Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition

A. Vukics1, A. Dombi1, J. M. Fink2, and P. Domokos1

1Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49., Hungary
2Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria

We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes–Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition.

First-order phase transitions characterized by the coexistence of phases are commonly observed in the surrounding world, e.g. in the freezing of water. Continuous – second-order – phase transitions also exist in classical physics, e.g. the transition between ferro- and paramagnetism at the Curie temperature. Whereas the latter class has seen straightforward generalizations to quantum systems for decades, the notion of a first-order quantum phase transition remains to be elucidated.

Bistability in certain small quantum systems has been identified as signature of first order quantum phase transitions, however, this identification is problematic: a randomly switching telegraph signal between two well-resolved attractors can also be observed in quantum dynamics distinct from phase transitions. For example, the famous electron-shelving scheme – used in atomic clocks or for qubit measurement in ion-trap quantum computers – produces a similar signal without any connection to phase transitions.

There is a missing element to support the interpretation of bistability as a first-order quantum phase transition: it must be shown that bistability is only a finite-size effect, and there exists an idealized thermodynamic limit, where temporal bistability is replaced by hysteresis. This idealized thermodynamic limit can be introduced such that the physical system remains a small quantum system with a few degrees of freedom, that is, the passage to the thermodynamic limit does not involve a quantum-to-classical transition. In this paper, we present a prototype of this procedure by constructing a finite-size scaling for the recently-observed photon-blockade-breakdown effect to justify its classification as a first-order dissipative quantum phase transition.

► BibTeX data

► References

[1] Ates C, Olmos B, Garrahan J P and Lesanovsky I 2012 Phys. Rev. A 85(4) 043620 URL https:/​/​​10.1103/​PhysRevA.85.043620.

[2] Carr C, Ritter R, Wade C G, Adams C S and Weatherill K J 2013 Phys. Rev. Lett. 111(11) 113901 URL https:/​/​​10.1103/​PhysRevLett.111.113901.

[3] Marcuzzi M, Levi E, Diehl S, Garrahan J P and Lesanovsky I 2014 Phys. Rev. Lett. 113(21) 210401 URL https:/​/​​10.1103/​PhysRevLett.113.210401.

[4] Malossi N, Valado M M, Scotto S, Huillery P, Pillet P, Ciampini D, Arimondo E and Morsch O 2014 Phys. Rev. Lett. 113(2) 023006 URL https:/​/​​10.1103/​PhysRevLett.113.023006.

[5] Overbeck V R, Maghrebi M F, Gorshkov A V and Weimer H 2017 Phys. Rev. A 95(4) 042133 URL https:/​/​​10.1103/​PhysRevA.95.042133.

[6] Letscher F, Thomas O, Niederprüm T, Fleischhauer M and Ott H 2017 Phys. Rev. X 7(2) 021020 URL https:/​/​​10.1103/​PhysRevX.7.021020.

[7] Labouvie R, Santra B, Heun S and Ott H 2016 Phys. Rev. Lett. 116(23) 235302 URL https:/​/​​10.1103/​PhysRevLett.116.235302.

[8] Le Boité A, Orso G and Ciuti C 2013 Phys. Rev. Lett. 110(23) 233601 URL https:/​/​​10.1103/​PhysRevLett.110.233601.

[9] Casteels W and Ciuti C 2017 Phys. Rev. A 95(1) 013812 URL https:/​/​​10.1103/​PhysRevA.95.013812.

[10] Casteels W, Fazio R and Ciuti C 2017 Phys. Rev. A 95(1) 012128 URL https:/​/​​10.1103/​PhysRevA.95.012128.

[11] Rodriguez S R K, Casteels W, Storme F, Carlon Zambon N, Sagnes I, Le Gratiet L, Galopin E, Lemaı̂tre A, Amo A, Ciuti C and Bloch J 2017 Phys. Rev. Lett. 118(24) 247402 URL https:/​/​​10.1103/​PhysRevLett.118.247402.

[12] Fink T, Schade A, Höfling S, Schneider C and Imamoglu A 2018 Nature Physics 14 365-369 URL https:/​/​​10.1038/​s41567-017-0020-9.

[13] Carmichael H J 2015 Phys. Rev. X 5(3) 031028 URL https:/​/​​10.1103/​PhysRevX.5.031028.

[14] Dombi, András, Vukics, András and Domokos, Peter 2015 Eur. Phys. J. D 69 60 URL https:/​/​​10.1140/​epjd/​e2015-50861-9.

[15] Pályi A, Struck P R, Rudner M, Flensberg K and Burkard G 2012 Phys. Rev. Lett. 108(20) 206811 URL https:/​/​​10.1103/​PhysRevLett.108.206811.

[16] Fink J M, Dombi A, Vukics A, Wallraff A and Domokos P 2017 Phys. Rev. X 7(1) 011012 URL https:/​/​​10.1103/​PhysRevX.7.011012.

[17] Bergquist J C, Hulet R G, Itano W M and Wineland D J 1986 Phys. Rev. Lett. 57(14) 1699-1702 URL https:/​/​​10.1103/​PhysRevLett.57.1699.

[18] Sachdev S 2011 Quantum Phase Transitions (Cambridge University Press) ISBN 978-0-521-51468-2.

[19] Marino J and Diehl S 2016 Phys. Rev. Lett. 116(7) 070407 URL https:/​/​​10.1103/​PhysRevLett.116.070407.

[20] Gutiérrez-Jáuregui R and Carmichael H J 2018 Phys. Rev. A 98(2) 023804 URL https:/​/​​10.1103/​PhysRevA.98.023804.

[21] Reiter F, Nguyen T L, Home J P and Yelin S F 2018 arXiv preprint arXiv:1807.06026.

[22] Nagy D, Szirmai G and Domokos P 2011 Phys. Rev. A 84(4) 043637 URL https:/​/​​10.1103/​PhysRevA.84.043637.

[23] Brennecke F, Mottl R, Baumann K, Landig R, Donner T and Esslinger T 2013 Proceedings of the National Academy of Sciences 110 11763-11767 URL https:/​/​​10.1073/​pnas.1306993110.

[24] Bonifacio R, Gronchi M and Lugiato L A 1978 Phys. Rev. A 18(5) 2266-2279 URL https:/​/​​10.1103/​PhysRevA.18.2266.

[25] Pietikäinen I, Danilin S, Kumar K S, Vepsäläinen A, Golubev D S, Tuorila J and Paraoanu G S 2017 Phys. Rev. B 96(2) 020501 URL https:/​/​​10.1103/​PhysRevB.96.020501.

[26] Pietikäinen I, Tuorila J, Golubev D and Paraoanu G 2019 arXiv preprint arXiv:1901.05655.

[27] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115(18) 180404 URL https:/​/​​10.1103/​PhysRevLett.115.180404.

[28] Hwang M J and Plenio M B 2016 Phys. Rev. Lett. 117(12) 123602 URL https:/​/​​10.1103/​PhysRevLett.117.123602.

[29] Larson J and Irish E K 2017 Journal of Physics A: Mathematical and Theoretical 50 174002 URL https:/​/​​10.1088/​1751-8121/​aa65dc.

[30] Hwang M J, Rabl P and Plenio M B 2018 Phys. Rev. A 97(1) 013825 URL https:/​/​​10.1103/​PhysRevA.97.013825.

[31] Alsing P, Guo D S and Carmichael H 1992 Physical Review A 45 5135 URL https:/​/​​10.1103/​PhysRevA.45.5135.

[32] Alsing P and Carmichael H 1991 Quantum Optics: Journal of the European Optical Society Part B 3 13 URL https:/​/​​10.1088/​0954-8998/​3/​1/​003.

[33] Gutiérrez-Jáuregui R and Carmichael H J 2018 Phys. Rev. A 98(2) 023804 URL https:/​/​​10.1103/​PhysRevA.98.023804.

[34] Vukics A and Ritsch H 2007 European Physical Journal D 44 585-599 URL https:/​/​​10.1140/​epjd/​e2007-00210-x.

[35] Vukics A 2012 Computer Physics Communications 183 1381-1396 URL https:/​/​​10.1016/​j.cpc.2012.02.004.

[36] Sandner R and Vukics A 2014 Computer Physics Communications 185 2380 - 2382 URL https:/​/​​10.1016/​j.cpc.2014.04.011.

Cited by

[1] Ricardo Gutiérrez-Jáuregui, "Breaking barriers: photon-blockade breakdown from the few quanta to the thermodynamic limit", Quantum Views 3, 14 (2019).

[2] I. Pietikäinen, J. Tuorila, D. S. Golubev, and G. S. Paraoanu, "Quantum-to-classical transition in the driven-dissipative Josephson pendulum coupled to a resonator", arXiv:1901.05655.

The above citations are from Crossref's cited-by service (last updated 2019-06-20 05:33:56) and SAO/NASA ADS (last updated 2019-06-20 05:33:57). The list may be incomplete as not all publishers provide suitable and complete citation data.