Conjugates, Filters and Quantum Mechanics

Alexander Wilce

Department of Mathematics and Computer Science, Susquehanna University

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The Jordan structure of finite-dimensional quantum theory is derived, in a conspicuously easy way, from a few simple postulates concerning abstract probabilistic models (each defined by a set of basic measurements and a convex set of states). The key assumption is that each system $A$ can be paired with an isomorphic $\textit{conjugate}$ system, $\overline{A}$, by means of a non-signaling bipartite state $\eta_A$ perfectly and uniformly correlating each basic measurement on $A$ with its counterpart on $\overline{A}$. In the case of a quantum-mechanical system associated with a complex Hilbert space $H$, the conjugate system is that associated with the conjugate Hilbert space $H$, and $\eta_A$ corresponds to the standard maximally entangled EPR state on $H \otimes \overline{H}$. A second ingredient is the notion of a $\textit{reversible filter}$, that is, a probabilistically reversible process that independently attenuates the sensitivity of detectors associated with a measurement. In addition to offering more flexibility than most existing reconstructions of finite-dimensional quantum theory, the approach taken here has the advantage of not relying on any form of the ``no restriction" hypothesis. That is, it is not assumed that arbitrary effects are physically measurable, nor that arbitrary families of physically measurable effects summing to the unit effect, represent physically accessible observables. (An appendix shows how a version of Hardy's ``subpace axiom" can replace several assumptions native to this paper, although at the cost of disallowing superselection rules.)

► BibTeX data

► References

[1] S. Abramsky and B. Coecke, Categorical quantum mechanics, in D. Gabbay, K. Engesser and D. Lehman, Handbook of Quantum Logic and Quantum Structures vol II, Elsevier, 2008; DOI:10.1016/​B978-0-444-52869-9.5001-4; arXiv:quant-ph/​0402130).

[2] E. Alfsen and F. Shultz, Geometry of state spaces of operator algebras, Birkhäuser, 2003 DOI: 10.1007/​978-1-4612-0019-2.

[3] C. Aliprantis and D. Toukey, Cones and Duality, Springer, 2007 DOI: 10.1090/​gsm/​084.

[4] J. Baez, Division algebras and quantum theory, Foundations of Physics 42 819-855 (2012) DOI: 10.1007/​s10701-011-9566-z; arXiv:1101.5690.

[5] H. Barnum, C. Gaebler and A. Wilce, Ensemble steering, weak self-duality and the structure of probabilistic theories, Foundations of Physics 43 1411-1437 (2013) 10.1007/​s10701-013-9752-2; arxiv:0912.5532.

[6] H. Barnum, M. Graydon and A. Wilce, Some Nearly Quantum Theories, in C. Heunen, P. Selinger and J. Vicary, eds., Proceedings of the 12th International Workshop on Quantum Physics and Logic, EPTCS 195 (2015), 59-70 10.4204/​EPTCS.195.5; arXiv:1507.06278.

[7] H. Barnum, M. Mueller and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New Journal of Physics 16 (2014) DOI: 10.1088/​1367-2630/​16/​12/​123029; arXiv:1403.4147.

[8] H. Barnum and A. Wilce, Local tomography and the Jordan structure of quantum theory, Found. Phys. 44 (2014), 192-212 DOI: 10.1007/​s10701-014-9777-1; arXiv:1202.4513.

[9] H. Barnum and A. Wilce, Post-classical probability theory, in G. Chiribella and R. Spekkens, eds., Quantum Theory: Informational Foundations and Foils, Springer, 2017 10.1007/​978-94-017-7303-4_11; arXiv:1205.3833.

[10] J. Barrett, Information processing in generalized probabilistic theories, Physical Review A 75 (2005) DOI: 10.1103/​PhysRevA.75.032304; arXiv:quant-ph/​0508211.

[11] G. Chiribella, M. D'Ariano and P. Perinotti, Informational derivation of quantum theory, Physical Review A 84 (2011), 012311 DOI: 10.1103/​PhysRevA.84.012311; arXiv:1011.6451.

[12] G. Chiribella and C. M. Scandolo, Operational axioms for diagonalizing states, in C. Heunen, P. Selinger and J. Vicary, Proceedings of the 12th International Workshop on Quantum Physics and Logic, EPTCS 195 (2015) 96-115 DOI: 10.4204/​EPTCS.195.8; arXiv:1608.04459.

[13] B. Coecke and A. Kissinger, Categorical Quantum Mechanics I: causal quantum processes, in E. Landry, ed., Categories for the Working Philosopher, Oxford, 2017 DOI: 10.1093/​oso/​9780198748991.003.0012; arXiv:1510.05468.

[14] B. Dakic and C. Brukner, Quantum theory and beyond: is entanglement special? in H. Halvorson, ed., Deep Beauty, Cambridge, 2011 DOI: 10.1017/​CBO9780511976971; arXiv:0911.0695.

[15] E. B. Davies and J. Lewis, An operational approach to quantum probability, Communications in Mathematical Physics 17 (1970) 239-260 DOI: 10.1007/​BF01647093.

[16] C. M. Edwards, The operational approach to algebraic quantum theory I, Communications in Mathematical Physics 16 (1970), 207-230 DOI: 10.1007/​bf01646788.

[17] D. J. Foulis and C. H. Randall, Empirical logic and tensor products, in H. Neunmann (ed.), Foundations of Interpretations and Foundations of Quantum Mechanics, B.I.-Wissenshaftsverlag, 1981.

[18] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford, 1994.

[19] H. Hanche-Olsen, JB algebras with tensor products are $C^{\ast}$ algebras, in H. Araki et al. (eds.), Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics 1132 (1985), 223-229 DOI: 10.1007/​BFb0074886.

[20] L. Hardy, Quantum theory from five reasonable axioms, arXiv:quant-ph/​0101012, 2001.

[21] P. Janotta and R. Lal, Generalized probabilistic theories without the no-restriction hypothesis, Physical Review A. 87 (2013) DOI: 10.1103/​PhysRevA.87.052131; arXiv:1302.2632.

[22] P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35 (1934), 29-64 DOI: 10.2307/​1968117.

[23] M. Koecher, The Minnesota Notes on Jordan Algebras and their Applications, Ed. A. Krieg and S. Walcher, Springer Lecture Notes in Mathematics 1710, Springer, 1999 DOI: 10.1007/​BFb0096285.

[24] G. Ludwig, Foundations of Quantum Mechanics, Springer, 1983 DOI: 10.1007/​978-3-642-86751-4.

[25] Ll. Masanes and M. Müller, A derivation of quantum theory from physical requirements, New Journal of Physics 13 (2011) DOI: 10.1088/​1367-2630/​13/​6/​063001; arXiv:1004.1483.

[26] M. Mueller and Ll. Masanes, Information-theoretic postulates for quantum mechanics, in G. Chiribella and R. Spekkens, eds. Quantum Theory: Informational Foundations and Foils, Springer, 2016 10.1007/​978-94-017-7303-4_5; arXiv:1203.451.

[27] M. Müller and C. Ududec, The structure of reversible computation determines the self-duality of quantum theory, Physical Review Letters 108 (2012), 130401 DOI: 10.1103/​PhysRevLett.108.130401; arXiv:1110.3516.

[28] J. Rau, On quantum vs. classical probability, Annals of Physics 324 (2009) 2622–2637 DOI: 10.1016/​j.aop.2009.09.013; arXiv:0710.2119.

[29] J. Selby, C. M. Scandolo and B. Coecke, Reconstructing quantum theory from diagrammatic postulates, arXiv:1802.00367.

[30] A. Wilce, Four and a half axioms for finite-dimensional quantum theory in Y. Ben-Menahem and M. Hemmo (eds.), Probability in Physics, Springer, 2012 10.1007/​978-3-642-21329-8_17; arXiv:0912.5530.

[31] A. Wilce, Symmetry, self-duality and the Jordan structure of finite-dimensional quantum theory, DOI: 10.4204/​EPTCS.95.19; arXiv:1210.0622.

[32] A. Wilce, A shortcut from categorical quantum mechanics to convex operational theories, in B. Coecke and A. Kissinger (Eds.), 14th International Conference on Quantum Physics and Logic (QPL), EPTCS 266 (2018) 222-236; DOI: 10.4204/​eptcs.266.15; arXiv:1206.2897.

Cited by

[1] Gerd Niestegge, "Local tomography and the role of the complex numbers in quantum mechanics", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 2238, 20200063 (2020).

[2] Sergey N. Filippov, Stan Gudder, Teiko Heinosaari, and Leevi Leppäjärvi, "Operational Restrictions in General Probabilistic Theories", Foundations of Physics 50 8, 850 (2020).

[3] Kenji Nakahira, "Derivation of quantum theory with superselection rules", Physical Review A 101 2, 022104 (2020).

[4] Peter Janotta and Haye Hinrichsen, "Generalized probability theories: what determines the structure of quantum theory?", Journal of Physics A Mathematical General 47 32, 323001 (2014).

[5] Giulio Chiribella and Carlo Maria Scandolo, "Entanglement as an axiomatic foundation for statistical mechanics", arXiv:1608.04459.

[6] Carlo Maria Scandolo, "Information-theoretic foundations of thermodynamics in general probabilistic theories", arXiv:1901.08054.

[7] Alexander Wilce, "A Royal Road to Quantum Theory (or Thereabouts)", arXiv:1606.09306, Entropy 20 4, 227 (2016).

[8] Howard Barnum, Matthew A. Graydon, and Alexander Wilce, "Composites and Categories of Euclidean Jordan Algebras", arXiv:1606.09331.

[9] Howard Barnum, Matthew A. Graydon, and Alexander Wilce, "Some Nearly Quantum Theories", arXiv:1507.06278.

[10] Giulio Chiribella, "Agents, Subsystems, and the Conservation of Information", Entropy 20 5, 358 (2018).

[11] Howard Barnum and Alexander Wilce, "Local Tomography and the Jordan Structure of Quantum Theory", Foundations of Physics 44 2, 192 (2014).

[12] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti, "Quantum from principles", arXiv:1506.00398.

[13] Ding Jia, "Quantum theories from principles without assuming a definite causal structure", Physical Review A 98 3, 032112 (2018).

[14] Peter Janotta and Raymond Lal, "Non-locality in theories without the no-restriction hypothesis", arXiv:1412.8524.

The above citations are from Crossref's cited-by service (last updated successfully 2021-01-26 05:44:29) and SAO/NASA ADS (last updated successfully 2021-01-26 05:44:30). The list may be incomplete as not all publishers provide suitable and complete citation data.