Quantized refrigerator for an atomic cloud

Wolfgang Niedenzu1, Igor Mazets2,3, Gershon Kurizki4, and Fred Jendrzejewski5

1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Atominstitut, TU Wien, 1020 Vienna, Austria
3Wolfgang Pauli Institute, Universität Wien, 1090 Vienna, Austria
4Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
5Heidelberg University, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Updated version: The authors have uploaded version v4 of this work to the arXiv which may contain updates or corrections not contained in the published version v3. The authors left the following comment on the arXiv:
11 pages, 4 figures; v4: changes in the affiliations and the acknowledgements


We propose to implement a quantized thermal machine based on a mixture of two atomic species. One atomic species implements the working medium and the other implements two (cold and hot) baths. We show that such a setup can be employed for the refrigeration of a large bosonic cloud starting above and ending below the condensation threshold. We analyze its operation in a regime conforming to the quantized Otto cycle and discuss the prospects for continuous-cycle operation, addressing the experimental as well as theoretical limitations. Beyond its applicative significance, this setup has a potential for the study of fundamental questions of quantum thermodynamics.

► BibTeX data

► References

[1] R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A 12, L103 (1979).

[2] R. Kosloff, A quantum mechanical open system as a model of a heat engine, J. Chem. Phys. 80, 1625 (1984).

[3] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Thermodynamics of Quantum Systems Under Dynamical Control, Adv. At. Mol. Opt. Phys. 64, 329 (2015a).

[4] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, The role of quantum information in thermodynamics—a topical review, J. Phys. A 49, 143001 (2016).

[5] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 1 (2016).

[6] R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19, 136 (2017).

[7] A. Ghosh, W. Niedenzu, V. Mukherjee, and G. Kurizki, in Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Cham, 2019) pp. 37–66.

[8] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther, Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence, Science 299, 862 (2003).

[9] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E. Lutz, Single-Ion Heat Engine at Maximum Power, Phys. Rev. Lett. 109, 203006 (2012).

[10] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013).

[11] P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Commun. 5, 4185 (2014).

[12] J. B. Brask, G. Haack, N. Brunner, and M. Huber, Autonomous quantum thermal machine for generating steady-state entanglement, New J. Phys. 17, 113029 (2015).

[13] R. Uzdin, A. Levy, and R. Kosloff, Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures, Phys. Rev. X 5, 031044 (2015).

[14] M. Campisi and R. Fazio, The power of a critical heat engine, Nat. Commun. 7, 11895 (2016).

[15] W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun. 9, 165 (2018).

[16] J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, A Thermoelectric Heat Engine with Ultracold Atoms, Science 342, 713 (2013).

[17] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. USA 111, 13786 (2014).

[18] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016).

[19] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit, Phys. Rev. X 7, 031044 (2017).

[20] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R. Uzdin, and E. Poem, Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines, Phys. Rev. Lett. 122, 110601 (2019).

[21] J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, On-Chip Maxwell's Demon as an Information-Powered Refrigerator, Phys. Rev. Lett. 115, 260602 (2015).

[22] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, F. Schmidt-Kaler, and U. G. Poschinger, A spin heat engine coupled to a harmonic-oscillator flywheel, arXiv preprint arXiv:1808.02390 (2018).

[23] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge, 2008).

[24] E. Geva and R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/​2 systems as the working fluid, J. Chem. Phys. 96, 3054 (1992).

[25] T. Feldmann and R. Kosloff, Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction, Phys. Rev. E 68, 016101 (2003).

[26] O. Abah and E. Lutz, Optimal performance of a quantum Otto refrigerator, EPL (Europhys. Lett.) 113, 60002 (2016).

[27] P. A. Erdman, V. Cavina, R. Fazio, F. Taddei, and V. Giovannetti, Maximum Power and Corresponding Efficiency for Two-Level Quantum Heat Engines and Refrigerators, arXiv preprint arXiv:1812.05089 (2018).

[28] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, A cold-atom Fermi–Hubbard antiferromagnet, Nature 545, 462 (2016).

[29] O. Fialko and D. W. Hallwood, Isolated Quantum Heat Engine, Phys. Rev. Lett. 108, 085303 (2012).

[30] K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, Evaporative Cooling of Sodium Atoms, Phys. Rev. Lett. 74, 5202 (1995).

[31] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms, Phys. Rev. Lett. 74, 3352 (1995).

[32] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical Dipole Traps for Neutral Atoms, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

[33] M. Kolář, D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle, Phys. Rev. Lett. 109, 090601 (2012).

[34] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, Minimal universal quantum heat machine, Phys. Rev. E 87, 012140 (2013).

[35] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction, Phys. Rev. Lett. 95, 010402 (2005).

[36] S. Eckel, J. G. Lee, F. Jendrzejewski, C. J. Lobb, G. K. Campbell, and W. T. Hill, Contact resistance and phase slips in mesoscopic superfluid-atom transport, Phys. Rev. A 93, 063619 (2016).

[37] N. Spethmann, F. Kindermann, S. John, C. Weber, D. Meschede, and A. Widera, Dynamics of Single Neutral Impurity Atoms Immersed in an Ultracold Gas, Phys. Rev. Lett. 109, 235301 (2012).

[38] M. Hohmann, F. Kindermann, T. Lausch, D. Mayer, F. Schmidt, and A. Widera, Single-atom thermometer for ultracold gases, Phys. Rev. A 93, 043607 (2016).

[39] R. Scelle, T. Rentrop, A. Trautmann, T. Schuster, and M. K. Oberthaler, Motional Coherence of Fermions Immersed in a Bose Gas, Phys. Rev. Lett. 111, 070401 (2013).

[40] T. Rentrop, A. Trautmann, F. A. Olivares, F. Jendrzejewski, A. Komnik, and M. K. Oberthaler, Observation of the Phononic Lamb Shift with a Synthetic Vacuum, Phys. Rev. X 6, 041041 (2016).

[41] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1, 23 (2005).

[42] K.-N. Schymik, Implementing an Optical Accordion Lattice for the Realization of a Quantized Otto Cycle, Masterarbeit, Universität Heidelberg (2018).

[43] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas, Science 335, 563 (2012).

[44] T. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan, and I. Bouchoule, Sub-Poissonian Fluctuations in a 1D Bose Gas: From the Quantum Quasicondensate to the Strongly Interacting Regime, Phys. Rev. Lett. 106, 230405 (2011).

[45] R. Desbuquois, T. Yefsah, L. Chomaz, C. Weitenberg, L. Corman, S. Nascimbène, and J. Dalibard, Determination of Scale-Invariant Equations of State without Fitting Parameters: Application to the Two-Dimensional Bose Gas Across the Berezinskii-Kosterlitz-Thouless Transition, Phys. Rev. Lett. 113, 020404 (2014).

[46] L. A. Correa, M. Perarnau-Llobet, K. V. Hovhannisyan, S. Hernández-Santana, M. Mehboudi, and A. Sanpera, Enhancement of low-temperature thermometry by strong coupling, Phys. Rev. A 96, 062103 (2017).

[47] A. Lampo, S. H. Lim, M. Á. García-March, and M. Lewenstein, Bose polaron as an instance of quantum Brownian motion, Quantum 1, 30 (2017).

[48] V. Mukherjee, A. Zwick, A. Ghosh, X. Chen, and G. Kurizki, Enhanced precision of low-temperature quantum thermometry via dynamical control, arXiv preprint arXiv:1711.09660 (2017).

[49] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Bauer, M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J Schmiedmayer, Relaxation and Prethermalization in an Isolated Quantum System, Science 337, 1318 (2012).

[50] R. Olf, F. Fang, G. E. Marti, A. MacRae, and D. M. Stamper-Kurn, Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature, Nat. Phys. 11, 720 (2015).

[51] B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, and J. Schmiedmayer, Recurrences in an isolated quantum many-body system, Science 360, 307 (2018).

[52] L. P. Pitaevski\u\i, Bose—Einstein condensation in magnetic traps. Introduction to the theory, Phys.-Uspekhi 41, 569 (1998).

[53] F. Zambelli, L. Pitaevskii, D. M. Stamper-Kurn, and S. Stringari, Dynamic structure factor and momentum distribution of a trapped Bose gas, Phys. Rev. A 61, 063608 (2000).

[54] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).

[55] A. del Campo, J. Goold, and M. Paternostro, More bang for your buck: Super-adiabatic quantum engines, Sci. Rep. 4, 6208 (2014).

[56] F. Grusdt and E. Demler, in Quantum Matter at Ultralow Temperatures, Proceedings of the International School of Physics ``Enrico Fermi'', Vol. 191, edited by M. Inguscio, W. Ketterle, S. Stringari, and G. Roati (IOS Press, Amsterdam, 2016) p. 325.

[57] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A. Cornell, and D. S. Jin, Bose Polarons in the Strongly Interacting Regime, Phys. Rev. Lett. 117, 055301 (2016).

[58] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate, Phys. Rev. Lett. 117, 055302 (2016).

[59] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys. Rev. Lett. 78, 586 (1997).

[60] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied, J. Berges, T. Gasenzer, and M. K. Oberthaler, Observation of universal dynamics in a spinor Bose gas far from equilibrium, Nature 563, 217 (2018).

[61] C. Eigen, J. A. P. Glidden, R. Lopes, E. A. Cornell, R. P. Smith, and Z. Hadzibabic, Universal prethermal dynamics of Bose gases quenched to unitarity, Nature 563, 221 (2018).

[62] S. Erne, R. Bücker, T. Gasenzer, J. Berges, and J. Schmiedmayer, Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium, Nature 563, 225 (2018).

[63] D. Gelbwaser-Klimovsky, W. Niedenzu, P. Brumer, and G. Kurizki, Power enhancement of heat engines via correlated thermalization in a three-level ``working fluid'', Sci. Rep. 5, 14413 (2015b).

[64] W. Niedenzu and G. Kurizki, Cooperative many-body enhancement of quantum thermal machine power, New J. Phys. 20, 113038 (2018).

[65] R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).

[66] T. Hartmann, T. A. Schulze, K. K. Voges, P. Gersema, M. W. Gempel, E. Tiemann, A. Zenesini, and S. Ospelkaus, Feshbach resonances in $^{23}\mathrm{Na}+^{39}\mathrm{K}$ mixtures and refined molecular potentials for the NaK molecule, Phys. Rev. A 99, 032711 (2019).

[67] L. J. LeBlanc and J. H. Thywissen, Species-specific optical lattices, Phys. Rev. A 75, 053612 (2007).

[68] M. O. Scully, Collective Lamb Shift in Single Photon Dicke Superradiance, Phys. Rev. Lett. 102, 143601 (2009).

[69] I. E. Mazets and G. Kurizki, Multiatom cooperative emission following single-photon absorption: Dicke-state dynamics, J. Phys. B: At. Mol. Opt. Phys. 40, F105 (2007).

[70] A. Manatuly, W. Niedenzu, R. Román-Ancheyta, B. Çakmak, Ö. E. Müstecaplioğlu, and G. Kurizki, Collectively enhanced thermalization via multiqubit collisions, Phys. Rev. E 99, 042145 (2019).

[71] F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C. J. Lobb, and G. K. Campbell, Resistive Flow in a Weakly Interacting Bose-Einstein Condensate, Phys. Rev. Lett. 113, 045305 (2014).

[72] E. Torrontegui, S. Ibánez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to Adiabaticity, Adv. At. Mol. Opt. Phys. 62, 117 (2013).

[73] A. del Campo, A. Chenu, S. Deng, and H. Wu, in Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Cham, 2019) pp. 127–148.

[74] R. Kosloff, Quantum Thermodynamics: A Dynamical Viewpoint, Entropy 15, 2100 (2013).

[75] R. Alicki, Quantum Thermodynamics: An Example of Two-Level Quantum Machine, Open Syst. Inf. Dyn. 21, 1440002 (2014).

[76] K. Brandner and U. Seifert, Periodic thermodynamics of open quantum systems, Phys. Rev. E 93, 062134 (2016).

[77] V. Mukherjee, W. Niedenzu, A. G. Kofman, and G. Kurizki, Speed and efficiency limits of multilevel incoherent heat engines, Phys. Rev. E 94, 062109 (2016).

[78] D. J. Wineland and W. M. Itano, Laser cooling of atoms, Phys. Rev. A 20, 1521 (1979).

[79] K. Szczygielski, On the application of Floquet theorem in development of time-dependent Lindbladians, J. Math. Phys. 55, 083506 (2014).

[80] M. Lewenstein, J. I. Cirac, and P. Zoller, Master equation for sympathetic cooling of trapped particles, Phys. Rev. A 51, 4617 (1995).

[81] E. Geva, R. Kosloff, and J. L. Skinner, On the relaxation of a two-level system driven by a strong electromagnetic field, J. Chem. Phys. 102, 8541 (1995).

[82] R. Scelle, Dynamics and Motional Coherence of Fermions Immersed in a Bose Gas, Ph.D. thesis, University of Heidelberg (2013).

[83] N. Erez, G. Gordon, M. Nest, and G. Kurizki, Thermodynamic control by frequent quantum measurements, Nature 452, 724 (2008).

[84] G. Gordon, G. Bensky, D. Gelbwaser-Klimovsky, D. D. B. Rao, N. Erez, and G. Kurizki, Cooling down quantum bits on ultrashort time scales, New J. Phys. 11, 123025 (2009).

[85] G. A. Álvarez, D. D. B. Rao, L. Frydman, and G. Kurizki, Zeno and Anti-Zeno Polarization Control of Spin Ensembles by Induced Dephasing, Phys. Rev. Lett. 105, 160401 (2010).

[86] R. S. Whitney, Non-Markovian quantum thermodynamics: Laws and fluctuation theorems, Phys. Rev. B 98, 085415 (2018).

[87] A. Wunsche, Displaced Fock states and their connection to quasiprobabilities, Quantum Opt. 3, 359 (1991).

[88] H. Bateman, Higher Transcendental Functions Volume II, 1st ed. (McGraw-Hill, New York, 1953).

Cited by

[1] Jonas Glatthard, Karen V. Hovhannisyan, Martí Perarnau-Llobet, Luis A. Correa, and Harry J. D. Miller, "Energy measurements remain thermometrically optimal beyond weak coupling", Quantum 7, 1190 (2023).

[2] Nathan M. Myers, Obinna Abah, and Sebastian Deffner, "Quantum thermodynamic devices: From theoretical proposals to experimental reality", AVS Quantum Science 4 2, 027101 (2022).

[3] Ethan Q. Simmons, Roshan Sajjad, Kimberlee Keithley, Hector Mas, Jeremy L. Tanlimco, Eber Nolasco-Martinez, Yifei Bai, Glenn H. Fredrickson, and David M. Weld, "Thermodynamic engine with a quantum degenerate working fluid", Physical Review Research 5 4, L042009 (2023).

[4] Sebastian Deffner, "Quantum refrigerators – the quantum thermodynamics of cooling Bose gases", Quantum Views 3, 20 (2019).

[5] Y. Y. Atas, A. Safavi-Naini, and K. V. Kheruntsyan, "Nonequilibrium quantum thermodynamics of determinantal many-body systems: Application to the Tonks-Girardeau and ideal Fermi gases", Physical Review A 102 4, 043312 (2020).

[6] M. Miskeen Khan, H. Terças, J. T. Mendonça, J. Wehr, C. Charalambous, M. Lewenstein, and M. A. Garcia-March, "Quantum dynamics of a Bose polaron in a d -dimensional Bose-Einstein condensate", Physical Review A 103 2, 023303 (2021).

[7] Nathan M. Myers and Sebastian Deffner, "Bosons outperform fermions: The thermodynamic advantage of symmetry", Physical Review E 101 1, 012110 (2020).

[8] Yi-Cong Yu, Shizhong Zhang, and Xi-Wen Guan, "Grüneisen parameters: Origin, identity, and quantum refrigeration", Physical Review Research 2 4, 043066 (2020).

[9] Jing Li, E. Ya Sherman, and Andreas Ruschhaupt, "Quantum heat engine based on a spin-orbit- and Zeeman-coupled Bose-Einstein condensate", Physical Review A 106 3, L030201 (2022).

[10] Julián Amette Estrada, Franco Mayo, Augusto J. Roncaglia, and Pablo D. Mininni, "Quantum engines with interacting Bose-Einstein condensates", Physical Review A 109 1, 012202 (2024).

[11] Tim Keller, Thomás Fogarty, Jing Li, and Thomas Busch, "Feshbach engine in the Thomas-Fermi regime", Physical Review Research 2 3, 033335 (2020).

[12] Nicola Pancotti, Matteo Scandi, Mark T. Mitchison, and Martí Perarnau-Llobet, "Speed-Ups to Isothermality: Enhanced Quantum Thermal Machines through Control of the System-Bath Coupling", Physical Review X 10 3, 031015 (2020).

[13] Marek Gluza, João Sabino, Nelly H.Y. Ng, Giuseppe Vitagliano, Marco Pezzutto, Yasser Omar, Igor Mazets, Marcus Huber, Jörg Schmiedmayer, and Jens Eisert, "Quantum Field Thermal Machines", PRX Quantum 2 3, 030310 (2021).

[14] Nathan M. Myers, Jacob McCready, and Sebastian Deffner, "Quantum Heat Engines with Singular Interactions", Symmetry 13 6, 978 (2021).

[15] Nathan M Myers, Francisco J Peña, Oscar Negrete, Patricio Vargas, Gabriele De Chiara, and Sebastian Deffner, "Boosting engine performance with Bose–Einstein condensation", New Journal of Physics 24 2, 025001 (2022).

[16] Saikat Sur and Arnab Ghosh, "Quantum Advantage of Thermal Machines with Bose and Fermi Gases", Entropy 25 2, 372 (2023).

[17] Andreas Hartmann, Victor Mukherjee, Glen Bigan Mbeng, Wolfgang Niedenzu, and Wolfgang Lechner, "Multi-spin counter-diabatic driving in many-body quantum Otto refrigerators", Quantum 4, 377 (2020).

[18] Jonas Glatthard, Jesús Rubio, Rahul Sawant, Thomas Hewitt, Giovanni Barontini, and Luis A. Correa, "Optimal Cold Atom Thermometry Using Adaptive Bayesian Strategies", PRX Quantum 3 4, 040330 (2022).

[19] Nathan M Myers, Obinna Abah, and Sebastian Deffner, "Quantum Otto engines at relativistic energies", New Journal of Physics 23 10, 105001 (2021).

[20] Deniz Türkpençe and Ricardo Román-Ancheyta, "Tailoring the thermalization time of a cavity-field using distinct atomic reservoirs", arXiv:1708.03721, (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-21 16:41:41) and SAO/NASA ADS (last updated successfully 2024-05-21 16:41:42). The list may be incomplete as not all publishers provide suitable and complete citation data.