Multiplexed Quantum Random Number Generation

Ben Haylock1, Daniel Peace1, Francesco Lenzini1, Christian Weedbrook2, and Mirko Lobino1,3

1Centre for Quantum Dynamics, Griffith University, Brisbane, 4111, Australia
2Xanadu, 372 Richmond St. W., Toronto, M5V 2L7, Canada
3Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Australia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a real-time random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.

Popular summary video:

► BibTeX data

► References

[1] W. H. Ware, in Proceedings of the Spring Joint Computer Conference (1967) pp. 279–282.

[2] P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O'Brien, Physical Review Letters 112, 130501 (2014).

[3] Debian, Debian - Security Information - DSA-1571-1 openssl, https:/​/​​security/​2008/​dsa-1571.

[4] L. Dorrendorf, Z. Gutterman, and B. Pinkas, ACM Transactions on Information and System Security 13, 1 (2009).

[5] K. Nohl, D. Evans, Starbug, and H. Plotz, in 17th USENIX Security Symposium (2008) pp. 185–193.

[6] M. Herrero-Collantes and J. C. Garcia-Escartin, Reviews of Modern Physics 89, 1 (2017).

[7] X. Ma, X. Yuan, B. Qi, and Z. Zhang, npj Quantum Information 221, 1 (2016).

[8] J. D. Hart, Y. Terashima, A. Uchida, G. B. Baumgartner, T. E. Murphy, and R. Roy, APL Photonics 2, 1 (2017).

[9] Y. Q. Nie, J. Y. Guan, H. Zhou, Q. Zhang, X. Ma, and J. W. Pan, Physical Review A 94, 060301 (2016).

[10] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature 464, 1021 (2010).

[11] P. Bierhorst, E. Knill, S. Glancy, A. Mink, S. Jordan, A. Rommal, A. K. Liu, B. Christensen, S. W. Nam, and L. K. Shalm, (2017), arXiv 1702.05178.

[12] A. Kulikov, M. Jerger, A. Potoc̆nik, A. Wallraff, and A. Fedorov, Physical Review Letters 119, 240501 (2017).

[13] A. A. Abbott, C. S. Calude, J. Conder, and K. Svozil, Physical Review A 86, 062109 (2012).

[14] Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z. Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, Physical Review Letters 120, 010503 (2018).

[15] C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquadt, and G. Leuchs, Nature Photonics 4, 711 (2010).

[16] L. Li, A. Wang, P. Li, H. Xu, L. Wang, and Y. Wang, IEEE Photonics Journal 6 (2014), 10.1109/​JPHOT.2014.2304555.

[17] T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, Physical Review Letters 114, 150501 (2015).

[18] M. W. Mitchell, C. Abellan, and W. Amaya, Physical Review A 91, 012314 (2015).

[19] D. G. Marangon, G. Vallone, and P. Villoresi, Physical Review Letters 118, 060503 (2017).

[20] M. Virte, E. Mercier, H. Thienpont, K. Panajotov, and M. Sciamanna, Optics Express 22, 17271 (2014).

[21] M. A. Wayne, E. R. Jeffrey, G. M. Akselrod, and P. G. Kwiat, Journal of Modern Optics 56, 516 (2009).

[22] F. Xu, B. Qi, X. Ma, H. Zheng, and H. K. Lo, Optics Express 20, 12366 (2012).

[23] R. Sakuraba, K. Iwakawa, K. Kanno, and A. Uchida, Optics Express 23, 1470 (2015).

[24] M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, Nature Photonics 8, 791 (2014).

[25] J. Y. Haw, S. M. Assad, A. M. Lance, N. H. Y. Ng, V. Sharma, P. K. Lam, and T. Symul, Physical Review Applied 3, 054004 (2015).

[26] IDQuantique, Quantis QRNG Brochure, https:/​/​ (2016).

[27] R. Shaltiel, in Lecture Notes in Computer Science, Vol. 6756 (2011) pp. 21–41.

[28] R. Kasher and J. Kempe, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Computer Science, Vol. 6302, pp. 656–669.

[29] K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, Optics Express 25, 6511 (2017).

[30] X.-G. Zhang, Y.-Q. Nie, H. Zhou, H. Liang, X. Ma, J. Zhang, and J.-W. Pan, Review of Scientific Instruments 87, 076102 (2016).

[31] D. G. Marangon, A. Plews, M. Lucamarini, J. F. Dynes, A. W. Sharpe, Z. Yuan, and A. J. Shields, Journal of Lightwave Technology 36, 3778 (2018).

[32] Y. Shen, L. Tian, and H. Zou, Physical Review A 81, 063814 (2010).

[33] R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, Optics Communications 285, 24 (2012).

[34] F. Lenzini, S. Kasture, B. Haylock, and M. Lobino, Optics Express 23, 1748 (2015).

[35] T. Symul, S. M. Assad, and P. K. Lam, Applied Physics Letters 98, 23 (2011).

[36] M. Sönmez Turan, E. Barker, J. Kelsey, M. Boyle, M. Kerry, and M. L. Baish, "Recommendation for the Entropy Sources Used for Random Bit Generation (Second DRAFT) NIST Special Publication 800-90B, National Institute of Standards and Technology (2016).

[37] M. Dworkin, Recommendation for Block Cipher Mode of Operation: The CMAC Mode for Authentication. NIST Special Publication 800-38B, National Institute of Standards and Technology (2005).

[38] Specification for the Advanced Encryption Standard ( AES ) FIPS 197, National Institute of Standards and Technology (2001).

[39] H. Hsing, AES :: Overview :: OpenCores, https:/​/​​project/​tiny_aes.

[40] J. Bouda, M. Pivoluska, and M. Plesch, Theoretical Computer Science 459, 69 (2012).

[41] R. Renner, International Journal of Quantum Information 6, 1 (2008).

[42] A. Rukhin, J. Soto, J. Nechvatal, S. Miles, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22 Rev. 1a, National Institute of Standards and Technology (2010).

[43] K. McKay and J. Kelsey, GitHub - usnistgov/​SP800-90B _EntropyAssessment, https:/​/​​usnistgov/​SP800-90B_EntropyAssessment.

[44] J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, IEEE Journal of Selected Topics in Quantum Electronics 22, 390 (2016).

Cited by

[1] Ken Tanizawa, Kentaro Kato, and Fumio Futami, Conference on Lasers and Electro-Optics AM3D.6 (2022) ISBN:978-1-957171-05-0.

[2] K. Muhammed Shafi, Prateek Chawla, Abhaya S. Hegde, R. S. Gayatri, A. Padhye, and C. M. Chandrashekar, "Multi-bit quantum random number generator from path-entangled single photons", EPJ Quantum Technology 10 1, 43 (2023).

[3] Muhammad Imran, Vito Sorianello, Francesco Fresi, Bushra Jalil, Marco Romagnoli, and Luca Potì, "On-chip tunable SOI interferometer for quantum random number generation based on phase diffusion in lasers", Optics Communications 485, 126736 (2021).

[4] Wei Luo, Lin Cao, Yuzhi Shi, Lingxiao Wan, Hui Zhang, Shuyi Li, Guanyu Chen, Yuan Li, Sijin Li, Yunxiang Wang, Shihai Sun, Muhammad Faeyz Karim, Hong Cai, Leong Chuan Kwek, and Ai Qun Liu, "Recent progress in quantum photonic chips for quantum communication and internet", Light: Science & Applications 12 1, 175 (2023).

[5] Guangshen Lin, Huanbo Feng, Shizhuo Li, Feng Xie, Zhenrong Zhang, Hongbang Liu, and Kejin Wei, "X-ray-driven multi-bit quantum random number generator", Optics Express 32 14, 24432 (2024).

[6] Lang Li, Minglu Cai, Tao Wang, Zicong Tan, Peng Huang, Kan Wu, and Guihua Zeng, "On-chip source-device-independent quantum random number generator", Photonics Research 12 7, 1379 (2024).

[7] P. R. Smith, D. G. Marangon, M. Lucamarini, Z. L. Yuan, and A. J. Shields, "Simple source device-independent continuous-variable quantum random number generator", Physical Review A 99 6, 062326 (2019).

[8] Ken Tanizawa, Kentaro Kato, and Fumio Futami, 2023 Optical Fiber Communications Conference and Exhibition (OFC) 1 (2023).

[9] Daniel A. Vajner, Lucas Rickert, Timm Gao, Koray Kaymazlar, and Tobias Heindel, "Quantum Communication Using Semiconductor Quantum Dots", Advanced Quantum Technologies 5 7, 2100116 (2022).

[10] E. O. Samsonov, B. E. Pervushin, A. E. Ivanova, A. A. Santev, V. I. Egorov, S. M. Kynev, and A. V. Gleim, "Vacuum-based quantum random number generator using multi-mode coherent states", Quantum Information Processing 19 9, 326 (2020).

[11] Jennifer Aldama, Samael Sarmiento, Ignacio H. Lopez Grande, Stefano Signorini, Luis Trigo Vidarte, and Valerio Pruneri, "Integrated QKD and QRNG Photonic Technologies", Journal of Lightwave Technology 40 23, 7498 (2022).

[12] Pu Li, Qizhi Li, Wenye Tang, Weiqiang Wang, Wenfu Zhang, Brent E. Little, Sai Tek Chu, K. Alan Shore, Yuwen Qin, and Yuncai Wang, "Scalable parallel ultrafast optical random bit generation based on a single chaotic microcomb", Light: Science & Applications 13 1, 66 (2024).

[13] Vaisakh Mannalatha, Sandeep Mishra, and Anirban Pathak, "A comprehensive review of quantum random number generators: concepts, classification and the origin of randomness", Quantum Information Processing 22 12, 439 (2023).

[14] Dinka Milovancev, Nemanja Vokic, Florian Honz, Martin Achleitner, Christoph Pacher, and Bernhard Schrenk, 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) 1 (2022) ISBN:978-1-6654-8598-2.

[15] Ken Tanizawa, Kentaro Kato, and Fumio Futami, "Spatially Multiplexed Quantum Entropy Source With Single LD for 100-Gbps Random Numbers and Beyond", IEEE Photonics Technology Letters 35 5, 229 (2023).

[16] Dominick J. Joch, Sergei Slussarenko, Yuanlong Wang, Alex Pepper, Shouyi Xie, Bin-Bin Xu, Ian R. Berkman, Sven Rogge, and Geoff J. Pryde, "Certified random-number generation from quantum steering", Physical Review A 106 5, L050401 (2022).

[17] C Strydom, S Soleymani, Ş K Özdemir, and M S Tame, "Quantum random number generation using an on-chip nanowire plasmonic waveguide", New Journal of Physics 26 4, 043002 (2024).

[18] Qiang Zhang, Chihua Zhou, Junwei Meng, Feng Guo, and Hong Chang, "Parallel quantum random number generation based on spontaneous emission of alkaline earth", Applied Physics Express 13 1, 012015 (2020).

[19] A Prokhodtsov, V Kovalyuk, P An, A Golikov, R Shakhovoy, V Sharoglazova, A Udaltsov, Y Kurochkin, and G Goltsman, "Silicon nitride Mach-Zehnder interferometer for on-chip quantum random number generation", Journal of Physics: Conference Series 1695 1, 012118 (2020).

[20] Kun Chen, Pidong Wang, Feng Huang, Xiao Leng, and Yao Yao, "Analysis of entropy source for random number generation based on optical PUFs", Journal of Applied Physics 133 17, 174502 (2023).

[21] Fabio Cavaliere, Enrico Prati, Luca Poti, Imran Muhammad, and Tommaso Catuogno, "Secure Quantum Communication Technologies and Systems: From Labs to Markets", Quantum Reports 2 1, 80 (2020).

[22] Sungju Park, Kyungmin Kim, Keunjin Kim, and Choonsung Nam, "Dynamical Pseudo-Random Number Generator Using Reinforcement Learning", Applied Sciences 12 7, 3377 (2022).

[23] Ken Tanizawa, Kentaro Kato, and Fumio Futami, Optical Fiber Communication Conference (OFC) 2023 Th4A.8 (2023) ISBN:978-1-957171-18-0.

[24] Bing Bai, Jianyao Huang, Guan-Ru Qiao, You-Qi Nie, Weijie Tang, Tao Chu, Jun Zhang, and Jian-Wei Pan, "18.8 Gbps real-time quantum random number generator with a photonic integrated chip", Applied Physics Letters 118 26, 264001 (2021).

[25] Ken Tanizawa, Kentaro Kato, and Fumio Futami, "Real-Time 50-Gbit/s Spatially Multiplexed Quantum Random Number Generator Based on Vacuum Fluctuation", Journal of Lightwave Technology 42 4, 1209 (2024).

[26] Hongyi Zhou, Pei Zeng, Mohsen Razavi, and Xiongfeng Ma, "Randomness quantification of coherent detection", Physical Review A 98 4, 042321 (2018).

[27] Francesco Raffaelli, Philip Sibson, Jake E. Kennard, Dylan H. Mahler, Mark G. Thompson, and Jonathan C. F. Matthews, "A SOI Integrated Quantum Random Number Generator Based on Phase fluctuations from a Laser Diode", arXiv:1804.05046, (2018).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 10:47:55) and SAO/NASA ADS (last updated successfully 2024-07-15 10:47:55). The list may be incomplete as not all publishers provide suitable and complete citation data.