Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter

David T. Stephen1, Hendrik Poulsen Nautrup2, Juani Bermejo-Vega3, Jens Eisert3, and Robert Raussendorf4,5

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria
3Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
4Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
5Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected topological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.

Certain quantum phases of matter have computational power. This power is utilized by measurement-based quantum computation, where the process of computation is driven by local measurements on an entangled many-body quantum state. When every state within a phase of matter can be used as a resource for universal measurement-based quantum computation, that phase is deemed “computationally universal”. The search for computationally universal phases of matter has a long history, and has led to important insights into the properties of different types of quantum order. In fact, the first computationally universal phase of matter contained a brand-new type of quantum order that is protected by subsystem symmetries, which are symmetries that act on lower-dimensional subsystems of the whole system (in this case, lines across a 2D lattice). Since this discovery, the notion of “subsystem symmetry-protected topological order’’ has garnered notable interest both in the condensed matter and quantum information communities.

In this work, we continue the trend of pushing our understanding of quantum phases of matter in order to understand their computational properties. We present a general framework for constructing computationally universal phases of matter protected by subsystem symmetries. The essential new ingredient that we employ is the concept of quantum cellular automata. Quantum cellular automata can be defined as locality preserving unitaries and are, for the most part, equivalent to quantum circuits with constant depth. The use of quantum cellular automata in our framework is threefold. First, they are used to define subsystem symmetries, such as the fractal operator pictured above. Second, they characterize the type of entanglement that is ubiquitous among states exhibiting non-trivial order under the subsystem symmetries. Third, they form the backbone of our computational schemes. Bringing everything together, we get new phases of matter wherein both the physical and computational properties are described by quantum cellular automata.

► BibTeX data

► References

[1] A.Yu. Kitaev ``Fault-tolerant quantum computation by anyons'' Ann. Phys. 303, 2 - 30 (2003).

[2] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang, ``Topological quantum computation'' Bull. Amer. Math. Soc. 40, 31–38 (2003).

[3] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, ``Non-Abelian anyons and topological quantum computation'' Rev. Mod. Phys. 80, 1083–1159 (2008).

[4] A Yu Kitaev ``Unpaired Majorana fermions in quantum wires'' Physics-Uspekhi 44, 131–136 (2001).

[5] Jason Alicea, Yuval Oreg, Gil Refael, Felix Oppen, and Matthew P. A. Fisher, ``Non-Abelian statistics and topological quantum information processing in 1D wire networks'' Nature Physics 7, 412–417 (2011).

[6] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, ``Majorana zero modes in superconductor-semiconductor heterostructures'' Nature Reviews Materials 3, 52–68 (2018).

[7] Andrew C. Doherty and Stephen D. Bartlett ``Identifying Phases of Quantum Many-Body Systems That Are Universal for Quantum Computation'' Phys. Rev. Lett. 103, 020506 (2009).

[8] Akimasa Miyake ``Quantum Computation on the Edge of a Symmetry-Protected Topological Order'' Phys. Rev. Lett. 105, 040501 (2010).

[9] Stephen D. Bartlett, Gavin K. Brennen, Akimasa Miyake, and Joseph M. Renes, ``Quantum Computational Renormalization in the Haldane Phase'' Phys. Rev. Lett. 105, 110502 (2010).

[10] Dominic V. Else, Ilai Schwarz, Stephen D. Bartlett, and Andrew C. Doherty, ``Symmetry-Protected Phases for Measurement-Based Quantum Computation'' Phys. Rev. Lett. 108, 240505 (2012).

[11] Dominic V Else, Stephen D Bartlett, and Andrew C Doherty, ``Symmetry protection of measurement-based quantum computation in ground states'' New Journal of Physics 14, 113016 (2012).

[12] Jacob Miller and Akimasa Miyake ``Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation'' Phys. Rev. Lett. 114, 120506 (2015).

[13] Dong-Sheng Wang, David T. Stephen, and Robert Raussendorf, ``Qudit quantum computation on matrix product states with global symmetry'' Phys. Rev. A 95, 032312 (2017).

[14] David T. Stephen, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and Robert Raussendorf, ``Computational Power of Symmetry-Protected Topological Phases'' Phys. Rev. Lett. 119, 010504 (2017).

[15] Robert Raussendorf, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and David T. Stephen, ``Symmetry-protected topological phases with uniform computational power in one dimension'' Phys. Rev. A 96, 012302 (2017).

[16] Hendrik Poulsen Nautrup and Tzu-Chieh Wei ``Symmetry-protected topologically ordered states for universal quantum computation'' Phys. Rev. A 92, 052309 (2015).

[17] Jacob Miller and Akimasa Miyake ``Hierarchy of universal entanglement in 2D measurement-based quantum computation'' npj Quantum Information 2, 16036 (2016).

[18] Jacob Miller and Akimasa Miyake ``Latent Computational Complexity of Symmetry-Protected Topological Order with Fractional Symmetry'' Phys. Rev. Lett. 120, 170503 (2018).

[19] Tzu-Chieh Wei and Ching-Yu Huang ``Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases'' Phys. Rev. A 96, 032317 (2017).

[20] Yanzhu Chen, Abhishodh Prakash, and Tzu-Chieh Wei, ``Universal quantum computing using $(Z_d)^3$ symmetry-protected topologically ordered states'' Phys. Rev. A 97, 022305 (2018).

[21] Robert Raussendorf, Cihan Okay, Dong-Sheng Wang, David T. Stephen, and Hendrik Poulsen Nautrup, ``Computationally Universal Phase of Quantum Matter'' Phys. Rev. Lett. 122, 090501 (2019).

[22] Trithep Devakul and Dominic J. Williamson ``Universal quantum computation using fractal symmetry-protected cluster phases'' Phys. Rev. A 98, 022332 (2018).

[23] Sagar Vijay, Timothy H. Hsieh, and Liang Fu, ``Majorana Fermion Surface Code for Universal Quantum Computation'' Phys. Rev. X 5, 041038 (2015).

[24] Arpit Dua, Boris Malomed, Meng Cheng, and Liang Jiang, ``Universal quantum computing with parafermions assisted by a half fluxon'' (2018).

[25] Bela Bauer, T. Pereg-Barnea, Torsten Karzig, Maria-Theresa Rieder, Gil Refael, Erez Berg, and Yuval Oreg, ``Topologically protected braiding in a single wire using Floquet Majorana modes'' (2018).

[26] D. Gross , J. Eisert, N. Schuch, and D. Perez-Garcia, ``Measurement-based quantum computation beyond the one-way model'' Phys. Rev. A 76, 052315 (2007).

[27] H. Bombin and M. A. Martin-Delgado ``Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement'' Phys. Rev. B 78, 115421 (2008).

[28] Beni Yoshida ``Gapped boundaries, group cohomology and fault-tolerant logical gates'' Ann. Phys. 377, 387 –413 (2017).

[29] Sam Roberts, Beni Yoshida, Aleksander Kubica, and Stephen D. Bartlett, ``Symmetry-protected topological order at nonzero temperature'' Phys. Rev. A 96, 022306 (2017).

[30] Robert Raussendorf and Hans J. Briegel ``A One-Way Quantum Computer'' Phys. Rev. Lett. 86, 5188–5191 (2001).

[31] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel, ``Measurement-based quantum computation on cluster states'' Phys. Rev. A 68, 022312 (2003).

[32] Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki Oshikawa, ``Entanglement spectrum of a topological phase in one dimension'' Phys. Rev. B 81, 064439 (2010).

[33] Norbert Schuch, David Pérez-García, and Ignacio Cirac, ``Classifying quantum phases using matrix product states and projected entangled pair states'' Phys. Rev. B 84, 165139 (2011).

[34] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, ``Classification of gapped symmetric phases in one-dimensional spin systems'' Phys. Rev. B 83, 035107 (2011).

[35] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, ``Symmetry protected topological orders and the group cohomology of their symmetry group'' Phys. Rev. B 87, 155114 (2013).

[36] T. Senthil ``Symmetry-Protected Topological Phases of Quantum Matter'' Ann. Rev. Cond. Mat. Phys. 6, 299–324 (2015).

[37] A. Nietner, C. Krumnow, E. J. Bergholtz, and J. Eisert, ``Composite symmetry-protected topological order and effective models'' Phys. Rev. B 96, 235138 (2017).

[38] Hao Song, Sheng-Jie Huang, Liang Fu, and Michael Hermele, ``Topological Phases Protected by Point Group Symmetry'' Phys. Rev. X 7, 011020 (2017).

[39] Ryan Thorngren and Dominic V. Else ``Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases'' Phys. Rev. X 8, 011040 (2018).

[40] Sheng-Jie Huang, Hao Song, Yi-Ping Huang, and Michael Hermele, ``Building crystalline topological phases from lower-dimensional states'' Phys. Rev. B 96, 205106 (2017).

[41] Yizhi You, Trithep Devakul, F. J. Burnell, and S. L. Sondhi, ``Subsystem symmetry protected topological order'' Phys. Rev. B 98, 035112 (2018).

[42] Trithep Devakul, Dominic J. Williamson, and Yizhi You, ``Classification of subsystem symmetry-protected topological phases'' Phys. Rev. B 98, 235121 (2018).

[43] Yizhi You, Trithep Devakul, F. J. Burnell, and S. L. Sondhi, ``Symmetric Fracton Matter: Twisted and Enriched'' (2018).

[44] Dominic J. Williamson ``Fractal symmetries: Ungauging the cubic code'' Phys. Rev. B 94, 155128 (2016).

[45] Trithep Devakul, Yizhi You, F. J. Burnell, and S. L. Sondhi, ``Fractal Symmetric Phases of Matter'' SciPost Phys. 6, 7 (2019).

[46] Aleksander Kubica and Beni Yoshida ``Ungauging quantum error-correcting codes'' (2018).

[47] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett, ``Generalized global symmetries'' J. High En. Phys. 2015, 172 (2015).

[48] Beni Yoshida ``Topological phases with generalized global symmetries'' Phys. Rev. B 93, 155131 (2016).

[49] Sam Roberts and Stephen D. Bartlett ``Symmetry-protected self-correcting quantum memories'' (2018).

[50] Jeongwan Haah ``Local stabilizer codes in three dimensions without string logical operators'' Phys. Rev. A 83, 042330 (2011).

[51] Beni Yoshida ``Exotic topological order in fractal spin liquids'' Phys. Rev. B 88, 125122 (2013).

[52] Sagar Vijay, Jeongwan Haah, and Liang Fu, ``A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations'' Phys. Rev. B 92, 235136 (2015).

[53] Sagar Vijay, Jeongwan Haah, and Liang Fu, ``Fracton topological order, generalized lattice gauge theory, and duality'' Phys. Rev. B 94, 235157 (2016).

[54] Zohar Nussinov and Gerardo Ortiz ``A symmetry principle for topological quantum order'' Ann. Phys. 324, 977 –1057 (2009).

[55] Zohar Nussinov and Gerardo Ortiz ``Sufficient symmetry conditions for Topological Quantum Order'' Proceedings of the National Academy of Sciences 106, 16944–16949 (2009).

[56] Wilbur Shirley, Kevin Slagle, and Xie Chen, ``Foliated fracton order from gauging subsystem symmetries'' SciPost Phys. 6, 41 (2019).

[57] Hao Song, Abhinav Prem, Sheng-Jie Huang, and M. A. Martin-Delgado, ``Twisted fracton models in three dimensions'' Phys. Rev. B 99, 155118 (2019).

[58] Jacob C Bridgemanand Christopher T Chubb ``Hand-waving and interpretive dance: an introductory course on tensor networks'' J. Phys. A 50, 223001 (2017).

[59] Norbert Schuch, Ignacio Cirac, and David Perez-Garcia, ``PEPS as ground states: Degeneracy and topology'' Ann. Phys. 325, 2153 –2192 (2010).

[60] Frank Pollmann and Ari M. Turner ``Detection of symmetry-protected topological phases in one dimension'' Phys. Rev. B 86, 125441 (2012).

[61] N. Bultinck, M. Mariën, D.J. Williamson, M.B. Şahinoğlu, J. Haegeman, and F. Verstraete, ``Anyons and matrix product operator algebras'' Ann. Phys. 378, 183 –233 (2017).

[62] Kasper Duivenvoorden, Mohsin Iqbal, Jutho Haegeman, Frank Verstraete, and Norbert Schuch, ``Entanglement phases as holographic duals of anyon condensates'' Phys. Rev. B 95, 235119 (2017).

[63] Dominic J. Williamson, Nick Bultinck, Michael Mariën, Mehmet B. Şahinoğlu, Jutho Haegeman, and Frank Verstraete, ``Matrix product operators for symmetry-protected topological phases: Gauging and edge theories'' Phys. Rev. B 94, 205150 (2016).

[64] Shenghan Jiang and Ying Ran ``Anyon condensation and a generic tensor-network construction for symmetry-protected topological phases'' Phys. Rev. B 95, 125107 (2017).

[65] Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac, ``A generalization of the injectivity condition for projected entangled pair states'' J. Math. Phys. 59, 021902 (2018).

[66] Didier Poilblanc, J. Ignacio Cirac, and Norbert Schuch, ``Chiral topological spin liquids with projected entangled pair states'' Phys. Rev. B 91, 224431 (2015).

[67] Dominic J. Williamson, Nick Bultinck, and Frank Verstraete, ``Symmetry-enriched topological order in tensor networks: Defects, gauging and anyon condensation'' (2017).

[68] Nick Bultinck, Dominic J Williamson, Jutho Haegeman, and Frank Verstraete, ``Fermionic projected entangled-pair states and topological phases'' J. Phys. A 51, 025202 (2017).

[69] Henrik Dreyer, J. Ignacio Cirac, and Norbert Schuch, ``Projected entangled pair states with continuous virtual symmetries'' Phys. Rev. B 98, 115120 (2018).

[70] Joseph F. Fitzsimons ``Private quantum computation: an introduction to blind quantum computing and related protocols'' npj Quantum Information 3, 23 (2017).

[71] Atul Mantri, Tommaso F. Demarie, Nicolas C. Menicucci, and Joseph F. Fitzsimons, ``Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation'' Phys. Rev. X 7, 031004 (2017).

[72] Robert Raussendorf ``Quantum computation via translation-invariant operations on a chain of qubits'' Phys. Rev. A 72, 052301 (2005).

[73] Joseph Fitzsimons and Jason Twamley ``Globally Controlled Quantum Wires for Perfect Qubit Transport, Mirroring, and Computing'' Phys. Rev. Lett. 97, 090502 (2006).

[74] Joseph Fitzsimons, Li Xiao, Simon C. Benjamin, and Jonathan A. Jones, ``Quantum Information Processing with Delocalized Qubits under Global Control'' Phys. Rev. Lett. 99, 030501 (2007).

[75] Juan Bermejo-Vega, Dominik Hangleiter, Martin Schwarz, Robert Raussendorf, and Jens Eisert, ``Architectures for Quantum Simulation Showing a Quantum Speedup'' Phys. Rev. X 8, 021010 (2018).

[76] Dominik Hangleiter, Juan Bermejo-Vega, Martin Schwarz, and Jens Eisert, ``Anticoncentration theorems for schemes showing a quantum speedup'' Quantum 2, 65 (2018).

[77] B. Schumacher and R. F. Werner ``Reversible quantum cellular automata'' (2004).

[78] Dirk-M. Schlingemann, Holger Vogts, and Reinhard F. Werner, ``On the structure of Clifford quantum cellular automata'' J. Math. Phys. 49, 112104 (2008).

[79] Johannes Gütschow, Sonja Uphoff, Reinhard F. Werner, and Zoltan Zimboras, ``Time asymptotics and entanglement generation of Clifford quantum cellular automata'' J. Math. Phys. 51, 015203 (2010).

[80] J Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete, ``Matrix product unitaries: structure, symmetries, and topological invariants'' J. Stat. Mech. 2017, 083105 (2017).

[81] Daniel Gottesman ``Fault-Tolerant Quantum Computation with Higher-Dimensional Systems'' Selected papers from the First NASA International Conference on Quantum Computing and Quantum Communications (1998).

[82] Juan Bermejo-Vega and Maarten Van Den Nest ``Classical Simulations of Abelian-group Normalizer Circuits with Intermediate Measurements'' Quant. Inf. Comp. 14, 181–216 (2014).

[83] Atul Mantri, Tommaso F. Demarie, and Joseph F. Fitzsimons, ``Universality of quantum computation with cluster states and (X, Y)-plane measurements'' Scientific Reports 7, 42861 (2017).

[84] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, ``Index Theory of One Dimensional Quantum Walks and Cellular Automata'' Commun. Math. Phys. 310, 419–454 (2012).

[85] F. Verstraete, V. Murg, and J.I. Cirac, ``Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems'' Adv. Phys. 57, 143–224 (2008).

[86] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, ``Rigorous results on valence-bond ground states in antiferromagnets'' Phys. Rev. Lett. 59, 799–802 (1987).

[87] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, ``Matrix Product State Representations'' Quantum Info. Comput. 7, 401–430 (2007).

[88] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac, ``Entropy Scaling and Simulability by Matrix Product States'' Phys. Rev. Lett. 100, 030504 (2008).

[89] F. Verstraete and J. I. Cirac ``Matrix product states represent ground states faithfully'' Phys. Rev. B 73, 094423 (2006).

[90] David Sauerwein, Andras Molnar, J. Ignacio Cirac, and Barbara Kraus, ``Matrix Product States: Entanglement, symmetries, and state transformations'' (2019).

[91] Daniel Gottesman ``Stabilizer codes and quantum error correction'' (1997).

[92] M. Hein, J. Eisert, and H. J. Briegel, ``Multiparty entanglement in graph states'' Phys. Rev. A 69, 062311 (2004).

[93] D. Pérez-García, M. M. Wolf, M. Sanz, F. Verstraete , and J. I. Cirac, ``String Order and Symmetries in Quantum Spin Lattices'' Phys. Rev. Lett. 100, 167202 (2008).

[94] Iman Marvian ``Symmetry-protected topological entanglement'' Phys. Rev. B 95, 045111 (2017).

[95] I_A G Berkovich and EM Zhmud ``Characters of finite groups'' American Mathematical Soc. (1998).

[96] Andras Molnar, José Garre-Rubio, David Pérez-García, Norbert Schuch, and J Ignacio Cirac, ``Normal projected entangled pair states generating the same state'' New Journal of Physics 20, 113017 (2018).

[97] Xiao-Gang Wen ``Colloquium: Zoo of quantum-topological phases of matter'' Rev. Mod. Phys. 89, 041004 (2017).

[98] Bruno Nachtergaele ``The spectral gap for some spin chains with discrete symmetry breaking'' Communications in Mathematical Physics 175, 565–606 (1996).

[99] A. S. Darmawan and S. D. Bartlett ``Graph states as ground states of two-body frustration-free Hamiltonians'' New J. Phys. 16, 073013 (2014).

[100] Ruben Verresen, Roderich Moessner, and Frank Pollmann, ``One-dimensional symmetry protected topological phases and their transitions'' Phys. Rev. B 96, 165124 (2017).

[101] D. Grossand J. Eisert ``Novel Schemes for Measurement-Based Quantum Computation'' Phys. Rev. Lett. 98, 220503 (2007).

[102] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter, ``Elementary gates for quantum computation'' Phys. Rev. A 52, 3457–3467 (1995).

[103] David Deutsch, Adriano Barenco, and Artur Ekert, ``Universality in quantum computation'' Proc. R. Soc. London A 449, 669–677 (1995).

[104] Michael J. Bremner, Christopher M. Dawson, Jennifer L. Dodd, Alexei Gilchrist, Aram W. Harrow, Duncan Mortimer, Michael A. Nielsen, and Tobias J. Osborne, ``Practical Scheme for Quantum Computation with Any Two-Qubit Entangling Gate'' Phys. Rev. Lett. 89, 247902 (2002).

[105] Mariami Gachechiladze, Otfried Gühne, and Akimasa Miyake, ``Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states'' Phys. Rev. A 99, 052304 (2019).

[106] R. Raussendorf, J. Harrington, and K. Goyal, ``A fault-tolerant one-way quantum computer'' Annals of Physics 321, 2242 –2270 (2006).

[107] R Raussendorf, J Harrington, and K Goyal, ``Topological fault-tolerance in cluster state quantum computation'' New Journal of Physics 9, 199–199 (2007).

[108] Burton Voorhees ``A note on injectivity of additive cellular automata'' Complex Systems 8, 151–160 (1994).

Cited by

[1] Trithep Devakul, "Classifying local fractal subsystem symmetry-protected topological phases", Physical Review B 99 23, 235131 (2019).

[2] Austin K. Daniel, Rafael N. Alexander, and Akimasa Miyake, "Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices", Quantum 4, 228 (2020).

[3] David T. Stephen, José Garre-Rubio, Arpit Dua, and Dominic J. Williamson, "Subsystem symmetry enriched topological order in three dimensions", Physical Review Research 2 3, 033331 (2020).

[4] Caroline de Groot, David T Stephen, Andras Molnar, and Norbert Schuch, "Inaccessible entanglement in symmetry protected topological phases", Journal of Physics A: Mathematical and Theoretical 53 33, 335302 (2020).

[5] David T. Stephen, Henrik Dreyer, Mohsin Iqbal, and Norbert Schuch, "Detecting subsystem symmetry protected topological order via entanglement entropy", Physical Review B 100 11, 115112 (2019).

[6] Daniel Azses, Rafael Haenel, Yehuda Naveh, Robert Raussendorf, Eran Sela, and Emanuele G. Dalla Torre, "Identification of Symmetry-Protected Topological States on Noisy Quantum Computers", Physical Review Letters 125 12, 120502 (2020).

[7] Abhinav Prem and Dominic Williamson, "Gauging permutation symmetries as a route to non-Abelian fractons", SciPost Physics 7 5, 068 (2019).

[8] J. P. Ibieta-Jimenez, L. N. Queiroz Xavier, M. Petrucci, and P. Teotonio-Sobrinho, "Fractonlike phases from subsystem symmetries", Physical Review B 102 4, 045104 (2020).

[9] Nathanan Tantivasadakarn and Sagar Vijay, "Searching for fracton orders via symmetry defect condensation", Physical Review B 101 16, 165143 (2020).

[10] Arpit Dua, Pratyush Sarkar, Dominic J. Williamson, and Meng Cheng, "Bifurcating entanglement-renormalization group flows of fracton stabilizer models", Physical Review Research 2 3, 033021 (2020).

[11] Trithep Devakul, Wilbur Shirley, and Juven Wang, "Strong planar subsystem symmetry-protected topological phases and their dual fracton orders", Physical Review Research 2 1, 012059 (2020).

[12] Wilbur Shirley, Kevin Slagle, and Xie Chen, "Twisted foliated fracton phases", Physical Review B 102 11, 115103 (2020).

[13] Huan He, Yizhi You, and Abhinav Prem, "Lieb-Schultz-Mattis–type constraints on fractonic matter", Physical Review B 101 16, 165145 (2020).

[14] Kevin Slagle, David Aasen, and Dominic Williamson, "Foliated field theory and string-membrane-net condensation picture of fracton order", SciPost Physics 6 4, 043 (2019).

[15] Trithep Devakul, Dominic J. Williamson, and Yizhi You, "Classification of subsystem symmetry-protected topological phases", Physical Review B 98 23, 235121 (2018).

[16] Dominic J. Williamson, Arpit Dua, and Meng Cheng, "Spurious Topological Entanglement Entropy from Subsystem Symmetries", Physical Review Letters 122 14, 140506 (2019).

[17] Albert T. Schmitz, Sheng-Jie Huang, and Abhinav Prem, "Entanglement spectra of stabilizer codes: A window into gapped quantum phases of matter", Physical Review B 99 20, 205109 (2019).

[18] Trithep Devakul and Dominic J. Williamson, "Universal quantum computation using fractal symmetry-protected cluster phases", Physical Review A 98 2, 022332 (2018).

[19] Terry Farrelly, "A review of Quantum Cellular Automata", arXiv:1904.13318.

[20] Albert T. Schmitz, "Distilling Fractons from Layered Subsystem-Symmetry Protected Phases", arXiv:1910.04765.

The above citations are from Crossref's cited-by service (last updated successfully 2020-10-23 08:29:00) and SAO/NASA ADS (last updated successfully 2020-10-23 08:29:01). The list may be incomplete as not all publishers provide suitable and complete citation data.