Exact Ising model simulation on a quantum computer

Alba Cervera-Lierta

Barcelona Supercomputing Center (BSC), Barcelona, Spain
Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present an exact simulation of a one-dimensional transverse Ising spin chain with a quantum computer. We construct an efficient quantum circuit that diagonalizes the Ising Hamiltonian and allows to obtain all eigenstates of the model by just preparing the computational basis states. With an explicit example of that circuit for $n=4$ spins, we compute the expected value of the ground state transverse magnetization, the time evolution simulation and provide a method to also simulate thermal evolution. All circuits are run in IBM and Rigetti quantum devices to test and compare them qualitatively.

In this work, it is presented a quantum circuit that diagonalizes exactly the 1D antiferromagnetic Ising Hamiltonian. With this circuit, it is possible to simulate time and temperature evolution since we have access to the whole model spectrum by just preparing a product state. As an example, it is provided an explicit circuit for four spins which is run in IBM's and Rigetti's quantum devices. As the Ising model can be solved analitically and this circuit can be extenend to higher number of qubits, it can also be used to benchmark quantum computers.

► BibTeX data

► References

[1] D. P. DiVincenzo, Fortschritte der Physik 48, 771 (2000).
arXiv:quant-ph/0002077

[2] IBM Quantum Experience, https:/​/​www.research.ibm.com/​ibm-q/​.
https:/​/​www.research.ibm.com/​ibm-q/​

[3] R. Smith, M. J. Curtis and W. J. Zeng, arXiv:1608.03355 [quant-ph] (2016).
arXiv:1608.03355

[4] D. Alsina and J. I. Latorre, Phys. Rev. A 94, 012314 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.012314

[5] Y. Wang, Y. Li, Z. Yin and B. Zeng, npj Quantum Information 4, 46 (2018).
https:/​/​doi.org/​10.1038/​s41534-018-0095-x

[6] J. S. Devitt, Phys. Rev. A 94, 032329 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.032329

[7] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
https:/​/​doi.org/​10.1007/​BF02650179

[8] M. H. Kalos, Phys. Rev. 128, 1791 (1962).
https:/​/​doi.org/​10.1103/​PhysRev.128.1791

[9] B.L. Hammond, W. A. Lester Jr. and P.J. Reynolds, MonteCarlo Methods in Ab Initio Quantum Chemistry, World Scientific, Singapore (1994).
https:/​/​doi.org/​10.1142/​1170

[10] N. S. Blunt, T. W. Rogers, J. S. Spencer and W. M. C. Foulkes, Phys. Rev. B 89, 245124 (2014).
https:/​/​doi.org/​10.1103/​PhysRevB.89.245124

[11] R. Orús, Ann. Phys. 349, 117 (2014).
https:/​/​doi.org/​10.1016/​j.aop.2014.06.013

[12] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.91.147902

[13] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A 64, 022319 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.022319

[14] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak and M. Troyer, Phys. Rev. A 92, 062318 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318

[15] Z. Jiang, K. J. Sung, K. Kechedzhi, V. N. Smelyanskiy and S. Boixo, Phys. Rev. Appl. 9, 044036 (2018).
https:/​/​doi.org/​10.1103/​PhysRevApplied.9.044036

[16] B. Kraus, Phys. Rev. Lett. 107, 250503 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.107.250503

[17] M. Hebenstreit, D. Alsina, J. I. Latorre and B. Kraus, Phys. Rev. A 95, 052339 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.052339

[18] F. Verstraete, J. I. Cirac and J. I. Latorre, Phys. Rev. A 79, 032316 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.79.032316

[19] P. Schmoll and R. Orús, Phys. Rev. B 95, 045112 (2017).
https:/​/​doi.org/​10.1103/​PhysRevB.95.045112

[20] H. Bethe, Z. Phys. 71, 205 (1931).
https:/​/​doi.org/​10.1007/​BF01341708

[21] V. Murg, V. E. Korepin and F. Verstraete, Phys. Rev. B 86, 045125 (2012).
https:/​/​doi.org/​10.1103/​PhysRevB.86.045125

[22] E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961).
https:/​/​doi.org/​10.1016/​0003-4916(61)90115-4

[23] S. Katsura, Phys. Rev. 127, 1508 (1962).
https:/​/​doi.org/​10.1103/​PhysRev.127.1508

[24] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
https:/​/​doi.org/​10.1007/​BF01331938

[25] A. J. Ferris, Phys. Rev. Lett. 113, 010401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.010401

[26] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge (1999).
https:/​/​doi.org/​10.1017/​CBO9780511973765

[27] Device specifications: https:/​/​github.com/​Qiskit/​qiskit-backend-information/​tree/​master/​backends.
https:/​/​github.com/​Qiskit/​qiskit-backend-information/​tree/​master/​backends

[28] Official announce of IBM ``Teach Me QISKit" award winnerhttps:/​/​www.ibm.com/​blogs/​research/​2018/​06/​teach-qiskit-winner/​.
https:/​/​www.ibm.com/​blogs/​research/​2018/​06/​teach-qiskit-winner/​

[29] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin and H. Weinfurter, Phys. Rev. A 52 3457 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

Cited by

[1] Timo Kist, Jose L. Lado, and Christian Flindt, "Lee-Yang theory of criticality in interacting quantum many-body systems", Physical Review Research 3 3, 033206 (2021).

[2] Sean Greenaway, Frédéric Sauvage, Kiran E. Khosla, and Florian Mintert, "Efficient assessment of process fidelity", Physical Review Research 3 3, 033031 (2021).

[3] Alba Cervera-Lierta, José Ignacio Latorre, and Dardo Goyeneche, "Quantum circuits for maximally entangled states", Physical Review A 100 2, 022342 (2019).

[4] Konrad Jałowiecki, Andrzej Więckowski, Piotr Gawron, and Bartłomiej Gardas, "Parallel in time dynamics with quantum annealers", Scientific Reports 10 1, 13534 (2020).

[5] Marcello Calvanese Strinati, Leon Bello, Avi Pe'er, and Emanuele G. Dalla Torre, "Theory of coupled parametric oscillators beyond coupled Ising spins", Physical Review A 100 2, 023835 (2019).

[6] Manoranjan Swain, Amit Rai, Bikash K. Behera, and Prasanta K. Panigrahi, "Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states", Quantum Information Processing 18 7, 218 (2019).

[7] Kishore S. Shenoy, Dev Y. Sheth, Bikash K. Behera, and Prasanta K. Panigrahi, "Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform", Quantum Information Processing 19 5, 161 (2020).

[8] Alba Cervera-Lierta, Jakob S. Kottmann, and Alán Aspuru-Guzik, "Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation", PRX Quantum 2 2, 020329 (2021).

[9] Erik Gustafson, Patrick Dreher, Zheyue Hang, and Yannick Meurice, "Indexed improvements for real-time trotter evolution of a (1 + 1) field theory using NISQ quantum computers", Quantum Science and Technology 6 4, 045020 (2021).

[10] Kübra Yeter-Aydeniz, George Siopsis, and Raphael C Pooser, "Scattering in the Ising model with the quantum Lanczos algorithm * ", New Journal of Physics 23 4, 043033 (2021).

[11] Kenneth Robbins and Peter J. Love, "Benchmarking near-term quantum devices with the variational quantum eigensolver and the Lipkin-Meshkov-Glick model", Physical Review A 104 2, 022412 (2021).

[12] Erik Gustafson, Yingyue Zhu, Patrick Dreher, Norbert M. Linke, and Yannick Meurice, "Real-time quantum calculations of phase shifts using wave packet time delays", Physical Review D 104 5, 054507 (2021).

[13] Lindsay Bassman, Kuang Liu, Aravind Krishnamoorthy, Thomas Linker, Yifan Geng, Daniel Shebib, Shogo Fukushima, Fuyuki Shimojo, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta, "Towards simulation of the dynamics of materials on quantum computers", Physical Review B 101 18, 184305 (2020).

[14] Hailong Fu, Pengjie Wang, Zhenhai Hu, Yifan Li, and Xi Lin, "Low-temperature environments for quantum computation and quantum simulation* ", Chinese Physics B 30 2, 020702 (2021).

[15] Benedikt Fauseweh and Jian-Xin Zhu, "Digital quantum simulation of non-equilibrium quantum many-body systems", Quantum Information Processing 20 4, 138 (2021).

[16] Nizar Ahami and Morad El Baz, "Thermal entanglement in a mixed spin Heisenberg XXX chain with DM interaction", International Journal of Quantum Information 19 05, 2150021 (2021).

[17] Francesco Tacchino, Alessandro Chiesa, Stefano Carretta, and Dario Gerace, "Quantum Computers as Universal Quantum Simulators: State‐of‐the‐Art and Perspectives", Advanced Quantum Technologies 3 3, 1900052 (2020).

[18] Cristina Cîrstoiu, Zoë Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Variational fast forwarding for quantum simulation beyond the coherence time", npj Quantum Information 6 1, 82 (2020).

[19] P M Q Cruz, G Catarina, R Gautier, and J Fernández-Rossier, "Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates", Quantum Science and Technology 5 4, 044005 (2020).

[20] Adrián Pérez-Salinas, Juan Cruz-Martinez, Abdulla A. Alhajri, and Stefano Carrazza, "Determining the proton content with a quantum computer", Physical Review D 103 3, 034027 (2021).

[21] Erik J. Gustafson, "Prospects for simulating a qudit-based model of (1+1)D scalar QED", Physical Review D 103 11, 114505 (2021).

[22] Sergi Ramos-Calderer, Adrián Pérez-Salinas, Diego García-Martín, Carlos Bravo-Prieto, Jorge Cortada, Jordi Planagumà, and José I. Latorre, "Quantum unary approach to option pricing", Physical Review A 103 3, 032414 (2021).

[23] Anshuman Padhi, Sudev Pradhan, Pragna Paramita Sahoo, Kalyani Suresh, Bikash K. Behera, and Prasanta K. Panigrahi, "Studying the effect of lockdown using epidemiological modelling of COVID-19 and a quantum computational approach using the Ising spin interaction", Scientific Reports 10 1, 21741 (2020).

[24] Michał Białończyk, Fernando Gómez-Ruiz, and Adolfo del Campo, "Exact thermal properties of free-fermionic spin chains", SciPost Physics 11 1, 013 (2021).

[25] Aydin Deger and Tzu-Chieh Wei, "Geometric entanglement and quantum phase transition in generalized cluster-XY models", Quantum Information Processing 18 10, 326 (2019).

[26] Joseph Vovrosh and Johannes Knolle, "Confinement and entanglement dynamics on a digital quantum computer", Scientific Reports 11 1, 11577 (2021).

[27] Adam Smith, M. S. Kim, Frank Pollmann, and Johannes Knolle, "Simulating quantum many-body dynamics on a current digital quantum computer", npj Quantum Information 5 1, 106 (2019).

[28] Leon Bello, Marcello Calvanese Strinati, Emanuele G. Dalla Torre, and Avi Pe’er, "Persistent Coherent Beating in Coupled Parametric Oscillators", Physical Review Letters 123 8, 083901 (2019).

[29] Lindsay Bassman, Miroslav Urbanek, Mekena Metcalf, Jonathan Carter, Alexander F Kemper, and Wibe A de Jong, "Simulating quantum materials with digital quantum computers", Quantum Science and Technology 6 4, 043002 (2021).

[30] Joseph Vovrosh, Kiran E. Khosla, Sean Greenaway, Christopher Self, M. S. Kim, and Johannes Knolle, "Simple mitigation of global depolarizing errors in quantum simulations", Physical Review E 104 3, 035309 (2021).

[31] Jason P. Terry, Prosper D. Akrobotu, Christian F. A. Negre, Susan M. Mniszewski, and Itay Hen, "Quantum isomer search", PLOS ONE 15 1, e0226787 (2020).

[32] Lindsay Bassman, Sahil Gulania, Connor Powers, Rongpeng Li, Thomas Linker, Kuang Liu, T K Satish Kumar, Rajiv K Kalia, Aiichiro Nakano, and Priya Vashishta, "Domain-specific compilers for dynamic simulations of quantum materials on quantum computers", Quantum Science and Technology 6 1, 014007 (2021).

[33] Ricardo Pérez-Castillo, Manuel A. Serrano, and Mario Piattini, "Software modernization to embrace quantum technology", Advances in Engineering Software 151, 102933 (2021).

[34] Xiao Xiao, J. K. Freericks, and A. F. Kemper, "Determining quantum phase diagrams of topological Kitaev-inspired models on NISQ quantum hardware", Quantum 5, 553 (2021).

[35] Bartłomiej Gardas, Marek M. Rams, and Jacek Dziarmaga, "Quantum neural networks to simulate many-body quantum systems", Physical Review B 98 18, 184304 (2018).

[36] Ashley Montanaro and Stasja Stanisic, "Compressed variational quantum eigensolver for the Fermi-Hubbard model", arXiv:2006.01179.

[37] Amandeep Singh Bhatia and Mandeep Kaur Saggi, "Implementing Entangled States on a Quantum Computer", arXiv:1811.09833.

[38] Rafael I. Nepomechie, "Bethe ansatz on a quantum computer?", arXiv:2010.01609.

[39] Alakesh Baishya, Lingraj Kumar, Bikash K. Behera, and Prasanta K. Panigrahi, "Experimental Demonstration of Force Driven Quantum Harmonic Oscillator in IBM Quantum Computer", arXiv:1906.01436.

[40] Bhupesh Bishnoi, "Quantum Computation", arXiv:2006.02799.

[41] K. M. Anandu, Muhammad Shaharukh, Bikash K. Behera, and Prasanta K. Panigrahi, "Demonstration of teleportation-based error correction in the IBM quantum computer", arXiv:1902.01692.

[42] Harshavardhan Reddy Nareddula, Bikash K. Behera, and Prasanta K. Panigrahi, "Quantum Cost Efficient Scheme for Violating the Holevo Bound and Cloning in the Presence of Deutschian Closed Timelike Curves", arXiv:1901.00379.

[43] Guillermo Blázquez-Cruz and Pierre-Luc Dallaire-Demers, "Variational Quantum Eigensolver in Compressed Space for Nearest-Neighbour Quadratic Fermionic Hamiltonians", arXiv:2110.09550.

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-22 11:35:29) and SAO/NASA ADS (last updated successfully 2021-10-22 11:35:31). The list may be incomplete as not all publishers provide suitable and complete citation data.