Quantum Interference of Force

Raul Corrêa, Marina F. B. Cenni, and Pablo L. Saldanha

Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 701, 30161-970, Belo Horizonte, MG, Brazil

We show that a quantum particle subjected to a positive force in one path of a Mach-Zehnder interferometer and a null force in the other path may receive a negative average momentum transfer when it leaves the interferometer by a particular exit. In this scenario, an ensemble of particles may receive an average momentum in the opposite direction of the applied force due to quantum interference, a behavior with no classical analogue. We discuss some experimental schemes that could verify the effect with current technology, with electrons or neutrons in Mach-Zehnder interferometers in free space and with atoms from a Bose-Einstein condensate.

In our work, we investigate an interference effect on quantum particles that are under the action of a force. We show that, in certain circumstances, the quantum superposition of pushing a particle with doing nothing to it may result in this particle being pulled. Besides showing how this anomalous pull on a particle is a quantum interference effect - which is why we call it quantum interference of force - we discuss some feasible experimental schemes that could verify this strange phenomenon with electrons, neutrons, and atoms.

► BibTeX data

► References

[1] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III (Basic Books, New York, 2010).

[2] A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Am. J. Phys. 57, 117 (1989).
https://doi.org/10.1119/1.16104

[3] R. Bach, D. Pope, S.-H. Liou, and H. Batelaan, New J. Phys. 15, 033018 (2013).
https://doi.org/10.1088/1367-2630/15/3/033018

[4] J. A. Wheeler, Mathematical foundations of quantum theory, edited by A. R. Marlow (Academic Press, 1978) Chap. The `past' and the `delayed-choice double-slit experiment', p. 9 to 48.

[5] V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, Science 315, 966 (2007).
https://doi.org/10.1126/science.1136303

[6] A. G. Manning, R. I. Khakimov, R. G. Dall, and A. G. Truscott, Nat. Phys. 11, 539 (2015).
https://doi.org/10.1038/nphys3343

[7] F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, Sci. Adv. 3, 1701180 (2017).
https://doi.org/10.1126/sciadv.1701180

[8] M. O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991).
https://doi.org/10.1038/351111a0

[9] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 75, 3034 (1995).
https://doi.org/10.1103/PhysRevLett.75.3034

[10] S. Durr, T. Nonn, and G. Rempe, Phys. Rev. Lett. 81, 5705 (1998).
https://doi.org/10.1103/PhysRevLett.81.5705

[11] S. P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, Phys. Rev. A 65, 033818 (2002).
https://doi.org/10.1103/PhysRevA.65.033818

[12] A. C. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993).
https://doi.org/10.1007/BF00736012

[13] P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, Phys. Rev. Lett. 74, 4763 (1995).
https://doi.org/10.1103/PhysRevLett.74.4763

[14] J. Peise, B. Lucke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, Nat. Commun. 6, 6811 (2015).
https://doi.org/10.1038/ncomms7811

[15] R. Ionicioiu and D. R. Terno, Phys. Rev. Lett. 107, 230406 (2011).
https://doi.org/10.1103/PhysRevLett.107.230406

[16] A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O'Brien, Science 338, 634 (2012).
https://doi.org/10.1126/science.1226719

[17] F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Science 338, 637 (2012).
https://doi.org/10.1126/science.1226755

[18] Y. Aharonov, A. Botero, S. Nussinov, S. Popescu, J. Tollaksen, and L. Vaidman, New J. Phys. 15, 093006 (2013).
https://doi.org/10.1088/1367-2630/15/9/093006

[19] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48, 1687 (1993).
https://doi.org/10.1103/PhysRevA.48.1687

[20] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, Emended ed. (Dover, New York, 2010).

[21] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, 2nd ed. (Hermann by John Wiley & Sons, Paris, 1977).

[22] L. Marton, J. A. Simpson, and J. A. Suddeth, Rev. Sci. Instr. 25, 1099 (1954).
https://doi.org/10.1063/1.1770945

[23] H. Rauch, W. Treimer, and U. Bonse, Phys. Lett. A 47, 369 (1974).
https://doi.org/10.1016/0375-9601(74)90132-7

[24] D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991).
https://doi.org/10.1103/PhysRevLett.66.2693

[25] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).
https://doi.org/10.1103/RevModPhys.81.1051

[26] R. M. Godun, M. B. d'Arcy, G. S. Summy, and K. Burnett, Contemp. Phys. 42, 77 (2001).
https://doi.org/10.1080/00107510118044

[27] G. Gronniger, B. Barwick, and H. Batelaan, New J. Phys. 8, 224 (2006).
https://doi.org/10.1088/1367-2630/8/10/224

[28] C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard, Phys. Rev. A 51, 3883 (1995).
https://doi.org/10.1103/PhysRevA.51.3883

[29] T. D. Roberts, A. D. Cronin, M. V. Tiberg, and D. E. Pritchard, Phys. Rev. Lett. 92, 060405 (2004).
https://doi.org/10.1103/PhysRevLett.92.060405

[30] A. Miffre, M. Jacquey, M. Buchner, G. Trénec, and J. Vigué, Phys. Rev. A 73, 011603(R) (2006).
https://doi.org/10.1103/PhysRevA.73.011603

[31] H. Rauch and S. Wener, Neutron interferometry, 2nd ed. (Oxford University Press, Oxford, 2015).

[32] Y. Hasegawa and H. Rauch, New J. Phys. 13, 115010 (2011).
https://doi.org/10.1088/1367-2630/13/11/115010

[33] H. Geppert, T. Denkmayr, S. Sponar, H. Lemmel, and Y. Hasegawa, Nucl. Instrum. Methods Phys. Res. 763, 417 (2014).
https://doi.org/10.1016/j.nima.2014.06.080

[34] T. Denkmayr, H. Geppert, H. Lemmel, M. Waegell, J. Dressel, Y. Hasegawa, and S. Sponar, Phys. Rev. Lett. 118, 010402 (2017).
https://doi.org/10.1103/PhysRevLett.118.010402

[35] M. F. B. Cenni, R. Corrêa, and P. L. Saldanha, arXiv:1808.07082.
arXiv:1808.07082

Cited by

[1] S. A. Alavi and M. S. Hosseini, "Breit-Wigner distribution, quantum beats and GSI Anomaly", arXiv:1704.05762 (2017).

[2] Marina F. B. Cenni, Raul Corrêa, and Pablo L. Saldanha, "Effective electrostatic attraction between electrons due to quantum interference", arXiv:1808.07082 (2018).

The above citations are from SAO/NASA ADS (last updated 2019-03-19 22:38:57). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2019-03-19 22:38:56).