Strawberry Fields: A Software Platform for Photonic Quantum Computing

Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook

Xanadu, 372 Richmond St W, Toronto, M5V 1X6, Canada

We introduce Strawberry Fields, an open-source quantum programming architecture for light-based quantum computers, and detail its key features. Built in Python, Strawberry Fields is a full-stack library for design, simulation, optimization, and quantum machine learning of continuous-variable circuits. The platform consists of three main components: (i) an API for quantum programming based on an easy-to-use language named Blackbird; (ii) a suite of three virtual quantum computer backends, built in NumPy and TensorFlow, each targeting specialized uses; and (iii) an engine which can compile Blackbird programs on various backends, including the three built-in simulators, and - in the near future - photonic quantum information processors. The library also contains examples of several paradigmatic algorithms, including teleportation, (Gaussian) boson sampling, instantaneous quantum polynomial, Hamiltonian simulation, and variational quantum circuit optimization.

► BibTeX data

► References

[1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41 (2): 303-332, 1999. 10.1137/​S0036144598347011.

[2] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, pages 212-219. ACM, 1996.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, 103 (15): 150502, 2009. 10.1103/​PhysRevLett.103.150502.

[4] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, 2018. 10.22331/​q-2018-08-06-79.

[5] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 2014. 10.1038/​ncomms5213.

[6] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, 2016. 10.1088/​1367-2630/​18/​2/​023023.

[7] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[8] E. Farhi and A. W. Harrow. Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.

[9] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333-342. ACM, 2011. 10.1145/​1993636.1993682.

[10] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex. Gaussian boson sampling. Physical Review Letters, 119: 170501, 2017. 10.1103/​PhysRevLett.119.170501.

[11] L. Chakhmakhchyan, R. Garcia-Patron, and N. J. Cerf. Boson sampling with Gaussian measurements. Physical Review A, 96: 032326, 2017. 10.1103/​PhysRevA.96.032326.

[12] M. J. Bremner, R. Jozsa, and D. J. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page rspa20100301. The Royal Society, 2010. 10.1098/​rspa.2010.0301.

[13] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. Physical Review Letters, 117 (8): 080501, 2016. 10.1103/​PhysRevLett.117.080501.

[14] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595, 2018. 10.1038/​s41567-018-0124-x.

[15] S. Aaronson and L. Chen. Complexity-Theoretic Foundations of Quantum Supremacy Experiments. In R. O'Donnell, editor, 32nd Computational Complexity Conference (CCC 2017), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1-22:67. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. ISBN 978-3-95977-040-8. 10.4230/​LIPIcs.CCC.2017.22.

[16] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195-199, 2018. 10.1126/​science.aao4309.

[17] T. Douce, D. Markham, E. Kashefi, E. Diamanti, T. Coudreau, P. Milman, P. van Loock, and G. Ferrini. Continuous-variable instantaneous quantum computing is hard to sample. Physical Review Letters, 118 (7), 2017. 10.1103/​PhysRevLett.118.070503.

[18] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, and J. Doll. Quantum annealing: a new method for minimizing multidimensional functions. Chemical Physics Letters, 219 (5-6): 343-348, 1994. 10.1016/​0009-2614(94)00117-0.

[19] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473 (7346): 194-198, 2011. 10.1038/​nature10012.

[20] M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, and E. Solano. From transistor to trapped-ion computers for quantum chemistry. Scientific Reports, 4: 3589, 2014. 10.1038/​srep03589.

[21] P. O'Malley, R. Babbush, I. Kivlichan, J. Romero, J. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al. Scalable quantum simulation of molecular energies. Physical Review X, 6 (3): 031007, 2016. 10.1103/​PhysRevX.6.031007.

[22] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K. Kim. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Physical Review A, 95 (2): 020501, 2017. 10.1103/​PhysRevA.95.020501.

[23] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242-246, 2017. 10.1038/​nature23879.

[24] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. L. de Prado. Solving the optimal trading trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing, 10 (6): 1053-1060, 2016. 10.1109/​JSTSP.2016.2574703.

[25] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2: 5, 2014. 10.3389/​fphy.2014.00005.

[26] F. Neukart, D. Von Dollen, G. Compostella, C. Seidel, S. Yarkoni, and B. Parney. Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4: 29, 2017. 10.3389/​fict.2017.00029.

[27] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready. Training a large scale classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0912.0779, 2009.

[28] K. L. Pudenz and D. A. Lidar. Quantum adiabatic machine learning. Quantum Information Processing, 12 (5): 2027-2070, 2013. 10.1007/​s11128-012-0506-4.

[29] D. Crawford, A. Levit, N. Ghadermarzy, J. S. Oberoi, and P. Ronagh. Reinforcement learning using quantum Boltzmann machines. Quantum Information & Computation, 18 (1-2): 0051-0074, 2018. 10.26421/​QIC18.1-2.

[30] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko. Quantum boltzmann machine. Phys. Rev. X, 8: 021050, May 2018. 10.1103/​PhysRevX.8.021050.

[31] D. Ristè, M. P. Da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and B. R. Johnson. Demonstration of quantum advantage in machine learning. npj Quantum Information, 3 (1): 16, 2017. 10.1038/​s41534-017-0017-3.

[32] G. Verdon, M. Broughton, and J. Biamonte. A quantum algorithm to train neural networks using low-depth circuits. arXiv preprint arXiv:1712.05304, 2017.

[33] J. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, et al. Unsupervised machine learning on a hybrid quantum computer. arXiv preprint arXiv:1712.05771, 2017.

[34] M. Schuld and N. Killoran. Quantum machine learning in feature hilbert spaces. Physical Review Letters, 122: 040504, Feb 2019. 10.1103/​PhysRevLett.122.040504.

[35] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: a scalable quantum programming language. In ACM SIGPLAN Notices, volume 48, pages 333-342. ACM, 2013. 10.1145/​2491956.2462177.

[36] D. Wecker and K. M. Svore. Liqui|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.

[37] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Computing, 45: 2-17, 2015. 10.1016/​j.parco.2014.12.001.

[38] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik. qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:1601.07195, 2016.

[39] S. Pakin. A quantum macro assembler. In High Performance Extreme Computing Conference (HPEC), 2016 IEEE, pages 1-8. IEEE, 2016. 10.1109/​HPEC.2016.7761637.

[40] R. S. Smith, M. J. Curtis, and W. J. Zeng. A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355, 2016.

[41] D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an open source software framework for quantum computing. Quantum, 2: 49, 2018. 10.22331/​q-2018-01-31-49.

[42] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[43] E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and A. Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PloS one, 13 (12): e0208510, 2018. 10.1371/​journal.pone.0208510.

[44] A. J. McCaskey, E. F. Dumitrescu, D. Liakh, M. Chen, W.-c. Feng, and T. S. Humble. Extreme-scale programming model for quantum acceleration within high performance computing. arXiv preprint arXiv:1710.01794, 2017.

[45] J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. S. Fried, C. Gidney, T. Häner, V. Havlíček, Z. Jiang, M. Neeley, et al. OpenFermion: The electronic structure package for quantum computers. arXiv preprint arXiv:1710.07629, 2017.

[46] S. Liu, X. Wang, L. Zhou, J. Guan, Y. Li, Y. He, R. Duan, and M. Ying. $ Q|SI\rangle $: A quantum programming environment. In Symposium on Real-Time and Hybrid Systems, pages 133-164. Springer, 2018. 10.1007/​978-3-030-01461-2_8.

[47] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler. Q#: Enabling scalable quantum computing and development with a high-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018, page 7. ACM, 2018. 10.1145/​3183895.3183901.

[48] S. Lloyd and S. L. Braunstein. Quantum computation over continuous variables. Physical Review Letters, 82 (8): 1784, 1999. 10.1103/​PhysRevLett.82.1784.

[49] S. L. Braunstein and P. van Loock. Quantum information with continuous variables. Reviews of Modern Physics, 77: 513-577, 2005. 10.1103/​RevModPhys.77.513.

[50] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd. Gaussian quantum information. Reviews of Modern Physics, 84 (2): 621, 2012. 10.1103/​RevModPhys.84.621.

[51] M. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University Press, 2002.

[52] A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. arXiv preprint arXiv:1410.5401, 2014.

[53] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538 (7626): 471-476, 2016. 10.1038/​nature20101.

[54] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13 (2): 22-30, 2011. 10.1109/​MCSE.2011.37.

[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[56] N. Quesada. A faster calculation of franck-condon factors and fock matrix elements of gaussian unitaries using loop hafnians. arXiv preprint arXiv:1811.09597, 2018.

[57] D. Gottesman, A. Kitaev, and J. Preskill. Encoding a qubit in an oscillator. Physical Review A, 64 (1): 012310, 2001. 10.1103/​PhysRevA.64.012310.

[58] A. Ferraro, S. Olivares, and M. G. Paris. Gaussian states in continuous variable quantum information. arXiv preprint quant-ph/​0503237, 2005.

[59] J. Williamson. On the algebraic problem concerning the normal forms of linear dynamical systems. American Journal of Mathematics, 58 (1): 141, 1936. 10.2307/​2371062.

[60] C. Bloch and A. Messiah. The canonical form of an antisymmetric tensor and its application to the theory of superconductivity. Nuclear Physics, 39: 95-106, 1962. 10.1016/​0029-5582(62)90377-2.

[61] S. L. Braunstein. Squeezing as an irreducible resource. Physical Review A, 71 (5): 055801, 2005. 10.1103/​PhysRevA.71.055801.

[62] R. Simon, N. Mukunda, and B. Dutta. Quantum-noise matrix for multimode systems: $U(n)$ invariance, squeezing, and normal forms. Physical Review A, 49 (3): 1567, 1994. 10.1103/​PhysRevA.49.1567.

[63] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley. Optimal design for universal multiport interferometers. Optica, 3 (12): 1460-1465, 2016. 10.1364/​OPTICA.3.001460.

[64] J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Bradler, and N. Killoran. Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Science and Technology, 2018. 10.1088/​2058-9565/​aaf59e.

[65] N. Quesada and A. M. Brańczyk. Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes. Physical Review A, 98: 043813, 2018. 10.1103/​PhysRevA.98.043813.

[66] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd. Continuous-variable quantum neural networks. arXiv preprint arXiv:1806.06871, 2018.

[67] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of any discrete unitary operator. Physical Review Letters, 73: 58-61, 1994. 10.1103/​PhysRevLett.73.58.

[68] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017.

[69] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto. Efficient classical simulation of continuous variable quantum information processes. Physical Review Letters, 88: 097904, 2002. 10.1103/​PhysRevLett.88.097904.

[70] A. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O'Brien, and T. Ralph. Boson sampling from a Gaussian state. Physical Review Letters, 113 (10): 100502, 2014. 10.1103/​PhysRevLett.113.100502.

[71] G. Cariolaro and G. Pierobon. Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization. Physical Review A, 94 (6): 062109, 2016a. 10.1103/​PhysRevA.94.062109.

[72] G. Cariolaro and G. Pierobon. Reexamination of Bloch-Messiah reduction. Physical Review A, 93 (6): 062115, 2016b. 10.1103/​PhysRevA.93.062115.

[73] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70: 1895-1899, 1993. 10.1103/​PhysRevLett.70.1895.

[74] A. Furusawa and P. van Loock. Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley, 2011.

[75] W. Steeb and Y. Hardy. Problems and Solutions in Quantum Computing and Quantum Information. World Scientific, 2006.

[76] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock. Quantum computing with continuous-variable clusters. Physical Review A, 79: 062318, 2009. 10.1103/​PhysRevA.79.062318.

[77] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402: 390-393, 1999. 10.1038/​46503.

[78] S. D. Bartlett and W. J. Munro. Quantum teleportation of optical quantum gates. Physical Review Letters, 90: 117901, 2003. 10.1103/​PhysRevLett.90.117901.

[79] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther. Experimental boson sampling. Nature Photonics, 7 (7): 540-544, 2013. 10.1038/​nphoton.2013.102.

[80] N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino. Experimental validation of photonic boson sampling. Nature Photonics, 8 (8): 615-620, 2014. 10.1038/​nphoton.2014.135.

[81] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics, 7 (7): 545-549, 2013. 10.1038/​nphoton.2013.112.

[82] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley. Boson sampling on a photonic chip. Science, 339 (6121): 798-801, 2012. 10.1126/​science.1231692.

[83] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8 (2): 189-201, 1979. 10.1016/​0304-3975(79)90044-6.

[84] E. R. Caianiello. Combinatorics and renormalization in quantum field theory, volume 38. Benjamin, 1973.

[85] A. Barvinok. Combinatorics and complexity of partition functions, volume 274. Springer, 2016.

[86] K. Brádler, P.-L. Dallaire-Demers, P. Rebentrost, D. Su, and C. Weedbrook. Gaussian boson sampling for perfect matchings of arbitrary graphs. Physical Review A, 98: 032310, Sep 2018. 10.1103/​PhysRevA.98.032310.

[87] A. Björklund, B. Gupt, and N. Quesada. A faster hafnian formula for complex matrices and its benchmarking on the titan supercomputer. arXiv preprint arXiv:1805.12498, 2018.

[88] N. Quesada, J. M. Arrazola, and N. Killoran. Gaussian boson sampling using threshold detectors. Physical Review A, 98: 062322, 2018. 10.1103/​PhysRevA.98.062322.

[89] B. Gupt, J. M. Arrazola, N. Quesada, and T. R. Bromley. Classical benchmarking of gaussian boson sampling on the titan supercomputer. arXiv preprint arXiv:1810.00900, 2018.

[90] D. Shepherd and M. J. Bremner. Temporally unstructured quantum computation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2105): 1413-1439, 2009. 10.1098/​rspa.2008.0443.

[91] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum, 1: 8, 2017. 10.22331/​q-2017-04-25-8.

[92] A. P. Lund, M. J. Bremner, and T. C. Ralph. Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Information, 3 (1), 2017. 10.1038/​s41534-017-0018-2.

[93] J. M. Arrazola, P. Rebentrost, and C. Weedbrook. Quantum supremacy and high-dimensional integration. arXiv preprint arXiv:1712.07288, 2017.

[94] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated quantum computation of molecular energies. Science, 309 (5741): 1704-1707, 2005. 10.1126/​science.1113479.

[95] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109 (5): 735-750, 2011. 10.1080/​00268976.2011.552441.

[96] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information and Computation, 12 (11-12): 901-924, 2012. 10.26421/​QIC12.11-12.

[97] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359-371, 2006. 10.1007/​s00220-006-0150-x.

[98] T. Kalajdzievski, C. Weedbrook, and P. Rebentrost. Continuous-variable gate decomposition for the bose-hubbard model. Physical Review A, 97: 062311, Jun 2018. 10.1103/​PhysRevA.97.062311.

[99] T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, and M. Lewenstein. Dipolar molecules in optical lattices. Physical Review Letters, 108: 115301, 2012. 10.1103/​PhysRevLett.108.115301.

Cited by

[1] Krishna Kumar Sabapathy, Haoyu Qi, Josh Izaac, and Christian Weedbrook, "Near-deterministic production of universal quantum photonic gates enhanced by machine learning", arXiv:1809.04680 (2018).

[2] C. Wetterich, "Quantum computing with classical bits", arXiv:1806.05960 (2018).

[3] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).

[4] Christian Pehle, Karlheinz Meier, Markus Oberthaler, and Christof Wetterich, "Emulating quantum computation with artificial neural networks", arXiv:1810.10335 (2018).

[5] Z. Vernon, N. Quesada, M. Liscidini, B. Morrison, M. Menotti, K. Tan, and J. E. Sipe, "Scalable squeezed light source for continuous variable quantum sampling", arXiv:1807.00044 (2018).

[6] Hao Tang, Yan-Yan Zhu, Jun Gao, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: A Graphical Interface Program for Photonic Analog Quantum Computing", arXiv:1810.02289 (2018).

[7] Miller Eaton, Rajveer Nehra, and Olivier Pfister, "Gottesman-Kitaev-Preskill state preparation by photon catalysis", arXiv:1903.01925 (2019).

[8] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces", Physical Review Letters 122 4, 040504 (2019).

[9] Nicolás Quesada and Agata M. Brańczyk, "Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes", Physical Review A 98 4, 043813 (2018).

[10] Colleen M. Farrelly, Srikanth Namuduri, and Uchenna Chukwu, "Quantum Generalized Linear Models", arXiv:1905.00365 (2019).

[11] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Quantum computational finance: Monte Carlo pricing of financial derivatives", Physical Review A 98 2, 022321 (2018).

[12] Guillaume Verdon, Juan Miguel Arrazola, Kamil Brádler, and Nathan Killoran, "A Quantum Approximate Optimization Algorithm for continuous problems", arXiv:1902.00409 (2019).

[13] M. Kostylev, A. B. Ustinov, A. V. Drozdovskii, B. A. Kalinikos, and E. Ivanov, "Parametrically squeezed states of microwave magnons in yttrium iron garnet films", arXiv:1811.02104 (2018).

[14] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth Lloyd, "Quantum algorithm for non-homogeneous linear partial differential equations", arXiv:1809.02622 (2018).

[15] Rosanna Nichols, Lana Mineh, Jesús Rubio, Jonathan C. F. Matthews, and Paul A. Knott, "Designing quantum experiments with a genetic algorithm", arXiv:1812.01032 (2018).

[16] Nathan Killoran, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd, "Continuous-variable quantum neural networks", arXiv:1806.06871 (2018).

[17] Mark Fingerhuth, Tomáš Babej, and Peter Wittek, "Open source software in quantum computing", PLoS ONE 13 12, e0208561 (2018).

[18] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Photonic quantum algorithm for Monte Carlo integration", arXiv:1809.02579 (2018).

[19] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, and Ramona Wolf, "Efficient Learning for Deep Quantum Neural Networks", arXiv:1902.10445 (2019).

[20] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).

[21] Jarrod R. McClean, Kevin J. Sung, Ian D. Kivlichan, Yudong Cao, Chengyu Dai, E. Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner, Tarini Hardikar, Vojtěch Havlíček, Oscar Higgott, Cupjin Huang, Josh Izaac, Zhang Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas O'Brien, Bryan O'Gorman, Isil Ozfidan, Maxwell D. Radin, Jhonathan Romero, Nicholas Rubin, Nicolas P. D. Sawaya, Kanav Setia, Sukin Sim, Damian S. Steiger, Mark Steudtner, Qiming Sun, Wei Sun, Daochen Wang, Fang Zhang, and Ryan Babbush, "OpenFermion: The Electronic Structure Package for Quantum Computers", arXiv:1710.07629 (2017).

[22] Juan Miguel Arrazola, Thomas R. Bromley, Josh Izaac, Casey R. Myers, Kamil Brádler, and Nathan Killoran, "Machine learning method for state preparation and gate synthesis on photonic quantum computers", arXiv:1807.10781 (2018).

[23] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran, "PennyLane: Automatic differentiation of hybrid quantum-classical computations", arXiv:1811.04968 (2018).

[24] Ryan LaRose, "Overview and Comparison of Gate Level Quantum Software Platforms", Quantum 3, 130 (2019).

[25] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran, "Evaluating analytic gradients on quantum hardware", Physical Review A 99 3, 032331 (2019).

[26] Nicolás Quesada, "Franck-Condon factors by counting perfect matchings of graphs with loops", The Journal of Chemical Physics 150 16, 164113 (2019).

The above citations are from Crossref's cited-by service (last updated 2019-05-20 22:22:36) and SAO/NASA ADS (last updated 2019-05-20 22:22:37). The list may be incomplete as not all publishers provide suitable and complete citation data.