A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery

Daniel Litinski

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Given a quantum gate circuit, how does one execute it in a fault-tolerant architecture with as little overhead as possible? In this paper, we discuss strategies for surface-code quantum computing on small, intermediate and large scales. They are strategies for space-time trade-offs, going from slow computations using few qubits to fast computations using many qubits. Our schemes are based on surface-code patches, which not only feature a low space cost compared to other surface-code schemes, but are also conceptually simple~--~simple enough that they can be described as a tile-based game with a small set of rules. Therefore, no knowledge of quantum error correction is necessary to understand the schemes in this paper, but only the concepts of qubits and measurements.

Video of the QIP talk about this paper:

Useful, classically intractable quantum computations can be very long, potentially consisting of billions of quantum gates. Some of these computations use as few as 100 qubits, but these need to be logical error-corrected qubits, rather than physical qubits, as the coherence times of currently available physical qubits are many orders of magnitude shorter than the execution times of these computations. With logical qubits, the set of available operation is determined by the error-correcting code, independently of the underlying physical hardware. For full-scale quantum computations on hundreds of logical qubits (i.e., potentially hundreds of thousands of physical qubits), it is useful to have a framework that describes logical qubits and operations without keeping track of the details of the physical hardware and error-correction protocols. This paper introduces such a framework with a focus on surface codes, but can also be applied to other topological codes. It uses lattice surgery to describe all logical operations via the easy-to-understand concepts of qubits and measurements, avoiding anyons and topological braiding diagrams. Using this framework, a complete full-scale quantum computer is constructed, consisting of qubit blocks that perform magic state distillation and blocks that consume magic states to advance the computation. Finally, space-time trade-offs are discussed, i.e., how to use more qubits to compute faster.

► BibTeX data

► References

[1] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 114, 7555 (2017).
https:/​/​doi.org/​10.1073/​pnas.1619152114

[2] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven, Encoding electronic spectra in quantum circuits with linear T complexity, Phys. Rev. X 8, 041015 (2018a).
https:/​/​doi.org/​10.1103/​PhysRevX.8.041015

[3] J. Preskill, Reliable quantum computers, Proc. Roy. Soc. Lond. A 454, 385 (1998).
https:/​/​doi.org/​10.1098/​rspa.1998.0167

[4] B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.307

[5] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
https:/​/​doi.org/​10.1038/​nature23460

[6] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[7] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324

[8] H. Bombin, Topological order with a twist: Ising anyons from an abelian model, Phys. Rev. Lett. 105, 030403 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.030403

[9] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface code quantum computing by lattice surgery, New J. Phys. 14, 123011 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​12/​123011

[10] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R. Wootton, Poking holes and cutting corners to achieve Clifford gates with the surface code, Phys. Rev. X 7, 021029 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.021029

[11] D. Litinski and F. v. Oppen, Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes, Quantum 2, 62 (2018).
https:/​/​doi.org/​10.22331/​q-2018-05-04-62

[12] A. G. Fowler and C. Gidney, Low overhead quantum computation using lattice surgery, arXiv:1808.06709 (2018).
arXiv:1808.06709

[13] A. J. Landahl and C. Ryan-Anderson, Quantum computing by color-code lattice surgery, arXiv:1407.5103 (2014).
arXiv:1407.5103

[14] Y. Li, A magic state’s fidelity can be superior to the operations that created it, New J. Phys. 17, 023037 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​2/​023037

[15] D. Herr, F. Nori, and S. J. Devitt, Optimization of lattice surgery is NP-hard, npj Quant. Inf. 3, 35 (2017a).
https:/​/​doi.org/​10.1038/​s41534-017-0035-1

[16] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.022316

[17] J. Haah and M. B. Hastings, Codes and Protocols for Distilling $T$, controlled-$S$, and Toffoli Gates, Quantum 2, 71 (2018).
https:/​/​doi.org/​10.22331/​q-2018-06-07-71

[18] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Phys. Rev. A 86, 052329 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329

[19] C. Jones, Multilevel distillation of magic states for quantum computing, Phys. Rev. A 87, 042305 (2013a).
https:/​/​doi.org/​10.1103/​PhysRevA.87.042305

[20] A. G. Fowler, S. J. Devitt, and C. Jones, Surface code implementation of block code state distillation, Scientific Rep. 3, 1939 (2013).
https:/​/​doi.org/​10.1038/​srep01939

[21] A. G. Fowler, Time-optimal quantum computation, arXiv:1210.4626 (2012).
arXiv:1210.4626

[22] D. Gottesman, The Heisenberg representation of quantum computers, Proc. XXII Int. Coll. Group. Th. Meth. Phys. 1, 32 (1999).
arXiv:quant-ph/9807006

[23] V. Kliuchnikov, D. Maslov, and M. Mosca, Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and $T$ gates, Quantum Info. Comput. 13, 607 (2013a).
http:/​/​dl.acm.org/​citation.cfm?id=2535649.2535653

[24] V. Kliuchnikov, D. Maslov, and M. Mosca, Asymptotically optimal approximation of single qubit unitaries by Clifford and $T$ circuits using a constant number of ancillary qubits, Phys. Rev. Lett. 110, 190502 (2013b).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.190502

[25] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, An algorithm for the $T$-count, arXiv:1308.4134 (2013).
arXiv:1308.4134

[26] L. E. Heyfron and E. T. Campbell, An efficient quantum compiler that reduces $T$ count, Quantum Sci. Technol. 4, 015004 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aad604

[27] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 818 (2013).
https:/​/​doi.org/​10.1109/​TCAD.2013.2244643

[28] P. Selinger, Quantum circuits of $T$-depth one, Phys. Rev. A 87, 042302 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.042302

[29] M. Amy, D. Maslov, and M. Mosca, Polynomial-time $T$-depth optimization of Clifford+$T$ circuits via matroid partitioning, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 1476 (2014).
https:/​/​doi.org/​10.1109/​TCAD.2014.2341953

[30] D. Litinski and F. von Oppen, Quantum computing with Majorana fermion codes, Phys. Rev. B 97, 205404 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.205404

[31] A. Lavasani and M. Barkeshli, Low overhead Clifford gates from joint measurements in surface, color, and hyperbolic codes, Phys. Rev. A 98, 052319 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052319

[32] J. I. Hall, Notes on Coding Theory Chapter 6: Modifying Codes, https:/​/​users.math.msu.edu/​users/​jhall/​classes/​ codenotes/​Mod.pdf, accessed: 2019-01-30.
https:/​/​users.math.msu.edu/​users/​jhall/​classes/​codenotes/​Mod.pdf

[33] E. T. Campbell and M. Howard, Magic state parity-checker with pre-distilled components, Quantum 2, 56 (2018).
https:/​/​doi.org/​10.22331/​q-2018-03-14-56

[34] A. M. Meier, B. Eastin, and E. Knill, Magic-state distillation with the four-qubit code, Quant. Inf. Comp. 13, 195 (2013).
arXiv:1204.4221

[35] E. T. Campbell and J. O'Gorman, An efficient magic state approach to small angle rotations, Quantum Sci. Technol. 1, 015007 (2016).
https:/​/​doi.org/​10.1088/​2058-9565/​1/​1/​015007

[36] D. Herr, F. Nori, and S. J. Devitt, Lattice surgery translation for quantum computation, New J. Phys. 19, 013034 (2017b).
https:/​/​doi.org/​10.1088/​1367-2630/​aa5709

[37] A. G. Fowler and S. J. Devitt, A bridge to lower overhead quantum computation, arXiv:1209.0510 (2012).
arXiv:1209.0510

[38] C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed $|CCZ\rangle$ to $2|T\rangle$ transformation, arXiv:1812.01238 (2018).
arXiv:1812.01238

[39] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76, 722 (1996a).
https:/​/​doi.org/​10.1103/​PhysRevLett.76.722

[40] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996b).
https:/​/​doi.org/​10.1103/​PhysRevA.53.2046

[41] C. Dickel, J. J. Wesdorp, N. K. Langford, S. Peiter, R. Sagastizabal, A. Bruno, B. Criger, F. Motzoi, and L. DiCarlo, Chip-to-chip entanglement of transmon qubits using engineered measurement fields, Phys. Rev. B 97, 064508 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.064508

[42] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions, Phys. Rev. Lett. 120, 200501 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.200501

[43] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. Girvin, L. Jiang, et al., On-demand quantum state transfer and entanglement between remote microwave cavity memories, Nat. Phys. 14, 705 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0115-y

[44] N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations, arXiv:1403.2975 (2014).
arXiv:1403.2975

[45] G. Duclos-Cianci and D. Poulin, Reducing the quantum-computing overhead with complex gate distillation, Phys. Rev. A 91, 042315 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.042315

[46] A. W. Harrow, B. Recht, and I. L. Chuang, Efficient discrete approximations of quantum gates, Journal of Mathematical Physics 43, 4445 (2002).
https:/​/​doi.org/​10.1063/​1.1495899

[47] G. Duclos-Cianci and K. M. Svore, Distillation of nonstabilizer states for universal quantum computation, Phys. Rev. A 88, 042325 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.042325

[48] A. Bocharov, Y. Gurevich, and K. M. Svore, Efficient decomposition of single-qubit gates into $v$ basis circuits, Phys. Rev. A 88, 012313 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.012313

[49] N. C. Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung, R. V. Meter, A. Aspuru-Guzik, and Y. Yamamoto, Faster quantum chemistry simulation on fault-tolerant quantum computers, New J. Phys. 14, 115023 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​11/​115023

[50] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546 (2016).
arXiv:1610.06546

[51] G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation by quantum signal processing, Phys. Rev. Lett. 118, 010501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.010501

[52] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven, Quantum simulation of chemistry with sublinear scaling to the continuum, arXiv:1807.09802 (2018b).
arXiv:1807.09802

[53] C. Jones, Low-overhead constructions for the fault-tolerant Toffoli gate, Phys. Rev. A 87, 022328 (2013b).
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328

[54] C. Gidney, Halving the cost of quantum addition, Quantum 2, 74 (2018).
https:/​/​doi.org/​10.22331/​q-2018-06-18-74

[55] E. T. Campbell and M. Howard, Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost, Phys. Rev. A 95, 022316 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.022316

[56] J. O'Gorman and E. T. Campbell, Quantum computation with realistic magic-state factories, Phys. Rev. A 95, 032338 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.032338

[57] K. K. Likharev and V. K. Semenov, RSFQ logic/​memory family: A new Josephson-junction technology for sub-terahertz-clock-frequency digital systems, IEEE Transactions on Applied Superconductivity 1, 3 (1991).
https:/​/​doi.org/​10.1109/​77.80745

[58] A. G. Fowler, S. J. Devitt, and C. Jones, Synthesis of arbitrary quantum circuits to topological assembly: Systematic, online and compact, Scientific Rep. 7, 10414 (2017).
https:/​/​doi.org/​10.1038/​s41598-017-10657-8

[59] A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, Fault-tolerant, high-level quantum circuits: form, compilation and description, Quantum Sci. Technol. 2, 025003 (2017).
https:/​/​doi.org/​10.1088/​2058-9565/​aa66eb

[60] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and C. G. Almudever, Mapping of lattice surgery-based quantum circuits on surface code architectures, Quantum Sci. Technol. 4, 015005 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aadd1a

[61] H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.180501

[62] M. S. Kesselring, F. Pastawski, J. Eisert, and B. J. Brown, The boundaries and twist defects of the color code and their applications to topological quantum computation, Quantum 2, 101 (2018).
https:/​/​doi.org/​10.22331/​q-2018-10-19-101

[63] H. P. Nautrup, N. Friis, and H. J. Briegel, Fault-tolerant interface between quantum memories and quantum processors, Nat. Commun. 8, 1321 (2017).
https:/​/​doi.org/​10.1038/​s41467-017-01418-2

[64] D. Litinski and F. von Oppen, Braiding by Majorana tracking and long-range CNOT gates with color codes, Phys. Rev. B 96, 205413 (2017).
https:/​/​doi.org/​10.1103/​PhysRevB.96.205413

[65] IBM doubling qubits every 8 months, https:/​/​www.nextbigfuture.com/​2018/​02/​ibm-doubling-qubits-every-8-months-and-ecommerce-cryptography-at-risk-in-7-15-years.html, accessed: 2018-08-01.
https:/​/​www.nextbigfuture.com/​2018/​02/​ibm-doubling-qubits-every-8-months-and-ecommerce-cryptography-at-risk-in-7-15-years.html

Cited by

[1] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan, "Quantum State Preparation with Optimal Circuit Depth: Implementations and Applications", Physical Review Letters 129 23, 230504 (2022).

[2] Ivan B. Djordjevic, Quantum Information Processing, Quantum Computing, and Quantum Error Correction 337 (2021) ISBN:9780128219829.

[3] Aleks Kissinger and John van de Wetering, "Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions", Quantum Science and Technology 7 4, 044001 (2022).

[4] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", IEEE Transactions on Quantum Engineering 1, 1 (2020).

[5] Christopher Chamberland and Earl T. Campbell, "Universal Quantum Computing with Twist-Free and Temporally Encoded Lattice Surgery", PRX Quantum 3 1, 010331 (2022).

[6] Ivan B. Djordjevic, Quantum Communication, Quantum Networks, and Quantum Sensing 407 (2023) ISBN:9780128229422.

[7] Arne L. Grimsmo and Shruti Puri, "Quantum Error Correction with the Gottesman-Kitaev-Preskill Code", PRX Quantum 2 2, 020101 (2021).

[8] Hiroto Mukai, Keiichi Sakata, Simon J Devitt, Rui Wang, Yu Zhou, Yukito Nakajima, and Jaw-Shen Tsai, "Pseudo-2D superconducting quantum computing circuit for the surface code: proposal and preliminary tests", New Journal of Physics 22 4, 043013 (2020).

[9] Christopher Chamberland and Earl T. Campbell, "Circuit-level protocol and analysis for twist-based lattice surgery", Physical Review Research 4 2, 023090 (2022).

[10] Ye-Hong Chen, Roberto Stassi, Wei Qin, Adam Miranowicz, and Franco Nori, "Fault-Tolerant Multiqubit Geometric Entangling Gates Using Photonic Cat-State Qubits", Physical Review Applied 18 2, 024076 (2022).

[11] Hammam Qassim, Joel J. Wallman, and Joseph Emerson, "Clifford recompilation for faster classical simulation of quantum circuits", Quantum 3, 170 (2019).

[12] Alexandre Blais, Steven M. Girvin, and William D. Oliver, "Quantum information processing and quantum optics with circuit quantum electrodynamics", Nature Physics 16 3, 247 (2020).

[13] Sarah True and Alioscia Hamma, "Transitions in Entanglement Complexity in Random Circuits", Quantum 6, 818 (2022).

[14] Ivan B. Djordjevic, Quantum Communication, Quantum Networks, and Quantum Sensing 563 (2022) ISBN:9780128229422.

[15] Salonik Resch and Ulya Karpuzcu, "On Variable Strength Quantum ECC", IEEE Computer Architecture Letters 21 2, 93 (2022).

[16] Sorin Hoară, Roxana-Mariana Beiu, and Valeriu Beiu, Advances in Intelligent Systems and Computing 1243, 57 (2021) ISBN:978-3-030-53650-3.

[17] Alexandru Paler, Oumarou Oumarou, and Robert Basmadjian, "On the Realistic Worst-Case Analysis of Quantum Arithmetic Circuits", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[18] Alexandru Paler and Robert Basmadjian, "Energy Cost of Quantum Circuit Optimisation: Predicting That Optimising Shor’s Algorithm Circuit Uses 1 GWh", ACM Transactions on Quantum Computing 3 1, 1 (2022).

[19] Bob Coecke, Dominic Horsman, Aleks Kissinger, and Quanlong Wang, "Kindergarden quantum mechanics graduates ...or how I learned to stop gluing LEGO together and love the ZX-calculus", Theoretical Computer Science 897, 1 (2022).

[20] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush, "Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction", PRX Quantum 2 3, 030305 (2021).

[21] Sam McArdle, "Learning from Physics Experiments with Quantum Computers: Applications in Muon Spectroscopy", PRX Quantum 2 2, 020349 (2021).

[22] Ali Passian, Gilles Buchs, Christopher M. Seck, Alberto M. Marino, and Nicholas A. Peters, "The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era", Sensors 23 1, 115 (2022).

[23] Michael Vasmer and Dan E. Browne, "Three-dimensional surface codes: Transversal gates and fault-tolerant architectures", Physical Review A 100 1, 012312 (2019).

[24] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for classically simulating noisy networked quantum architectures", Quantum Science and Technology 5 1, 014001 (2020).

[25] Giovanni De Micheli, Jie-Hong R. Jiang, Robert Rand, Kaitlin Smith, and Mathias Soeken, "Advances in Quantum Computation and Quantum Technologies: A Design Automation Perspective", IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12 3, 584 (2022).

[26] Hans Hon Sang Chan, Richard Meister, Tyson Jones, David P. Tew, and Simon C. Benjamin, "Grid-based methods for chemistry simulations on a quantum computer", Science Advances 9 9, eabo7484 (2023).

[27] Casey Duckering, Jonathan M. Baker, David I. Schuster, and Frederic T. Chong, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) 173 (2020) ISBN:978-1-7281-7383-2.

[28] Jonghyun Lee, Yujin Kang, Jinyoung Ha, and Jun Heo, "Lattice surgery-based Surface Code architecture using remote logical CNOT operation", Quantum Information Processing 21 6, 217 (2022).

[29] Shilin Huang, Michael Newman, and Kenneth R. Brown, "Fault-tolerant weighted union-find decoding on the toric code", Physical Review A 102 1, 012419 (2020).

[30] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, "Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization", Quantum 3, 208 (2019).

[31] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, "Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization", Quantum 4, 296 (2020).

[32] Héctor Bombín, Chris Dawson, Ryan V. Mishmash, Naomi Nickerson, Fernando Pastawski, and Sam Roberts, "Logical Blocks for Fault-Tolerant Topological Quantum Computation", PRX Quantum 4 2, 020303 (2023).

[33] Principles of Superconducting Quantum Computers 327 (2022) ISBN:9781119750727.

[34] Ivan B. Djordjevic, Quantum Communication, Quantum Networks, and Quantum Sensing 313 (2022) ISBN:9780128229422.

[35] Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, and Fernando G.S.L. Brandão, "Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes", PRX Quantum 3 1, 010329 (2022).

[36] Christopher Chamberland and Andrew W. Cross, "Fault-tolerant magic state preparation with flag qubits", Quantum 3, 143 (2019).

[37] Benjamin J. Brown and Sam Roberts, "Universal fault-tolerant measurement-based quantum computation", Physical Review Research 2 3, 033305 (2020).

[38] Ivan Djordjevic, "Surface-Codes-Based Quantum Communication Networks", Entropy 22 9, 1059 (2020).

[39] Simon Burton and Dan Browne, "Limitations on Transversal Gates for Hypergraph Product Codes", IEEE Transactions on Information Theory 68 3, 1772 (2022).

[40] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Matsuura, Daiqin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy, Nicolas C. Menicucci, and Ish Dhand, "Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer", Quantum 5, 392 (2021).

[41] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", Reviews of Modern Physics 92 1, 015003 (2020).

[42] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca, "Fault-Tolerant Resource Estimation of Quantum Random-Access Memories", IEEE Transactions on Quantum Engineering 1, 1 (2020).

[43] Jonathan M. Baker, Casey Duckering, David I. Schuster, and Frederic T. Chong, "Virtual Logical Qubits: A Compact Architecture for Fault-Tolerant Quantum Computing", IEEE Micro 41 3, 95 (2021).

[44] Antonio D. Corcoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T. McClure, Andrew W. Cross, Kristan Temme, Paul D. Nation, Matthias Steffen, and Jay M. Gambetta, "Challenges and Opportunities of Near-Term Quantum Computing Systems", Proceedings of the IEEE 108 8, 1338 (2020).

[45] John van de Wetering, "Constructing quantum circuits with global gates", New Journal of Physics 23 4, 043015 (2021).

[46] Tomas Jochym-O'Connor and Theodore J. Yoder, "Four-dimensional toric code with non-Clifford transversal gates", Physical Review Research 3 1, 013118 (2021).

[47] Utkarsh Azad, Aleksandra Lipińska, Shilpa Mahato, Rijul Sachdeva, Debasmita Bhoumik, and Ritajit Majumdar, "Surface code design for asymmetric error channels", IET Quantum Communication 3 3, 174 (2022).

[48] Zebo Yang, Maede Zolanvari, and Raj Jain, "A Survey of Important Issues in Quantum Computing and Communications", IEEE Communications Surveys & Tutorials 25 2, 1059 (2023).

[49] Alexander Erhard, Hendrik Poulsen Nautrup, Michael Meth, Lukas Postler, Roman Stricker, Martin Stadler, Vlad Negnevitsky, Martin Ringbauer, Philipp Schindler, Hans J. Briegel, Rainer Blatt, Nicolai Friis, and Thomas Monz, "Entangling logical qubits with lattice surgery", Nature 589 7841, 220 (2021).

[50] Mark Webber, Vincent Elfving, Sebastian Weidt, and Winfried K. Hensinger, "The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime", AVS Quantum Science 4 1, 013801 (2022).

[51] Lawrence Z. Cohen, Isaac H. Kim, Stephen D. Bartlett, and Benjamin J. Brown, "Low-overhead fault-tolerant quantum computing using long-range connectivity", Science Advances 8 20, eabn1717 (2022).

[52] Daniel Litinski, "Magic State Distillation: Not as Costly as You Think", Quantum 3, 205 (2019).

[53] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute, "Surface Code Compilation via Edge-Disjoint Paths", PRX Quantum 3 2, 020342 (2022).

[54] Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu, Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim, Proceedings of the 49th Annual International Symposium on Computer Architecture 366 (2022) ISBN:9781450386104.

[55] Ritajit Majumdar, Quantum Computing Environments 1 (2022) ISBN:978-3-030-89745-1.

[56] Krzysztof Werner, Kamil Wereszczyński, and Agnieszka Michalczuk, Lecture Notes in Computer Science 13353, 195 (2022) ISBN:978-3-031-08759-2.

[57] Longcheng Li, Cheng Guo, Qian Li, and Xiaoming Sun, "Fast exact synthesis of two-qubit unitaries using a near-minimum number of T gates", Physical Review A 107 4, 042424 (2023).

[58] Qian Xu, Nam Mannucci, Alireza Seif, Aleksander Kubica, Steven T. Flammia, and Liang Jiang, "Tailored XZZX codes for biased noise", Physical Review Research 5 1, 013035 (2023).

[59] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok Lee, "Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules", Physical Review Research 4 2, 023019 (2022).

[60] Jonathan M. Baker and Frederic T. Chong, "Emerging Technologies for Quantum Computing", IEEE Micro 41 5, 41 (2021).

[61] Simone Bordoni and Stefano Giagu, "Convolutional neural network based decoders for surface codes", Quantum Information Processing 22 3, 151 (2023).

[62] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah, "Phase Gadget Synthesis for Shallow Circuits", Electronic Proceedings in Theoretical Computer Science 318, 213 (2020).

[63] Alexander Jahn and Jens Eisert, "Holographic tensor network models and quantum error correction: a topical review", Quantum Science and Technology 6 3, 033002 (2021).

[64] Michael Vasmer and Aleksander Kubica, "Morphing Quantum Codes", PRX Quantum 3 3, 030319 (2022).

[65] J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia, and Benjamin J. Brown, "The XZZX surface code", Nature Communications 12 1, 2172 (2021).

[66] Guoding Liu, Xingjian Zhang, and Xiongfeng Ma, "Classically Replaceable Operations", Quantum 6, 845 (2022).

[67] Daniele Cuomo, Marcello Caleffi, Kevin Krsulich, Filippo Tramonto, Gabriele Agliardi, Enrico Prati, and Angela Sara Cacciapuoti, "Optimized Compiler for Distributed Quantum Computing", ACM Transactions on Quantum Computing 4 2, 1 (2023).

[68] Sergey Bravyi, Oliver Dial, Jay M. Gambetta, Darío Gil, and Zaira Nazario, "The future of quantum computing with superconducting qubits", Journal of Applied Physics 132 16, 160902 (2022).

[69] Nick S. Blunt, Joan Camps, Ophelia Crawford, Róbert Izsák, Sebastian Leontica, Arjun Mirani, Alexandra E. Moylett, Sam A. Scivier, Christoph Sünderhauf, Patrick Schopf, Jacob M. Taylor, and Nicole Holzmann, "Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications", Journal of Chemical Theory and Computation 18 12, 7001 (2022).

[70] Noah Shutty and Christopher Chamberland, "Decoding Merged Color-Surface Codes and Finding Fault-Tolerant Clifford Circuits Using Solvers for Satisfiability Modulo Theories", Physical Review Applied 18 1, 014072 (2022).

[71] William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean, "Virtual Distillation for Quantum Error Mitigation", Physical Review X 11 4, 041036 (2021).

[72] Michael Hanks, Marta P. Estarellas, William J. Munro, and Kae Nemoto, "Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus", Physical Review X 10 4, 041030 (2020).

[73] B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos, Grant Salton, Mario Berta, and William J. Zeng, "Quantum Resources Required to Block-Encode a Matrix of Classical Data", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[74] Jin‐Ho On, Chei‐Yol Kim, Soo‐Cheol Oh, Sang‐Min Lee, and Gyu‐Il Cha, "A multilayered Pauli tracking architecture for lattice surgery‐based logical qubits", ETRI Journal etrij.2022-0037 (2022).

[75] Guohui Wang, Chunming Tang, and Weiming Wei, "Some new constructions of optimal asymmetric quantum codes", Quantum Information Processing 22 1, 85 (2023).

[76] Yi-Hao Kang, Ye-Hong Chen, Xin Wang, Jie Song, Yan Xia, Adam Miranowicz, Shi-Biao Zheng, and Franco Nori, "Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering", Physical Review Research 4 1, 013233 (2022).

[77] Niel de Beaudrap and Dominic Horsman, "The ZX calculus is a language for surface code lattice surgery", Quantum 4, 218 (2020).

[78] Craig Gidney and Austin G. Fowler, "Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation", Quantum 3, 135 (2019).

[79] Aleksander Kubica and Michael Vasmer, "Single-shot quantum error correction with the three-dimensional subsystem toric code", Nature Communications 13 1, 6272 (2022).

[80] J. Haferkamp, D. Hangleiter, A. Bouland, B. Fefferman, J. Eisert, and J. Bermejo-Vega, "Closing Gaps of a Quantum Advantage with Short-Time Hamiltonian Dynamics", Physical Review Letters 125 25, 250501 (2020).

[81] Rajeev Acharya, Igor Aleiner, Richard Allen, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Dripto M. Debroy, Alexander Del Toro Barba, Sean Demura, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Lara Faoro, Edward Farhi, Reza Fatemi, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Alejandro Grajales Dau, Jonathan A. Gross, Steve Habegger, Michael C. Hamilton, Matthew P. Harrigan, Sean D. Harrington, Oscar Higgott, Jeremy Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, William J. Huggins, Lev B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Pavol Juhas, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Tanuj Khattar, Mostafa Khezri, Mária Kieferová, Seon Kim, Alexei Kitaev, Paul V. Klimov, Andrey R. Klots, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee, Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Fionn D. Malone, Jeffrey Marshall, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Bernardo Meurer Costa, Xiao Mi, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Alexis Morvan, Emily Mount, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, John Platt, Andre Petukhov, Rebecca Potter, Leonid P. Pryadko, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus, Christopher Schuster, Michael J. Shearn, Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, Vadim Smelyanskiy, W. Clarke Smith, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Cheng Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, and Ningfeng Zhu, "Suppressing quantum errors by scaling a surface code logical qubit", Nature 614 7949, 676 (2023).

[82] Sergey Bravyi, David Gosset, Robert König, and Marco Tomamichel, "Quantum advantage with noisy shallow circuits", Nature Physics 16 10, 1040 (2020).

[83] Ivan B. Djordjevic, 2020 22nd International Conference on Transparent Optical Networks (ICTON) 1 (2020) ISBN:978-1-7281-8423-4.

[84] Ivan B. Djordjevic, Quantum Information Processing, Quantum Computing, and Quantum Error Correction 469 (2021) ISBN:9780128219829.

[85] Jing Hao Chai and Hui Khoon Ng, "On the Fault‐Tolerance Threshold for Surface Codes with General Noise", Advanced Quantum Technologies 5 10, 2200008 (2022).

[86] Aleksei V. Ivanov, Christoph Sünderhauf, Nicole Holzmann, Tom Ellaby, Rachel N. Kerber, Glenn Jones, and Joan Camps, "Quantum computation for periodic solids in second quantization", Physical Review Research 5 1, 013200 (2023).

[87] Earl Campbell, Ankur Khurana, and Ashley Montanaro, "Applying quantum algorithms to constraint satisfaction problems", Quantum 3, 167 (2019).

[88] Julio C. Magdalena de la Fuente, Jens Eisert, and Andreas Bauer, "Bulk-to-boundary anyon fusion from microscopic models", arXiv:2302.01835, (2023).

[89] Austin G. Fowler and Craig Gidney, "Low overhead quantum computation using lattice surgery", arXiv:1808.06709, (2018).

[90] Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer, "Trading T-gates for dirty qubits in state preparation and unitary synthesis", arXiv:1812.00954, (2018).

[91] Ryan Sweke, Markus S. Kesselring, Evert P. L. van Nieuwenburg, and Jens Eisert, "Reinforcement Learning Decoders for Fault-Tolerant Quantum Computation", arXiv:1810.07207, (2018).

[92] Craig Gidney and Austin G. Fowler, "Flexible layout of surface code computations using AutoCCZ states", arXiv:1905.08916, (2019).

[93] Vlad Gheorghiu and Michele Mosca, "Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic schemes", arXiv:1902.02332, (2019).

[94] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang, "Fast and effective techniques for T-count reduction via spider nest identities", arXiv:2004.05164, (2020).

[95] Élie Gouzien, Diego Ruiz, Francois-Marie Le Régent, Jérémie Guillaud, and Nicolas Sangouard, "Computing 256-bit Elliptic Curve Logarithm in 9 Hours with 126133 Cat Qubits", arXiv:2302.06639, (2023).

[96] Andrew J. Landahl and Benjamin C. A. Morrison, "Logical Majorana fermions for fault-tolerant quantum simulation", arXiv:2110.10280, (2021).

[97] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", arXiv:1907.00310, (2019).

[98] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang, "Techniques to Reduce $\pi/4$-Parity-Phase Circuits, Motivated by the ZX Calculus", arXiv:1911.09039, (2019).

[99] Alexandru Paler and Austin G. Fowler, "Pipelined correlated minimum weight perfect matching of the surface code", arXiv:2205.09828, (2022).

[100] Prithviraj Prabhu and Christopher Chamberland, "New magic state distillation factories optimized by temporally encoded lattice surgery", arXiv:2210.15814, (2022).

[101] Alexandru Paler and Austin G. Fowler, "OpenSurgery for Topological Assemblies", arXiv:1906.07994, (2019).

[102] Alexandru Paler, "SurfBraid: A concept tool for preparing and resource estimating quantum circuits protected by the surface code", arXiv:1902.02417, (2019).

[103] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca, "Fault tolerant resource estimation of quantum random-access memories", arXiv:1902.01329, (2019).

[104] Daniel Herr, Alexandru Paler, Simon J. Devitt, and Franco Nori, "Time versus Hardware: Reducing Qubit Counts with a (Surface Code) Data Bus", arXiv:1902.08117, (2019).

[105] Craig Gidney, "Inplace Access to the Surface Code Y Basis", arXiv:2302.07395, (2023).

[106] Willers Yang and Patrick Rall, "Improved Synthesis of Clifford Circuits using Long-Range CAT States", arXiv:2302.06537, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 16:03:20) and SAO/NASA ADS (last updated successfully 2023-05-29 16:03:21). The list may be incomplete as not all publishers provide suitable and complete citation data.