The boundaries and twist defects of the color code and their applications to topological quantum computation

Markus S. Kesselring1, Fernando Pastawski1, Jens Eisert1, and Benjamin J. Brown2,3

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
3Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

The color code is both an interesting example of an exactly solved topologically ordered phase of matter and also among the most promising candidate models to realize fault-tolerant quantum computation with minimal resource overhead. The contributions of this work are threefold. First of all, we build upon the abstract theory of boundaries and domain walls of topological phases of matter to comprehensively catalog the objects realizable in color codes. Together with our classification we also provide lattice representations of these objects which include three new types of boundaries as well as a generating set for all 72 color code twist defects. Our work thus provides an explicit toy model that will help to better understand the abstract theory of domain walls. Secondly, we discover a number of interesting new applications of the cataloged objects for quantum information protocols. These include improved methods for performing quantum computations by code deformation, a new four-qubit error-detecting code, as well as families of new quantum error-correcting codes we call stellated color codes, which encode logical qubits at the same distance as the next best color code, but using approximately half the number of physical qubits. To the best of our knowledge, our new topological codes have the highest encoding rate of local stabilizer codes with bounded-weight stabilizers in two dimensions. Finally, we show how the boundaries and twist defects of the color code are represented by multiple copies of other phases. Indeed, in addition to the well studied comparison between the color code and two copies of the surface code, we also compare the color code to two copies of the three-fermion model. In particular, we find that this analogy offers a very clear lens through which we can view the symmetries of the color code which gives rise to its multitude of domain walls.

A scalable quantum computer must be able to function even if its individual components may become subject to errors. To this end, we encode the logical qubits used for quantum computing in quantum error-correcting codes which are composed of many physical qubits. Encoded qubits can maintain their coherence arbitrarily well provided the physical qubits of the quantum error-correcting code experience errors at a rate that is suitably low. To reduce the demands on laboratory resources, we seek to find designs for quantum error-correcting codes with low dimensionality that use as few physical qubits as possible.

Promising models for fault-tolerant quantum computation are based on topological phases of matter, and of particular interest is the color code model, due to its numerous symmetries. By exploring the remarkable quasiparticle excitations of the color code, we describe and classify all of its boundaries and topological defects. These various features that we examine can be used to design better quantum error-correcting codes and, moreover, offer new ways for us to perform logical gates on encoded quantum information. Our work reveals new two-dimensional codes with better encoding rates than other proposals with the same dimensionality. It gives further substance to the idea that a deeper examination of condensed matter theory will lead to improved designs of quantum error-correcting codes in the future.

► BibTeX data

► References

[1] Xiao-Gang Wen. Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons. Oxford University Press on Demand, 2004. URL https:/​/​​books?id=llnlrfdR4YgC.

[2] Alexei Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303: 2, 2003. 10.1016/​S0003-4916(02)00018-0.

[3] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. J. Math. Phys., 43: 4452, 2002. 10.1063/​1.1499754.

[4] J. Preskill. Topological quantum computation, 2017. URL http:/​/​​ preskill/​ph219/​topological.pdf. (Chapter 9 of Lecture Notes on Quantum Computation).

[5] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys., 80: 1083, 2008. 10.1103/​RevModPhys.80.1083.

[6] Jiannis K Pachos. Introduction to topological quantum computation. Cambridge University Press, 2012. URL https:/​/​​books?id=XDciVh6bAE0C.

[7] B. M. Terhal. Quantum error correcton for quantum memories. Rev. Mod. Phys., 87: 307, 2015. 10.1103/​RevModPhys.87.307.

[8] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton. Quantum memories at finite temperature. Rev. Mod. Phys., 88: 045005, 2016a. 10.1103/​RevModPhys.88.045005.

[9] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549 (7671): 172, 2017. 10.1038/​nature23460.

[10] Alexei Kitaev. Anyons in an exactly solved model and beyond. Ann. Phys., 321 (1): 2-111, 2006. 10.1016/​j.aop.2005.10.005.

[11] Maissam Barkeshli and Xiao-Gang Wen. $U(1)\times U(1) \rtimes \mathbb{Z}_2$ Chern-Simons theory and ${Z}_4$ parafermion fractional quantum Hall states. Phys. Rev. B, 81: 045323, 2010. 10.1103/​PhysRevB.81.045323.

[12] Hector Bombín. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev. Lett., 105: 030403, 2010. 10.1103/​PhysRevLett.105.030403.

[13] Salman Beigi, Peter W. Shor, and Daniel Whalen. The quantum double model with boundary: Condensations and symmetries. Commun. Math. Phys., 313: 351, 2011. 10.1007/​s00220-011-1294-x.

[14] Alexei Kitaev and Liang Kong. Model for gapped boundaries and domain walls. Commun. Math. Phys., 313: 351, 2012. 10.1007/​s00220-012-1500-5.

[15] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, and Zhenghan Wang. Symmetry, defects, and gauging of topological phases. arXiv:1410.4540, 2014. URL https:/​/​​abs/​1410.4540.

[16] Daniel Barter, Jacob C. Bridgeman, and Corey Jones. Domain walls in topological phases and the Brauer-Picard ring for $\text{Vec}(\mathbb{Z}/​p\mathbb{Z})$. arXiv:1806.01279, 2018. URL https:/​/​​abs/​1806.01279.

[17] Hector Bombín. Clifford gates by code deformation. New J. Phys., 13: 043005, 2011. 10.1088/​1367-2630/​13/​4/​043005.

[18] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B, 87: 045130, 2013a. 10.1103/​PhysRevB.87.045130.

[19] Benjamin J. Brown, Abbas Al-Shimary, and Jiannis K. Pachos. Entropic barriers for two-dimensional quantum memories. Phys. Rev. Lett., 112: 120503, 2014. 10.1103/​PhysRevLett.112.120503.

[20] Matthew B. Hastings and A. Geller. Reduced space-time costs Ising dislocation codes and arbitrary ancillas. Quant. Inf. Comp., 15: 0962, 2015. URL https:/​/​​abs/​1408.3379.

[21] James R. Wootton. A family of stabilizer codes for $ D({\mathbb Z} _2)$ anyons and majorana modes. J. Phys. A: Math. Theor., 48: 215302, 2015. 10.1088/​1751-8113/​48/​21/​215302.

[22] Theodore J. Yoder and Isaac H. Kim. The surface code with a twist. Quantum, 1: 2, 2017. 10.22331/​q-2017-04-25-2.

[23] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R. Wootton. Poking holes and cutting corners to achieve Clifford gates with the surface code. Phys. Rev. X, 7: 021029, 2017. 10.1103/​PhysRevX.7.021029.

[24] Beni Yoshida. Gapped boundaries, group cohomology and fault-tolerant logical gates. Ann. Phys., 377: 387-413, 2017. 10.1016/​j.aop.2016.12.014.

[25] Sam Roberts, Beni Yoshida, Aleksander Kubica, and Stephen D. Bartlett. Symmetry-protected topological order at nonzero temperature. Phys. Rev. A, 96: 022306, 2017. 10.1103/​PhysRevA.96.022306.

[26] Guanyu Zhu, Mohammad Hafezi, and Maissam Barkeshli. Quantum origami: Applying fault-tolerant transversal gates and measuring topological order. arXiv:1711.05752, 2017. URL https:/​/​​abs/​1711.05752.

[27] Ali Lavasani and Maissam Barkeshli. Low overhead Clifford gates from joint measurements in surface, color, and hyperbolic codes. arXiv:1804.04144, 2018. URL https:/​/​​abs/​1804.04144.

[28] Hector Bombín and Miguel A. Martin-Delagado. Topological quantum distillation. Phys. Rev. Lett., 97: 180501, 2006. 10.1103/​PhysRevLett.97.180501.

[29] Héctor Bombín. Gauge color codes: optimal transveral gates and gauge fixing in topological stabilizer codes. New J. Phys., 17: 083002, 2015. 10.1088/​1367-2630/​17/​8/​083002.

[30] Aleksander Kubica and Michael E. Beverland. Universal transversal gates with color codes: A simplified approach. Phys. Rev. A, 91: 032330, 2015. 10.1103/​PhysRevA.91.032330.

[31] Fern H. E. Watson, Earl T. Campbell, Hussain Anwar, and Dan E. Browne. Qudit color codes and gauge color codes in all spatial dimensions. Phys. Rev. A, 92: 022312, 2015. 10.1103/​PhysRevA.92.022312.

[32] Earl T. Campbell. The smallest interesting color code, 2016. URL https:/​/​​2016/​09/​26/​the-smallest-interesting-colour-code/​.

[33] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the color code. New Journal of Physics, 17 (8): 083026, 2015. 10.1088/​1367-2630/​17/​8/​083026.

[34] Michael Vasmer and Dan E. Browne. Universal quantum computing with 3D surface codes. arXiv:1801.04255, 2018. URL https:/​/​​abs/​1801.04255.

[35] Sergey Bravyi and Robert König. Classification of topologically protected gates for local stabilizer codes. Phys. Rev. Lett., 110: 170503, 2013. 10.1103/​PhysRevLett.110.170503.

[36] Fernando Pastawski and Beni Yoshida. Fault-tolerant logical gates in quantum error-correcting codes. Phys. Rev. A, 91: 012305, 2015. 10.1103/​PhysRevA.91.012305.

[37] Tomas Jochym-O’Connor, Aleksander Kubica, and Theodore J Yoder. Disjointness of stabilizer codes and limitations on fault-tolerant logical gates. Phys. Rev. X, 8 (2): 021047, 2018. 10.1103/​PhysRevX.8.021047.

[38] Paul Webster and Stephen D. Bartlett. Locality-preserving logical operators in topological stabilizer codes. Phys. Rev. A, 97: 012330, 2018. 10.1103/​PhysRevA.97.012330.

[39] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quantum computer. Ann. Phys., 321: 2242, 2006. 10.1016/​j.aop.2006.01.012.

[40] H. Bombín and M. A. Martin-Delgado. Quantum measurements and gates by code deformation. J. Phys. A, 42: 095302, 2009. 10.1088/​1751-8113/​42/​9/​095302.

[41] Austin G Fowler. Two-dimensional color-code quantum computation. Phys. Rev. A, 83 (4): 042310, 2011. 10.1103/​PhysRevA.83.042310.

[42] Clare Horsman, Austin G. Fowler, Simon Devitt, and Rodney Van Meter. Surface code quantum computing by lattice surgery. New J. Phys., 14: 123011, 2012. 10.1088/​1367-2630/​14/​12/​123011.

[43] Andrew J. Landahl and Ciaran Ryan-Anderson. Quantum computing by color-code lattice surgery. arXiv:1407.5103, 2014. URL https:/​/​​abs/​1407.5103.

[44] Jeffrey CY Teo, Abhishek Roy, and Xiao Chen. Unconventional fusion and braiding of topological defects in a lattice model. Phys. Rev. B, 90 (11): 115118, 2014. 10.1103/​PhysRevB.90.115118.

[45] Beni Yoshida. Topological color code and symmetry-protected topological phases. Phys. Rev. B, 91: 245131, 2015. 10.1103/​PhysRevB.91.245131.

[46] Jacob C. Bridgeman, Stephen D. Bartlett, and Andrew C. Doherty. Tensor networks with a twist: Anyon-permuting domain walls and defects in peps. Phys. Rev. B, 96: 245122, 2017. 10.1103/​PhysRevB.96.245122.

[47] Dominic J Williamson, Nick Bultinck, and Frank Verstraete. Symmetry-enriched topological order in tensor networks: Defects, gauging and anyon condensation. arXiv:1711.07982, 2017. URL https:/​/​​abs/​1711.07982.

[48] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482: 382, 2012. 10.1038/​nature10786.

[49] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffry, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508: 500, 2014. 10.1038/​nature13171.

[50] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt. Quantum computations on a topologically encoded qubit. Science, 345 (6194): 302-305, 2014. 10.1126/​science.1253742.

[51] A. D. Córcoles, Easwar Magesan, Srikanth J. Srinivasan, Andrew W. Cross, M. Steffen, Jay M. Gambetta, and Jerry M. Chow. Demonstration of a quantum error detection code using a square lattice of four superconducing qubits. Nat. Comms., 6: 6979, 2015. 10.1038/​ncomms7979.

[52] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus. Exponential protection of zero modes in Majorana islands. Nature, 531: 206, 2016. 10.1038/​nature17162.

[53] Maika Takita, A. D. Córcoles, Easwar Magesan, Baleeg Abdo, Markus Brink, Andrew W. Cross, Jerry M. Chow, and Jay M. Gambetta. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett., 117: 210505, 2016. 10.1103/​PhysRevLett.117.210505.

[54] Norbert M. Linke, Mauricio Gutierrez, Kevin A. Landsman, Caroline Figgatt, Shantanu Debnath, Kenneth R. Brown, and Christopher Monroe. Fault-tolerant quantum error detection. Sci. Adv., 3: e1701074, 2017. 10.1126/​sciadv.1701074.

[55] H. Bombín, Ruben S. Andrist, Masayuki Ohzeki, Helmut G. Katzgraber, and M. A. Martin-Delgado. Strong resilience of topological codes to depoloarization. Phys. Rev. X, 2: 021004, 2012. 10.1103/​PhysRevX.2.021004.

[56] Andrew J. Landahl, Jonas T. Anderson, and Patrick R. Rice. Fault-tolerant quantum computing with color codes. arXiv:1108.5738, 2011. URL https:/​/​​abs/​1108.5738.

[57] Barbara M. Terhal, Fabian Hassler, and David P. DiVincenzo. From majorana fermions to topological order. Phys. Rev. Lett., 108: 260504, Jun 2012. 10.1103/​PhysRevLett.108.260504.

[58] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea. Milestones toward majorana-based quantum computing. Phys. Rev. X, 6: 031016, 2016. 10.1103/​PhysRevX.6.031016.

[59] S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger. Roadmap to majorana surface codes. Phys. Rev. B, 94: 174514, Nov 2016. 10.1103/​PhysRevB.94.174514.

[60] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht, and R. Egger. Towards realistic implementations of a majorana surface code. Phys. Rev. Lett., 116: 050501, Feb 2016. 10.1103/​PhysRevLett.116.050501.

[61] D. Litinski, M. Kesselring, J. Eisert, and F. von Oppen. Combining topological hardware and topological software: Color code quantum computing with topological superconductor networks. Phys. Rev. X, 7: 031048, 2017. 10.1103/​PhysRevX.7.031048.

[62] Daniel Litinski and Felix von Oppen. Braiding by Majorana tracking and long-range CNOT gates with color codes. Phys. Rev. B, 96: 205413, 2017. 10.1103/​PhysRevB.96.205413.

[63] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for reliable quantum information storage in 2D systems. Phys. Rev. Lett., 104 (5): 050503, 2010. 10.1103/​PhysRevLett.104.050503.

[64] Xiao-Gang Wen. Quantum orders in an exact soluble model. Phys. Rev. Lett., 90 (1): 016803, 2003. 10.1103/​PhysRevLett.90.016803.

[65] Nicolas Delfosse, Pavithran Iyer, and David Poulin. Generalized surface codes and packing of logical qubits. arXiv:1606.07116, 2016a. URL https:/​/​​abs/​1606.07116.

[66] Hector Bombín, Guillaume Duclos-Cianci, and David Poulin. Universal topological phase of two-dimensional stabilizer codes. New Journal of Physics, 14 (7): 073048, 2012. 10.1088/​1367-2630/​14/​7/​073048.

[67] Arjun Bhagoji and Pradeep Sarvepalli. Equivalence of 2D color codes (without translational symmetry) to surface codes. arXiv:1503.03009, 2015. URL https:/​/​​abs/​1503.03009.

[68] Ben Criger and Barbara Terhal. Noise thresholds for the [[4, 2, 2]]-concatenated toric code. arXiv:1604.04062, 2016. URL https:/​/​​abs/​1604.04062.

[69] Zhenghan Wang. private communication, 2017.

[70] Eric Rowell, Richard Stong, and Zhenghan Wang. On classification of modular tensor categories. Commun. Math. Phys., 292 (2): 343-389, 2009. 10.1007/​s00220-009-0908-z.

[71] Jonathan E. Moussa. Transversal Clifford gates on folded surface codes. Phys. Rev. A, 94: 042316, 2016. 10.1103/​PhysRevA.94.042316.

[72] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology, 1997. URL https:/​/​​abs/​quant-ph/​9705052.

[73] M. Levin. Protected edge modes without symmetry. Phys. Rev. X, 3 (2): 021009, 2013. 10.1103/​PhysRevX.3.021009.

[74] Maissam Barkeshli, Chao-Ming Jian, and Xiao-Liang Qi. Classification of topological defects in Abelian topological states. Phys. Rev. B, 88: 241103(R), 2013b. 10.1103/​PhysRevB.88.241103.

[75] Iris Cong, Meng Cheng, and Zhenghan Wang. Defects between gapped boundaries in two-dimensional topological phases of matter. Phys. Rev. B, 96: 195129, 2017a. 10.1103/​PhysRevB.96.195129.

[76] FJ Burnell. Anyon condensation and its applications. Annu. Rev. Condens. Matter Phys., (0), 2017. 10.1146/​annurev-conmatphys-033117-054154.

[77] Iris Cong, Meng Cheng, and Zhenghan Wang. Topological quantum computation with gapped boundaries. arXiv:1609.02037, 2016. URL https:/​/​​abs/​1609.02037.

[78] Iris Cong, Meng Cheng, and Zhenghan Wang. Universal quantum computation with gapped boundaries. Phys. Rev. Lett., 119 (17): 170504, 2017b. 10.1103/​PhysRevLett.119.170504.

[79] Netanel H Lindner, Erez Berg, Gil Refael, and Ady Stern. Fractionalizing majorana fermions: Non-abelian statistics on the edges of abelian quantum hall states. Phys. Rev. X, 2 (4): 041002, 2012. 10.1103/​PhysRevX.2.041002.

[80] Nicolas Tarantino, Netanel H Lindner, and Lukasz Fidkowski. Symmetry fractionalization and twist defects. New J. Phys., 18 (3): 035006, 2016. 10.1088/​1367-2630/​18/​3/​035006.

[81] J. C. Y. Teo. Globally symmetric topological phase: from anyonic symmetry to twist defect. J. Phys., 28 (14): 143001, 2016. 10.1088/​0953-8984/​28/​14/​143001.

[82] Michael E Beverland, Oliver Buerschaper, Robert Koenig, Fernando Pastawski, John Preskill, and Sumit Sijher. Protected gates for topological quantum field theories. J. Math. Phys., 57 (2): 022201, 2016. 10.1063/​1.4939783.

[83] Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96: 110404, 2006. 10.1103/​PhysRevLett.96.110404.

[84] Shiying Dong, Eduardo Fradkin, Robert G. Leigh, and Sean Nowling. Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids. JHEP, 05: 016, 2008. 10.1088/​1126-6708/​2008/​05/​016.

[85] Benjamin J. Brown, Stephen D. Bartlett, Andrew C. Doherty, and Sean D. Barrett. Topological entanglement entropy with a twist. Phys. Rev. Lett., 111: 220402, 2013. 10.1103/​PhysRevLett.111.220402.

[86] Zhao Liu, Gunnar Möller, and Emil J. Bergholtz. Exotic non-Abelian topological defects in lattice fractional quantum Hall states. Phys. Rev. Lett., 119: 106801, 2017. 10.1103/​PhysRevLett.119.106801.

[87] Parsa Bonderson, Christina Knapp, and Kaushal Patel. Anyonic entanglement and topological entanglement entropy. Ann. Phys., 385: 399, 2017. 10.1016/​j.aop.2017.07.018.

[88] Y.-Z. You and X.-G. Wen. Projective non-abelian statistics of dislocation defects in a ${\mathbb Z}_N$ rotor model. Phys. Rev. B, 86 (16): 161107, 2012. 10.1103/​PhysRevB.86.161107.

[89] Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J Briegel. Fault-tolerant interface between quantum memories and quantum processors. Nature Commun., 8 (1): 1321, 2017. 10.1038/​s41467-017-01418-2.

[90] Daniel Litinski and Felix von Oppen. Lattice surgery with a twist: Simplifying clifford gates of surface codes. Quantum, 2: 62, 2018. 10.22331/​q-2018-05-04-62.

[91] H Bombín and MA Martin-Delgado. Topological quantum error correction with optimal encoding rate. Phys. Rev. A, 73 (6): 062303, 2006. 10.1103/​PhysRevA.73.062303.

[92] Michael H Freedman, David A Meyer, and Feng Luo. $Z_2$-systolic freedom and quantum codes. In Mathematics of quantum computation, pages 287-320. 2002. URL https:/​/​​books?id=evPKBQAAQBAJ.

[93] Nicolas Delfosse. Tradeoffs for reliable quantum information storage in surface codes and color codes. In 2013 IEEE International Symposium on Information Theory, pages 917-921. IEEE, 2013. 10.1109/​ISIT.2013.6620360.

[94] N. P. Breuckmann, C. Vuillot, E. T. Campbell, A. Krishna, and B. M. Terhal. Hyperbolic and semi-hyperbolic surface codes for quantum storage. Quantum Sc. Tech., 2: 035007, 2017. 10.1088/​2058-9565/​aa7d3b.

[95] H Bombín and MA Martin-Delgado. Exact topological quantum order in d=3 and beyond: Branyons and brane-net condensates. Phys. Rev. B, 75 (7): 075103, 2007. 10.1103/​PhysRevB.75.075103.

[96] S. Bravyi, M. B. Hastings, and F. Verstraete. Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett., 97: 050401, 2006. 10.1103/​PhysRevLett.97.050401.

[97] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order. Phys. Rev. B, 82: 155138, 2010. 10.1103/​PhysRevB.82.155138.

[98] Sergey B Bravyi and A Yu Kitaev. Quantum codes on a lattice with boundary. arXiv:9811052, 1998. URL https:/​/​​abs/​quant-ph/​9811052.

[99] Nicolas Delfosse, Pavithran Iyer, and David Poulin. A linear-time benchmarking tool for generalized surface codes. arXiv:1611.04256, 2016b. URL https:/​/​​abs/​1611.04256.

[100] H. Bombín. Topological subsystem codes. Phys. Rev. A, 81 (3): 32301, 2010. 10.1103/​PhysRevA.81.032301.

[101] Udo Pachner. P. L. homeomorphic manifolds are equivalent by elementary shellings. Europ. J. Combinatorics, 12: 129, 1991. 10.1016/​S0195-6698(13)80080-7.

[102] Mikio Nakahara. Geometry, Topology and Physics. Institute of Physics, 2003. URL https:/​/​​books?id=cH-XQB0Ex5wC.

[103] Andrej Mesaros, Yong Baek Kim, and Ying Ran. Changing topology by topological defects in three-dimensional topologically ordered phases. Phys. Rev. B, 88: 035141, 2013. 10.1103/​PhysRevB.88.035141.

[104] H. Bombín and M. A. Martin-Delagado. Topological computation without braiding. Phys. Rev. Lett., 98: 160502, 2007. 10.1103/​PhysRevLett.98.160502.

[105] Benjamin J. Brown, Naomi H. Nickerson, and Dan E. Browne. Fault-tolerant error correction with the gauge color code. Nat. Commun., 7: 12302, 2016b. 10.1038/​ncomms12302.

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.