Strawberry Fields: A Software Platform for Photonic Quantum Computing
Xanadu, 372 Richmond St W, Toronto, M5V 1X6, Canada
Published: | 2019-03-11, volume 3, page 129 |
Eprint: | arXiv:1804.03159v2 |
Doi: | https://doi.org/10.22331/q-2019-03-11-129 |
Citation: | Quantum 3, 129 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We introduce Strawberry Fields, an open-source quantum programming architecture for light-based quantum computers, and detail its key features. Built in Python, Strawberry Fields is a full-stack library for design, simulation, optimization, and quantum machine learning of continuous-variable circuits. The platform consists of three main components: (i) an API for quantum programming based on an easy-to-use language named Blackbird; (ii) a suite of three virtual quantum computer backends, built in NumPy and TensorFlow, each targeting specialized uses; and (iii) an engine which can compile Blackbird programs on various backends, including the three built-in simulators, and - in the near future - photonic quantum information processors. The library also contains examples of several paradigmatic algorithms, including teleportation, (Gaussian) boson sampling, instantaneous quantum polynomial, Hamiltonian simulation, and variational quantum circuit optimization.

► BibTeX data
► References
[1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41 (2): 303–332, 1999. 10.1137/S0036144598347011.
https://doi.org/10.1137/S0036144598347011
[2] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996.
[3] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, 103 (15): 150502, 2009. 10.1103/PhysRevLett.103.150502.
https://doi.org/10.1103/PhysRevLett.103.150502
[4] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, 2018. 10.22331/q-2018-08-06-79.
https://doi.org/10.22331/q-2018-08-06-79
[5] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 2014. 10.1038/ncomms5213.
https://doi.org/10.1038/ncomms5213
[6] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, 2016. 10.1088/1367-2630/18/2/023023.
https://doi.org/10.1088/1367-2630/18/2/023023
[7] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
arXiv:1411.4028
[8] E. Farhi and A. W. Harrow. Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.
arXiv:1602.07674
[9] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333–342. ACM, 2011. 10.1145/1993636.1993682.
https://doi.org/10.1145/1993636.1993682
[10] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex. Gaussian boson sampling. Physical Review Letters, 119: 170501, 2017. 10.1103/PhysRevLett.119.170501.
https://doi.org/10.1103/PhysRevLett.119.170501
[11] L. Chakhmakhchyan, R. Garcia-Patron, and N. J. Cerf. Boson sampling with Gaussian measurements. Physical Review A, 96: 032326, 2017. 10.1103/PhysRevA.96.032326.
https://doi.org/10.1103/PhysRevA.96.032326
[12] M. J. Bremner, R. Jozsa, and D. J. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page rspa20100301. The Royal Society, 2010. 10.1098/rspa.2010.0301.
https://doi.org/10.1098/rspa.2010.0301
[13] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. Physical Review Letters, 117 (8): 080501, 2016. 10.1103/PhysRevLett.117.080501.
https://doi.org/10.1103/PhysRevLett.117.080501
[14] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595, 2018. 10.1038/s41567-018-0124-x.
https://doi.org/10.1038/s41567-018-0124-x
[15] S. Aaronson and L. Chen. Complexity-Theoretic Foundations of Quantum Supremacy Experiments. In R. O'Donnell, editor, 32nd Computational Complexity Conference (CCC 2017), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:67. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. ISBN 978-3-95977-040-8. 10.4230/LIPIcs.CCC.2017.22.
https://doi.org/10.4230/LIPIcs.CCC.2017.22
[16] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195–199, 2018. 10.1126/science.aao4309.
https://doi.org/10.1126/science.aao4309
[17] T. Douce, D. Markham, E. Kashefi, E. Diamanti, T. Coudreau, P. Milman, P. van Loock, and G. Ferrini. Continuous-variable instantaneous quantum computing is hard to sample. Physical Review Letters, 118 (7), 2017. 10.1103/PhysRevLett.118.070503.
https://doi.org/10.1103/PhysRevLett.118.070503
[18] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, and J. Doll. Quantum annealing: a new method for minimizing multidimensional functions. Chemical Physics Letters, 219 (5-6): 343–348, 1994. 10.1016/0009-2614(94)00117-0.
https://doi.org/10.1016/0009-2614(94)00117-0
[19] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473 (7346): 194–198, 2011. 10.1038/nature10012.
https://doi.org/10.1038/nature10012
[20] M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, and E. Solano. From transistor to trapped-ion computers for quantum chemistry. Scientific Reports, 4: 3589, 2014. 10.1038/srep03589.
https://doi.org/10.1038/srep03589
[21] P. O'Malley, R. Babbush, I. Kivlichan, J. Romero, J. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al. Scalable quantum simulation of molecular energies. Physical Review X, 6 (3): 031007, 2016. 10.1103/PhysRevX.6.031007.
https://doi.org/10.1103/PhysRevX.6.031007
[22] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K. Kim. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Physical Review A, 95 (2): 020501, 2017. 10.1103/PhysRevA.95.020501.
https://doi.org/10.1103/PhysRevA.95.020501
[23] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, 2017. 10.1038/nature23879.
https://doi.org/10.1038/nature23879
[24] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. L. de Prado. Solving the optimal trading trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing, 10 (6): 1053–1060, 2016. 10.1109/JSTSP.2016.2574703.
https://doi.org/10.1109/JSTSP.2016.2574703
[25] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2: 5, 2014. 10.3389/fphy.2014.00005.
https://doi.org/10.3389/fphy.2014.00005
[26] F. Neukart, D. Von Dollen, G. Compostella, C. Seidel, S. Yarkoni, and B. Parney. Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4: 29, 2017. 10.3389/fict.2017.00029.
https://doi.org/10.3389/fict.2017.00029
[27] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready. Training a large scale classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0912.0779, 2009.
arXiv:0912.0779
[28] K. L. Pudenz and D. A. Lidar. Quantum adiabatic machine learning. Quantum Information Processing, 12 (5): 2027–2070, 2013. 10.1007/s11128-012-0506-4.
https://doi.org/10.1007/s11128-012-0506-4
[29] D. Crawford, A. Levit, N. Ghadermarzy, J. S. Oberoi, and P. Ronagh. Reinforcement learning using quantum Boltzmann machines. Quantum Information & Computation, 18 (1-2): 0051–0074, 2018. 10.26421/QIC18.1-2.
https://doi.org/10.26421/QIC18.1-2
[30] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko. Quantum boltzmann machine. Phys. Rev. X, 8: 021050, May 2018. 10.1103/PhysRevX.8.021050.
https://doi.org/10.1103/PhysRevX.8.021050
[31] D. Ristè, M. P. Da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and B. R. Johnson. Demonstration of quantum advantage in machine learning. npj Quantum Information, 3 (1): 16, 2017. 10.1038/s41534-017-0017-3.
https://doi.org/10.1038/s41534-017-0017-3
[32] G. Verdon, M. Broughton, and J. Biamonte. A quantum algorithm to train neural networks using low-depth circuits. arXiv preprint arXiv:1712.05304, 2017.
arXiv:1712.05304
[33] J. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, et al. Unsupervised machine learning on a hybrid quantum computer. arXiv preprint arXiv:1712.05771, 2017.
arXiv:1712.05771
[34] M. Schuld and N. Killoran. Quantum machine learning in feature hilbert spaces. Physical Review Letters, 122: 040504, Feb 2019. 10.1103/PhysRevLett.122.040504.
https://doi.org/10.1103/PhysRevLett.122.040504
[35] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: a scalable quantum programming language. In ACM SIGPLAN Notices, volume 48, pages 333–342. ACM, 2013. 10.1145/2491956.2462177.
https://doi.org/10.1145/2491956.2462177
[36] D. Wecker and K. M. Svore. Liqui|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.
arXiv:1402.4467
[37] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Computing, 45: 2–17, 2015. 10.1016/j.parco.2014.12.001.
https://doi.org/10.1016/j.parco.2014.12.001
[38] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik. qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:1601.07195, 2016.
arXiv:1601.07195
[39] S. Pakin. A quantum macro assembler. In High Performance Extreme Computing Conference (HPEC), 2016 IEEE, pages 1–8. IEEE, 2016. 10.1109/HPEC.2016.7761637.
https://doi.org/10.1109/HPEC.2016.7761637
[40] R. S. Smith, M. J. Curtis, and W. J. Zeng. A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355, 2016.
arXiv:1608.03355
[41] D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an open source software framework for quantum computing. Quantum, 2: 49, 2018. 10.22331/q-2018-01-31-49.
https://doi.org/10.22331/q-2018-01-31-49
[42] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.
arXiv:1707.03429
[43] E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and A. Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PloS one, 13 (12): e0208510, 2018. 10.1371/journal.pone.0208510.
https://doi.org/10.1371/journal.pone.0208510
[44] A. J. McCaskey, E. F. Dumitrescu, D. Liakh, M. Chen, W.-c. Feng, and T. S. Humble. Extreme-scale programming model for quantum acceleration within high performance computing. arXiv preprint arXiv:1710.01794, 2017.
arXiv:1710.01794
[45] J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. S. Fried, C. Gidney, T. Häner, V. Havlíček, Z. Jiang, M. Neeley, et al. OpenFermion: The electronic structure package for quantum computers. arXiv preprint arXiv:1710.07629, 2017.
arXiv:1710.07629
[46] S. Liu, X. Wang, L. Zhou, J. Guan, Y. Li, Y. He, R. Duan, and M. Ying. $ Q|SI\rangle $: A quantum programming environment. In Symposium on Real-Time and Hybrid Systems, pages 133–164. Springer, 2018. 10.1007/978-3-030-01461-2_8.
https://doi.org/10.1007/978-3-030-01461-2_8
[47] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler. Q#: Enabling scalable quantum computing and development with a high-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018, page 7. ACM, 2018. 10.1145/3183895.3183901.
https://doi.org/10.1145/3183895.3183901
[48] S. Lloyd and S. L. Braunstein. Quantum computation over continuous variables. Physical Review Letters, 82 (8): 1784, 1999. 10.1103/PhysRevLett.82.1784.
https://doi.org/10.1103/PhysRevLett.82.1784
[49] S. L. Braunstein and P. van Loock. Quantum information with continuous variables. Reviews of Modern Physics, 77: 513–577, 2005. 10.1103/RevModPhys.77.513.
https://doi.org/10.1103/RevModPhys.77.513
[50] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd. Gaussian quantum information. Reviews of Modern Physics, 84 (2): 621, 2012. 10.1103/RevModPhys.84.621.
https://doi.org/10.1103/RevModPhys.84.621
[51] M. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University Press, 2002.
[52] A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. arXiv preprint arXiv:1410.5401, 2014.
arXiv:1410.5401
[53] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538 (7626): 471–476, 2016. 10.1038/nature20101.
https://doi.org/10.1038/nature20101
[54] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13 (2): 22–30, 2011. 10.1109/MCSE.2011.37.
https://doi.org/10.1109/MCSE.2011.37
[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
arXiv:1603.04467
[56] N. Quesada. A faster calculation of franck-condon factors and fock matrix elements of gaussian unitaries using loop hafnians. arXiv preprint arXiv:1811.09597, 2018.
arXiv:1811.09597
[57] D. Gottesman, A. Kitaev, and J. Preskill. Encoding a qubit in an oscillator. Physical Review A, 64 (1): 012310, 2001. 10.1103/PhysRevA.64.012310.
https://doi.org/10.1103/PhysRevA.64.012310
[58] A. Ferraro, S. Olivares, and M. G. Paris. Gaussian states in continuous variable quantum information. arXiv preprint quant-ph/0503237, 2005.
arXiv:quant-ph/0503237
[59] J. Williamson. On the algebraic problem concerning the normal forms of linear dynamical systems. American Journal of Mathematics, 58 (1): 141, 1936. 10.2307/2371062.
https://doi.org/10.2307/2371062
[60] C. Bloch and A. Messiah. The canonical form of an antisymmetric tensor and its application to the theory of superconductivity. Nuclear Physics, 39: 95–106, 1962. 10.1016/0029-5582(62)90377-2.
https://doi.org/10.1016/0029-5582(62)90377-2
[61] S. L. Braunstein. Squeezing as an irreducible resource. Physical Review A, 71 (5): 055801, 2005. 10.1103/PhysRevA.71.055801.
https://doi.org/10.1103/PhysRevA.71.055801
[62] R. Simon, N. Mukunda, and B. Dutta. Quantum-noise matrix for multimode systems: $U(n)$ invariance, squeezing, and normal forms. Physical Review A, 49 (3): 1567, 1994. 10.1103/PhysRevA.49.1567.
https://doi.org/10.1103/PhysRevA.49.1567
[63] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley. Optimal design for universal multiport interferometers. Optica, 3 (12): 1460–1465, 2016. 10.1364/OPTICA.3.001460.
https://doi.org/10.1364/OPTICA.3.001460
[64] J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Bradler, and N. Killoran. Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Science and Technology, 2018. 10.1088/2058-9565/aaf59e.
https://doi.org/10.1088/2058-9565/aaf59e
[65] N. Quesada and A. M. Brańczyk. Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes. Physical Review A, 98: 043813, 2018. 10.1103/PhysRevA.98.043813.
https://doi.org/10.1103/PhysRevA.98.043813
[66] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd. Continuous-variable quantum neural networks. arXiv preprint arXiv:1806.06871, 2018.
arXiv:1806.06871
[67] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of any discrete unitary operator. Physical Review Letters, 73: 58–61, 1994. 10.1103/PhysRevLett.73.58.
https://doi.org/10.1103/PhysRevLett.73.58
[68] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017.
[69] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto. Efficient classical simulation of continuous variable quantum information processes. Physical Review Letters, 88: 097904, 2002. 10.1103/PhysRevLett.88.097904.
https://doi.org/10.1103/PhysRevLett.88.097904
[70] A. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O'Brien, and T. Ralph. Boson sampling from a Gaussian state. Physical Review Letters, 113 (10): 100502, 2014. 10.1103/PhysRevLett.113.100502.
https://doi.org/10.1103/PhysRevLett.113.100502
[71] G. Cariolaro and G. Pierobon. Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization. Physical Review A, 94 (6): 062109, 2016a. 10.1103/PhysRevA.94.062109.
https://doi.org/10.1103/PhysRevA.94.062109
[72] G. Cariolaro and G. Pierobon. Reexamination of Bloch-Messiah reduction. Physical Review A, 93 (6): 062115, 2016b. 10.1103/PhysRevA.93.062115.
https://doi.org/10.1103/PhysRevA.93.062115
[73] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70: 1895–1899, 1993. 10.1103/PhysRevLett.70.1895.
https://doi.org/10.1103/PhysRevLett.70.1895
[74] A. Furusawa and P. van Loock. Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley, 2011.
[75] W. Steeb and Y. Hardy. Problems and Solutions in Quantum Computing and Quantum Information. World Scientific, 2006.
[76] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock. Quantum computing with continuous-variable clusters. Physical Review A, 79: 062318, 2009. 10.1103/PhysRevA.79.062318.
https://doi.org/10.1103/PhysRevA.79.062318
[77] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402: 390–393, 1999. 10.1038/46503.
https://doi.org/10.1038/46503
[78] S. D. Bartlett and W. J. Munro. Quantum teleportation of optical quantum gates. Physical Review Letters, 90: 117901, 2003. 10.1103/PhysRevLett.90.117901.
https://doi.org/10.1103/PhysRevLett.90.117901
[79] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther. Experimental boson sampling. Nature Photonics, 7 (7): 540–544, 2013. 10.1038/nphoton.2013.102.
https://doi.org/10.1038/nphoton.2013.102
[80] N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino. Experimental validation of photonic boson sampling. Nature Photonics, 8 (8): 615–620, 2014. 10.1038/nphoton.2014.135.
https://doi.org/10.1038/nphoton.2014.135
[81] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics, 7 (7): 545–549, 2013. 10.1038/nphoton.2013.112.
https://doi.org/10.1038/nphoton.2013.112
[82] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley. Boson sampling on a photonic chip. Science, 339 (6121): 798–801, 2012. 10.1126/science.1231692.
https://doi.org/10.1126/science.1231692
[83] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8 (2): 189–201, 1979. 10.1016/0304-3975(79)90044-6.
https://doi.org/10.1016/0304-3975(79)90044-6
[84] E. R. Caianiello. Combinatorics and renormalization in quantum field theory, volume 38. Benjamin, 1973.
[85] A. Barvinok. Combinatorics and complexity of partition functions, volume 274. Springer, 2016.
[86] K. Brádler, P.-L. Dallaire-Demers, P. Rebentrost, D. Su, and C. Weedbrook. Gaussian boson sampling for perfect matchings of arbitrary graphs. Physical Review A, 98: 032310, Sep 2018. 10.1103/PhysRevA.98.032310.
https://doi.org/10.1103/PhysRevA.98.032310
[87] A. Björklund, B. Gupt, and N. Quesada. A faster hafnian formula for complex matrices and its benchmarking on the titan supercomputer. arXiv preprint arXiv:1805.12498, 2018.
arXiv:1805.12498
[88] N. Quesada, J. M. Arrazola, and N. Killoran. Gaussian boson sampling using threshold detectors. Physical Review A, 98: 062322, 2018. 10.1103/PhysRevA.98.062322.
https://doi.org/10.1103/PhysRevA.98.062322
[89] B. Gupt, J. M. Arrazola, N. Quesada, and T. R. Bromley. Classical benchmarking of gaussian boson sampling on the titan supercomputer. arXiv preprint arXiv:1810.00900, 2018.
arXiv:1810.00900
[90] D. Shepherd and M. J. Bremner. Temporally unstructured quantum computation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2105): 1413–1439, 2009. 10.1098/rspa.2008.0443.
https://doi.org/10.1098/rspa.2008.0443
[91] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum, 1: 8, 2017. 10.22331/q-2017-04-25-8.
https://doi.org/10.22331/q-2017-04-25-8
[92] A. P. Lund, M. J. Bremner, and T. C. Ralph. Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Information, 3 (1), 2017. 10.1038/s41534-017-0018-2.
https://doi.org/10.1038/s41534-017-0018-2
[93] J. M. Arrazola, P. Rebentrost, and C. Weedbrook. Quantum supremacy and high-dimensional integration. arXiv preprint arXiv:1712.07288, 2017.
arXiv:1712.07288
[94] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated quantum computation of molecular energies. Science, 309 (5741): 1704–1707, 2005. 10.1126/science.1113479.
https://doi.org/10.1126/science.1113479
[95] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109 (5): 735–750, 2011. 10.1080/00268976.2011.552441.
https://doi.org/10.1080/00268976.2011.552441
[96] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information and Computation, 12 (11-12): 901–924, 2012. 10.26421/QIC12.11-12.
https://doi.org/10.26421/QIC12.11-12
[97] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2006. 10.1007/s00220-006-0150-x.
https://doi.org/10.1007/s00220-006-0150-x
[98] T. Kalajdzievski, C. Weedbrook, and P. Rebentrost. Continuous-variable gate decomposition for the bose-hubbard model. Physical Review A, 97: 062311, Jun 2018. 10.1103/PhysRevA.97.062311.
https://doi.org/10.1103/PhysRevA.97.062311
[99] T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, and M. Lewenstein. Dipolar molecules in optical lattices. Physical Review Letters, 108: 115301, 2012. 10.1103/PhysRevLett.108.115301.
https://doi.org/10.1103/PhysRevLett.108.115301
Cited by
[1] Kaitlin N. Smith, Gokul Subramanian Ravi, Thomas Alexander, Nicholas T. Bronn, André R. R. Carvalho, Alba Cervera-Lierta, Frederic T. Chong, Jerry M. Chow, Michael Cubeddu, Akel Hashim, Liang Jiang, Olivia Lanes, Matthew J. Otten, David I. Schuster, Pranav Gokhale, Nathan Earnest, and Alexey Galda, "Programming physical quantum systems with pulse-level control", Frontiers in Physics 10, 900099 (2022).
[2] Sonia Lopez Alarcon and Federico Rueda, "Compilation of Gaussian boson samplers for quantum computing", The Journal of Supercomputing (2023).
[3] Alexander Nüßeler, Ish Dhand, Susana F. Huelga, and Martin B. Plenio, "Efficient construction of matrix-product representations of many-body Gaussian states", Physical Review A 104 1, 012415 (2021).
[4] Krishna Kumar Sabapathy, Haoyu Qi, Josh Izaac, and Christian Weedbrook, "Production of photonic universal quantum gates enhanced by machine learning", Physical Review A 100 1, 012326 (2019).
[5] N. Quesada, L. G. Helt, M. Menotti, M. Liscidini, and J. E. Sipe, "Beyond photon pairs—nonlinear quantum photonics in the high-gain regime: a tutorial", Advances in Optics and Photonics 14 3, 291 (2022).
[6] F. Benatti, S. Mancini, and S. Mangini, "Continuous variable quantum perceptron", International Journal of Quantum Information 17 08, 1941009 (2019).
[7] Miller Eaton, Rajveer Nehra, and Olivier Pfister, "Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon catalysis", New Journal of Physics 21 11, 113034 (2019).
[8] J. Eli Bourassa, Nicolás Quesada, Ilan Tzitrin, Antal Száva, Theodor Isacsson, Josh Izaac, Krishna Kumar Sabapathy, Guillaume Dauphinais, and Ish Dhand, "Fast Simulation of Bosonic Qubits via Gaussian Functions in Phase Space", PRX Quantum 2 4, 040315 (2021).
[9] Ryan LaRose, "Overview and Comparison of Gate Level Quantum Software Platforms", Quantum 3, 130 (2019).
[10] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran, "Transfer learning in hybrid classical-quantum neural networks", Quantum 4, 340 (2020).
[11] Nicolás Quesada, "Franck-Condon factors by counting perfect matchings of graphs with loops", The Journal of Chemical Physics 150 16, 164113 (2019).
[12] Ilan Tzitrin, J. Eli Bourassa, Nicolas C. Menicucci, and Krishna Kumar Sabapathy, "Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes", Physical Review A 101 3, 032315 (2020).
[13] Yan Zhu, Ya-Dong Wu, Ge Bai, Dong-Sheng Wang, Yuexuan Wang, and Giulio Chiribella, "Flexible learning of quantum states with generative query neural networks", Nature Communications 13 1, 6222 (2022).
[14] Nathan Killoran, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd, "Continuous-variable quantum neural networks", Physical Review Research 1 3, 033063 (2019).
[15] Kan Takase, Jun-ichi Yoshikawa, Warit Asavanant, Mamoru Endo, and Akira Furusawa, "Generation of optical Schrödinger cat states by generalized photon subtraction", Physical Review A 103 1, 013710 (2021).
[16] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).
[17] Weikang Li, Zhi-de Lu, and Dong-Ling Deng, "Quantum Neural Network Classifiers: A Tutorial", SciPost Physics Lecture Notes 61 (2022).
[18] Dhaval Mehta, Amol Ranadive, Jigna B. Prajapati, and Rajiv Pandey, Studies in Computational Intelligence 1085, 311 (2023) ISBN:978-981-19-9529-3.
[19] Kosuke Fukui and Shuntaro Takeda, "Building a large-scale quantum computer with continuous-variable optical technologies", Journal of Physics B: Atomic, Molecular and Optical Physics 55 1, 012001 (2022).
[20] Jan Provazník, Radim Filip, and Petr Marek, "Taming numerical errors in simulations of continuous variable non-Gaussian state preparation", Scientific Reports 12 1, 16574 (2022).
[21] Mario Krenn, Manuel Erhard, and Anton Zeilinger, "Computer-inspired quantum experiments", Nature Reviews Physics 2 11, 649 (2020).
[22] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Matsuura, Daiqin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy, Nicolas C. Menicucci, and Ish Dhand, "Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer", Quantum 5, 392 (2021).
[23] Eduardo Reck Miranda, Paul Finlay, and Tom Lubowe, Quantum Computer Music 407 (2022) ISBN:978-3-031-13908-6.
[24] Raphael Blankson and Evgeniy Pavlovskiy, Lecture Notes in Networks and Systems 287, 483 (2022) ISBN:978-981-16-5347-6.
[25] Saad Yalouz, Bruno Senjean, Filippo Miatto, and Vedran Dunjko, "Encoding strongly-correlated many-boson wavefunctions on a photonic quantum computer: application to the attractive Bose-Hubbard model", Quantum 5, 572 (2021).
[26] Haoyu Qi, Daniel J. Brod, Nicolás Quesada, and Raúl García-Patrón, "Regimes of Classical Simulability for Noisy Gaussian Boson Sampling", Physical Review Letters 124 10, 100502 (2020).
[27] Thien Nguyen and Alexander J. McCaskey, "Extending Python for Quantum-classical Computing via Quantum Just-in-time Compilation", ACM Transactions on Quantum Computing 3 4, 1 (2022).
[28] Nicolas Heurtel, Andreas Fyrillas, Grégoire de Gliniasty, Raphaël Le Bihan, Sébastien Malherbe, Marceau Pailhas, Eric Bertasi, Boris Bourdoncle, Pierre-Emmanuel Emeriau, Rawad Mezher, Luka Music, Nadia Belabas, Benoît Valiron, Pascale Senellart, Shane Mansfield, and Jean Senellart, "Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing", Quantum 7, 931 (2023).
[29] Jinjing Shi, Shuhui Chen, Jiali Liu, Fangfang Li, Yanyan Feng, and Ronghua Shi, "Quantum Dual Signature with Coherent States Based on Chained Phase-Controlled Operations", Applied Sciences 10 4, 1353 (2020).
[30] Miller Eaton, Carlos González-Arciniegas, Rafael N. Alexander, Nicolas C. Menicucci, and Olivier Pfister, "Measurement-based generation and preservation of cat and grid states within a continuous-variable cluster state", Quantum 6, 769 (2022).
[31] Z. Vernon, N. Quesada, M. Liscidini, B. Morrison, M. Menotti, K. Tan, and J.E. Sipe, "Scalable Squeezed-Light Source for Continuous-Variable Quantum Sampling", Physical Review Applied 12 6, 064024 (2019).
[32] Daniel Gómez Aguado, Vicent Gimeno, Julio José Moyano-Fernández, and Juan Carlos Garcia-Escartin, "QOptCraft: A Python package for the design and study of linear optical quantum systems", Computer Physics Communications 282, 108511 (2023).
[33] Andrew Blance and Michael Spannowsky, "Unsupervised event classification with graphs on classical and photonic quantum computers", Journal of High Energy Physics 2021 8, 170 (2021).
[34] Aaron Z Goldberg and Khabat Heshami, "Multiparameter transmission estimation at the quantum Cramér–Rao limit on a cloud quantum computer", New Journal of Physics 24 11, 113032 (2022).
[35] Jinjing Shi, Shuhui Chen, Yuhu Lu, Yanyan Feng, Ronghua Shi, Yuguang Yang, and Jian Li, "An Approach to Cryptography Based on Continuous-Variable Quantum Neural Network", Scientific Reports 10 1, 2107 (2020).
[36] Vincent Russo, "toqito -- Theory of quantum information toolkit: A Python package for studying quantum information", Journal of Open Source Software 6 61, 3082 (2021).
[37] J. F. F. Bulmer, S. Paesani, R. S. Chadwick, and N. Quesada, "Threshold detection statistics of bosonic states", Physical Review A 106 4, 043712 (2022).
[38] Brajesh Gupt, Josh Izaac, and Nicolás Quesada, "The Walrus: a library for the calculation of hafnians, Hermite polynomials and Gaussian boson sampling", Journal of Open Source Software 4 44, 1705 (2019).
[39] Andreas Björklund, Brajesh Gupt, and Nicolás Quesada, "A Faster Hafnian Formula for Complex Matrices and Its Benchmarking on a Supercomputer", ACM Journal of Experimental Algorithmics 24, 1 (2019).
[40] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R. Shahrokhshahi, C. R. Myers, and K. K. Sabapathy, "Simulating realistic non-Gaussian state preparation", Physical Review A 100 2, 022341 (2019).
[41] Maria Belkhir, Haroun Benkaouha, and Elhadj Benkhelifa, 2022 Ninth International Conference on Software Defined Systems (SDS) 1 (2022) ISBN:979-8-3503-4671-8.
[42] Thomas R Bromley, Juan Miguel Arrazola, Soran Jahangiri, Josh Izaac, Nicolás Quesada, Alain Delgado Gran, Maria Schuld, Jeremy Swinarton, Zeid Zabaneh, and Nathan Killoran, "Applications of near-term photonic quantum computers: software and algorithms", Quantum Science and Technology 5 3, 034010 (2020).
[43] Michel Barbeau and Joaquin Garcia-Alfaro, 2019 IEEE Globecom Workshops (GC Wkshps) 1 (2019) ISBN:978-1-7281-0960-2.
[44] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada, "Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer", Quantum 6, 798 (2022).
[45] Timjan Kalajdzievski and Nicolás Quesada, "Exact and approximate continuous-variable gate decompositions", Quantum 5, 394 (2021).
[46] Ahmed M. El-Mahalawy and Kareem H. El-Safty, "Classical and quantum regression analysis for the optoelectronic performance of NTCDA/p-Si UV photodiode", Optik 246, 167793 (2021).
[47] Yuanheng Wang, Jiajun Ren, Weitang Li, and Zhigang Shuai, "Hybrid Quantum-Classical Boson Sampling Algorithm for Molecular Vibrationally Resolved Electronic Spectroscopy with Duschinsky Rotation and Anharmonicity", The Journal of Physical Chemistry Letters 13 28, 6391 (2022).
[48] Christian Carver, Austen Probst, Benjamin Arnesen, Benjamin Fisher, Tyler Stowell, and Ryan M. Camacho, Frontiers in Optics + Laser Science 2022 (FIO, LS) JTu4A.32 (2022) ISBN:978-1-957171-17-3.
[49] Nicholas H. Stair and Francesco A. Evangelista, "QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure", Journal of Chemical Theory and Computation 18 3, 1555 (2022).
[50] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T. Chong, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) 186 (2020) ISBN:978-1-7281-7383-2.
[51] Gian Giacomo Guerreschi, "Fast simulation of quantum algorithms using circuit optimization", Quantum 6, 706 (2022).
[52] Makhamisa Senekane, Motobatsi Maseli, and Molibeli Benedict Taele, Lecture Notes in Electrical Engineering 674, 205 (2020) ISBN:978-3-030-48229-9.
[53] Daniel Vietz, Johanna Barzen, Frank Leymann, and Karoline Wild, Lecture Notes in Computer Science 12747, 127 (2021) ISBN:978-3-030-77979-5.
[54] Federico Rueda and Sonia Lopez Alarcon, 2021 International Conference on Computational Science and Computational Intelligence (CSCI) 1765 (2021) ISBN:978-1-6654-5841-2.
[55] David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler, "QIRO: A Static Single Assignment-based Quantum Program Representation for Optimization", ACM Transactions on Quantum Computing 3 3, 1 (2022).
[56] Tirthak Patel, Daniel Silver, and Devesh Tiwari, Proceedings of the 49th Annual International Symposium on Computer Architecture 383 (2022) ISBN:9781450386104.
[57] Tirthak Patel and Devesh Tiwari, Proceedings of the 39th International Conference on Computer-Aided Design 1 (2020) ISBN:9781450380263.
[58] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang, "Quantum circuits with many photons on a programmable nanophotonic chip", Nature 591 7848, 54 (2021).
[59] Jakob S Kottmann, Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Philipp Schleich, Abhinav Anand, Matthias Degroote, Skylar Chaney, Maha Kesibi, Naomi Grace Curnow, Brandon Solo, Georgios Tsilimigkounakis, Claudia Zendejas-Morales, Artur F Izmaylov, and Alán Aspuru-Guzik, "TEQUILA: a platform for rapid development of quantum algorithms", Quantum Science and Technology 6 2, 024009 (2021).
[60] Manuel A. Serrano, José A. Cruz-Lemus, Ricardo Perez-Castillo, and Mario Piattini, "Quantum Software Components and Platforms: Overview and Quality Assessment", ACM Computing Surveys 55 8, 1 (2023).
[61] José A. Cruz-Lemus and Manuel A. Serrano, Quantum Software Engineering 229 (2022) ISBN:978-3-031-05323-8.
[62] Zhihao Wu, Junjie Wu, and Anqi Huang, "PhotoniQLAB: a framework for simulating photonic quantum information processing experiments", Quantum Science and Technology 6 2, 024001 (2021).
[63] Piotr Migdał, Klementyna Jankiewicz, Paweł Grabarz, Chiara Decaroli, and Philippe Cochin, "Visualizing quantum mechanics in an interactive simulation – Virtual Lab by Quantum Flytrap", Optical Engineering 61 08, 081808 (2022).
[64] Vikas Hassija, Vinay Chamola, Vikas Saxena, Vaibhav Chanana, Prakhar Parashari, Shahid Mumtaz, and Mohsen Guizani, "Present landscape of quantum computing", IET Quantum Communication 1 2, 42 (2020).
[65] Ian Tillman, Dan Kilper, and Abdella Battou, Optical Fiber Communication Conference (OFC) 2021 W6A.27 (2021) ISBN:978-1-943580-86-6.
[66] N. Schetakis, D. Aghamalyan, P. Griffin, and M. Boguslavsky, "Review of some existing QML frameworks and novel hybrid classical–quantum neural networks realising binary classification for the noisy datasets", Scientific Reports 12 1, 11927 (2022).
[67] M. Kostylev, A. B. Ustinov, A. V. Drozdovskii, B. A. Kalinikos, and E. Ivanov, "Towards experimental observation of parametrically squeezed states of microwave magnons in yttrium iron garnet films", Physical Review B 100 2, 020401 (2019).
[68] Rosanna Nichols, Lana Mineh, Jesús Rubio, Jonathan C F Matthews, and Paul A Knott, "Designing quantum experiments with a genetic algorithm", Quantum Science and Technology 4 4, 045012 (2019).
[69] Hamza Jnane, Nicolas P. D. Sawaya, Borja Peropadre, Alan Aspuru-Guzik, Raul Garcia-Patron, and Joonsuk Huh, "Analog Quantum Simulation of Non-Condon Effects in Molecular Spectroscopy", ACS Photonics 8 7, 2007 (2021).
[70] Matthew Amy and Vlad Gheorghiu, "staq—A full-stack quantum processing toolkit", Quantum Science and Technology 5 3, 034016 (2020).
[71] Matthew Amy, Lecture Notes in Computer Science 11497, 87 (2019) ISBN:978-3-030-21499-9.
[72] S. Sempere-Llagostera, R. B. Patel, I. A. Walmsley, and W. S. Kolthammer, "Experimentally Finding Dense Subgraphs Using a Time-Bin Encoded Gaussian Boson Sampling Device", Physical Review X 12 3, 031045 (2022).
[73] Brian R. La Cour, Maria Maynard, Parth Shroff, Gabriel Ko, and Evan Ellis, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 677 (2022) ISBN:978-1-6654-9113-6.
[74] Shikha Bangar, George Siopsis, and Kübra Yeter-Aydeniz, Quantum 2.0 Conference and Exhibition QTu2A.4 (2022) ISBN:978-1-957171-11-1.
[75] Shikha Bangar, George Siopsis, and Kubra Yeter-Aydeniz, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 779 (2022) ISBN:978-1-6654-9113-6.
[76] Pranav Kairon and Siddhartha Bhattacharyya, Advances in Intelligent Systems and Computing 1279, 113 (2021) ISBN:978-981-15-9289-8.
[77] Daniel Nagy, Zsolt Tabi, Peter Haga, Zsofia Kallus, and Zoltan Zimboras, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 123 (2021) ISBN:978-1-6654-1691-7.
[78] Juan Carrasquilla, "Machine learning for quantum matter", Advances in Physics: X 5 1, 1797528 (2020).
[79] Tirthak Patel and Devesh Tiwari, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2020) ISBN:978-1-7281-9998-6.
[80] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth Lloyd, "Quantum algorithm for nonhomogeneous linear partial differential equations", Physical Review A 100 3, 032306 (2019).
[81] Soran Jahangiri, Juan Miguel Arrazola, Nicolás Quesada, and Alain Delgado, "Quantum algorithm for simulating molecular vibrational excitations", Physical Chemistry Chemical Physics 22 44, 25528 (2020).
[82] Taira Giordani, Valerio Mannucci, Nicolò Spagnolo, Marco Fumero, Arianna Rampini, Emanuele Rodolà, and Fabio Sciarrino, "Certification of Gaussian Boson Sampling via graphs feature vectors and kernels", Quantum Science and Technology 8 1, 015005 (2023).
[83] Tirthak Patel and Devesh Tiwari, Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 443 (2021) ISBN:9781450383172.
[84] Kamil Wereszczyński, Agnieszka Michalczuk, Marcin Paszkuta, and Jacek Gumiela, "High-Precision Voltage Measurement for Optical Quantum Computation", Energies 15 12, 4205 (2022).
[85] Yanyan Feng, Ronghua Shi, Jinjing Shi, Wei Zhao, Yuhu Lu, and Yongze Tang, "Arbitrated quantum signature protocol with boson sampling-based random unitary encryption", Journal of Physics A: Mathematical and Theoretical 53 13, 135301 (2020).
[86] Soran Jahangiri, Juan Miguel Arrazola, and Alain Delgado, "Quantum Algorithm for Simulating Single-Molecule Electron Transport", The Journal of Physical Chemistry Letters 12 4, 1256 (2021).
[87] Weikang Li and Dong-Ling Deng, "Recent advances for quantum classifiers", Science China Physics, Mechanics & Astronomy 65 2, 220301 (2022).
[88] Kübra Yeter-Aydeniz, Eleftherios Moschandreou, and George Siopsis, "Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables", Physical Review A 105 1, 012412 (2022).
[89] Essam H. Houssein, Zainab Abohashima, Mohamed Elhoseny, and Waleed M. Mohamed, "Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision", Expert Systems with Applications 194, 116512 (2022).
[90] I. Brandão, D. Tandeitnik, and T. Guerreiro, "QuGIT: A numerical toolbox for Gaussian quantum states", Computer Physics Communications 280, 108471 (2022).
[91] Mubarak Ali Meerasha, Madhupriya Ganesh, and Krishnamoorthy Pandiyan, "Reconfigurable quantum photonic convolutional neural network layer utilizing photonic gate and teleportation mechanism", Optical and Quantum Electronics 54 11, 770 (2022).
[92] Marija Scekic, Snezana Scepanovic, and Sandra Mitrovic, 2022 11th Mediterranean Conference on Embedded Computing (MECO) 1 (2022) ISBN:978-1-6654-6828-2.
[93] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan, " t|ket⟩: a retargetable compiler for NISQ devices", Quantum Science and Technology 6 1, 014003 (2021).
[94] G.S. Thekkadath, S. Sempere-Llagostera, B.A. Bell, R.B. Patel, M.S. Kim, and I.A. Walmsley, "Experimental Demonstration of Gaussian Boson Sampling with Displacement", PRX Quantum 3 2, 020336 (2022).
[95] Kosuke Fukui, Shuntaro Takeda, Mamoru Endo, Warit Asavanant, Jun-ichi Yoshikawa, Peter van Loock, and Akira Furusawa, "Efficient Backcasting Search for Optical Quantum State Synthesis", Physical Review Letters 128 24, 240503 (2022).
[96] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller, Matthias Troyer, and Krysta Svore, "Quantum programming languages", Nature Reviews Physics 2 12, 709 (2020).
[97] Manas Sajjan, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais, "Quantum machine learning for chemistry and physics", Chemical Society Reviews 51 15, 6475 (2022).
[98] Ömer Eryılmaz and İhsan Yılmaz, "Sürekli Değişken Modele Dayalı Gözetimli Kuantum Makine Öğrenmesi ile Kişilerin Satın Alma Davranışlarının Tespitinin Simulasyonu", Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 1, 140 (2019).
[99] B. A. Bell and I. A. Walmsley, "Further compactifying linear optical unitaries", APL Photonics 6 7, 070804 (2021).
[100] Wei Hu and James Hu, "Distributional Reinforcement Learning with Quantum Neural Networks", Intelligent Control and Automation 10 02, 63 (2019).
[101] Jinjing Shi, Yongze Tang, Yuhu Lu, Yanyan Feng, Ronghua Shi, and Shichao Zhang, "Quantum Circuit Learning with Parameterized Boson Sampling", IEEE Transactions on Knowledge and Data Engineering 1 (2021).
[102] Stefano Markidis, "On physics-informed neural networks for quantum computers", Frontiers in Applied Mathematics and Statistics 8, 1036711 (2022).
[103] Taylor Shields, Adetunmise C. Dada, Lennart Hirsch, Seungjin Yoon, Jonathan M. R. Weaver, Daniele Faccio, Lucia Caspani, Marco Peccianti, and Matteo Clerici, "Electro-Optical Sampling of Single-Cycle THz Fields with Single-Photon Detectors", Sensors 22 23, 9432 (2022).
[104] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran, "Evaluating analytic gradients on quantum hardware", Physical Review A 99 3, 032331 (2019).
[105] Filippo M. Miatto and Nicolás Quesada, "Fast optimization of parametrized quantum optical circuits", Quantum 4, 366 (2020).
[106] Richard A. Brewster, Gerald Baumgartner, and Yanne K. Chembo, "An Overlap-Integral Approach to Quantum Optical Simulation", IEEE Access 11, 26729 (2023).
[107] Poulami Das, Eric Kessler, and Yunong Shi, 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA) 787 (2023) ISBN:978-1-6654-7652-2.
[108] Denis Stanev, Nicolò Spagnolo, and Fabio Sciarrino, "Deterministic optimal quantum cloning via a quantum-optical neural network", Physical Review Research 5 1, 013139 (2023).
[109] Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Basu Roy, and Devesh Tiwari, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2020) ISBN:978-1-7281-9998-6.
[110] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arrazola, Utkarsh Azad, Sam Banning, Carsten Blank, Thomas R Bromley, Benjamin A. Cordier, Jack Ceroni, Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain, Edward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina Lee, Thomas Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Romain Moyard, Zeyue Niu, Lee James O'Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeun Park, Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá, Isidor Schoch, Borun Shi, Shuli Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet, Rodrigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber, David Wierichs, Roeland Wiersema, Moritz Willmann, Vincent Wong, Shaoming Zhang, and Nathan Killoran, "PennyLane: Automatic differentiation of hybrid quantum-classical computations", arXiv:1811.04968, (2018).
[111] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces", Physical Review Letters 122 4, 040504 (2019).
[112] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).
[113] Jarrod R. McClean, Kevin J. Sung, Ian D. Kivlichan, Yudong Cao, Chengyu Dai, E. Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner, Tarini Hardikar, Vojtěch Havlíček, Oscar Higgott, Cupjin Huang, Josh Izaac, Zhang Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas O'Brien, Bryan O'Gorman, Isil Ozfidan, Maxwell D. Radin, Jhonathan Romero, Nicholas Rubin, Nicolas P. D. Sawaya, Kanav Setia, Sukin Sim, Damian S. Steiger, Mark Steudtner, Qiming Sun, Wei Sun, Daochen Wang, Fang Zhang, and Ryan Babbush, "OpenFermion: The Electronic Structure Package for Quantum Computers", arXiv:1710.07629, (2017).
[114] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Quantum computational finance: Monte Carlo pricing of financial derivatives", Physical Review A 98 2, 022321 (2018).
[115] Paramita Basak Upama, Md Jobair Hossain Faruk, Mohammad Nazim, Mohammad Masum, Hossain Shahriar, Gias Uddin, Shabir Barzanjeh, Sheikh Iqbal Ahamed, and Akond Rahman, "Evolution of Quantum Computing: A Systematic Survey on the Use of Quantum Computing Tools", arXiv:2204.01856, (2022).
[116] Juan Miguel Arrazola, Thomas R. Bromley, Josh Izaac, Casey R. Myers, Kamil Brádler, and Nathan Killoran, "Machine learning method for state preparation and gate synthesis on photonic quantum computers", Quantum Science and Technology 4 2, 024004 (2019).
[117] Ieva Čepaitė, Brian Coyle, and Elham Kashefi, "A Continuous Variable Born Machine", arXiv:2011.00904, (2020).
[118] Jiaqi Leng, Ethan Hickman, Joseph Li, and Xiaodi Wu, "Quantum Hamiltonian Descent", arXiv:2303.01471, (2023).
[119] Guillaume Verdon, Juan Miguel Arrazola, Kamil Brádler, and Nathan Killoran, "A Quantum Approximate Optimization Algorithm for continuous problems", arXiv:1902.00409, (2019).
[120] Bhupesh Bishnoi, "Quantum Computation", arXiv:2006.02799, (2020).
[121] Mark Fingerhuth, Tomáš Babej, and Peter Wittek, "Open source software in quantum computing", PLoS ONE 13 12, e0208561 (2018).
[122] C. Wetterich, "The probabilistic world", arXiv:2011.02867, (2020).
[123] Logan G. Wright and Peter L. McMahon, "The Capacity of Quantum Neural Networks", arXiv:1908.01364, (2019).
[124] Nicolás Quesada and Agata M. Brańczyk, "Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes", Physical Review A 98 4, 043813 (2018).
[125] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).
[126] Christian Pehle, Karlheinz Meier, Markus Oberthaler, and Christof Wetterich, "Emulating quantum computation with artificial neural networks", arXiv:1810.10335, (2018).
[127] C. Wetterich, "Quantum computing with classical bits", Nuclear Physics B 948, 114776 (2019).
[128] Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani, "QSystem: bitwise representation for quantum circuit simulations", arXiv:2004.03560, (2020).
[129] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Photonic quantum algorithm for Monte Carlo integration", arXiv:1809.02579, (2018).
[130] Hao Tang, Yan-Yan Zhu, Jun Gao, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: A Graphical Interface Program for Photonic Analog Quantum Computing", arXiv:1810.02289, (2018).
[131] Michał Siemaszko, Adam Buraczewski, Bertrand Le Saux, and Magdalena Stobińska, "Rapid training of quantum recurrent neural networks", arXiv:2207.00378, (2022).
[132] M. Kostylev, A. B. Ustinov, A. V. Drozdovskii, B. A. Kalinikos, and E. Ivanov, "Parametrically squeezed states of microwave magnons in yttrium iron garnet films", arXiv:1811.02104, (2018).
[133] Evandro Chagas Ribeiro da Rosa and Rafael de Santiago, "Classical and Quantum Data Interaction in Programming Languages: A Runtime Architecture", arXiv:2006.00131, (2020).
[134] Colleen M. Farrelly, Srikanth Namuduri, and Uchenna Chukwu, "Quantum Generalized Linear Models", arXiv:1905.00365, (2019).
[135] Hao Tang, Xiao-Jun Xu, Yan-Yan Zhu, Jun Gao, Xuan Chen, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: a graphical interface program for photonic analog quantum computing", Optical Engineering 61, 081804 (2022).
[136] Prateek Jain and Alberto Garcia Garcia, "Quantum classical hybrid neural networks for continuous variable prediction", arXiv:2212.04209, (2022).
[137] Marcus Edwards, "Designing a Hybrid Digital / Analog Quantum Physics Emulator as Open Hardware", arXiv:2302.00821, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-03-31 08:21:34) and SAO/NASA ADS (last updated successfully 2023-03-31 08:21:35). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.