andreas Wolfgang Schell, "Spacetime effects on wavepackets of coherent light", Physical Review D 104 8, 085015 (2021).

[15] Jürg Fröhlich and Alessandro Pizzo, "The Time-Evolution of States in Quantum Mechanics according to the ETH-Approach", Communications in Mathematical Physics 389 3, 1673 (2022).

[16] Marion Mikusch, Luis C. Barbado, and Časlav Brukner, "Transformation of spin in quantum reference frames", Physical Review Research 3 4, 043138 (2021).

[17] M. Trassinelli, "Conditional probabilities of measurements, quantum time, and the Wigner's-friend case", Physical Review A 105 3, 032213 (2022).

[18] Rhea Alexander, Si Gvirtz-Chen, and David Jennings, "Infinitesimal reference frames suffice to determine the asymmetry properties of a quantum system", New Journal of Physics 24 5, 053023 (2022).

[19] Leon Loveridge, "A relational perspective on the Wigner-Araki-Yanase theorem", Journal of Physics: Conference Series 1638 1, 012009 (2020).

[20] Eiji Konishi, "Time parametrizations in long-range interacting Bose-Einstein condensates", Journal of Physics Communications 5 9, 095012 (2021).

[21] Lachlan Parker and Fabio Costa, "Background Independence and Quantum Causal Structure", Quantum 6, 865 (2022).

[22] Caterina Foti, Alessandro Coppo, Giulio Barni, Alessandro Cuccoli, and Paola Verrucchi, "Time and classical equations of motion from quantum entanglement via the Page and Wootters mechanism with generalized coherent states", Nature Communications 12 1, 1787 (2021).

[23] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Trinity of relational quantum dynamics", Physical Review D 104 6, 066001 (2021).

[24] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner, "Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems", Nature Communications 11 1, 2672 (2020).

[25] Flaminia Giacomini, "Spacetime Quantum Reference Frames and superpositions of proper times", Quantum 5, 508 (2021).

[26] Marius Krumm, Philipp A. Höhn, and Markus P. Müller, "Quantum reference frame transformations as symmetries and the paradox of the third particle", Quantum 5, 530 (2021).

[27] N. L. Diaz, J. M. Matera, and R. Rossignoli, "Spacetime quantum actions", Physical Review D 103 6, 065011 (2021).

[28] Shadi Ali Ahmad, Thomas D. Galley, Philipp A. Höhn, Maximilian P. E. Lock, and Alexander R. H. Smith, "Quantum Relativity of Subsystems", Physical Review Letters 128 17, 170401 (2022).

[29] Emily Adlam, "Watching the Clocks: Interpreting the Page–Wootters Formalism and the Internal Quantum Reference Frame Programme", Foundations of Physics 52 5, 99 (2022).

[30] Tommaso Favalli and Augusto Smerzi, "Peaceful coexistence of thermal equilibrium and the emergence of time", Physical Review D 105 2, 023525 (2022).

[31] Philipp A. Höhn, Marius Krumm, and Markus P. Müller, "Internal quantum reference frames for finite Abelian groups", Journal of Mathematical Physics 63 11, 112207 (2022).

[32] Emanuel Schwarzhans, Maximilian P. E. Lock, Paul Erker, Nicolai Friis, and Marcus Huber, "Autonomous Temporal Probability Concentration: Clockworks and the Second Law of Thermodynamics", Physical Review X 11 1, 011046 (2021).

[33] Ashmeet Singh, "Quantum space, quantum time, and relativistic quantum mechanics", Quantum Studies: Mathematics and Foundations 9 1, 35 (2022).

[34] Tommaso Favalli and Augusto Smerzi, "Time Observables in a Timeless Universe", Quantum 4, 354 (2020).

[35] Ismael L. Paiva, Augusto C. Lobo, and Eliahu Cohen, "Flow of time during energy measurements and the resulting time-energy uncertainty relations", Quantum 6, 683 (2022).

[36] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings", Frontiers in Physics 9, 587083 (2021).

[37] Samuel Kuypers, "The quantum theory of time: a calculus for q-numbers", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 478 2263, 20210970 (2022).

[38] Ovidiu Racorean, "The Born rule in a timeless universe", arXiv:2203.07074, (2022).

[39] Philipp A Hoehn and Augustin Vanrietvelde, "How to switch between relational quantum clocks", arXiv:1810.04153, (2018).

[40] Marcello Rotondo and Yasusada Nambu, "Clock Time in Quantum Cosmology", Universe 5 2, 66 (2019).

[41] Christophe Goeller, Philipp A. Hoehn, and Josh Kirklin, "Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance", arXiv:2206.01193, (2022).

[42] Lorenzo Maccone, "A Fundamental Problem in Quantizing General Relativity", Foundations of Physics 49 12, 1394 (2019).

[43] K. L. H. Bryan and A. J. M. Medved, "Requiem for an ideal clock", arXiv:1803.02045, (2018).

[44] K. L. H. Bryan and A. J. M. Medved, "No time for isolated clocks", Journal of Physics Conference Series 1275 1, 012037 (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2022-12-03 12:40:14) and SAO/NASA ADS (last updated successfully 2023-05-29 20:43:11). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-05-29 20:43:09: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2019-07-08-160.