Time-reversal of rank-one quantum strategy functions

Yuan Su1 and John Watrous2,3

1Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum Information and Computer Science, University of Maryland, USA
2Institute for Quantum Computing and School of Computer Science, University of Waterloo, Canada
3Canadian Institute for Advanced Research, Toronto, Canada

The $\textit{quantum strategy}$ (or $\textit{quantum combs}$) framework is a useful tool for reasoning about interactions among entities that process and exchange quantum information over the course of multiple turns. We prove a time-reversal property for a class of linear functions, defined on quantum strategy representations within this framework, that corresponds to the set of rank-one positive semidefinite operators on a certain space. This time-reversal property states that the maximum value obtained by such a function over all valid quantum strategies is also obtained when the direction of time for the function is reversed, despite the fact that the strategies themselves are generally not time reversible. An application of this fact is an alternative proof of a known relationship between the conditional min- and max-entropy of bipartite quantum states, along with generalizations of this relationship.

► BibTeX data

► References

[1] G. Chiribella and D. Ebler. Optimal quantum networks and one-shot entropies. New Journal of Physics, 18: 093053, 2016. 10.1088/​1367-2630/​18/​9/​093053.
https://doi.org/10.1088/1367-2630/18/9/093053

[2] G. Chiribella, G. D'Ariano, and P. Perinotti. Quantum circuit architecture. Physical Review Letters, 101 (6): 060401, 2008a. 10.1103/​PhysRevLett.101.060401.
https://doi.org/10.1103/PhysRevLett.101.060401

[3] G. Chiribella, G. D'Ariano, and P. Perinotti. Transforming quantum operations: quantum supermaps. Europhysics Letters, 83 (3): 30004, 2008b. 10.1209/​0295-5075/​83/​30004.
https://doi.org/10.1209/0295-5075/83/30004

[4] G. Chiribella, G. D'Ariano, and P. Perinotti. Theoretical framework for quantum networks. Physical Review A, 80 (2): 022339, 2009. 10.1103/​PhysRevA.80.022339.
https://doi.org/10.1103/PhysRevA.80.022339

[5] G. Chiribella, G. D'Ariano, P. Perinotti, D. Schlingemann, and R. Werner. A short impossibility proof of quantum bit commitment. Physics Letters A, 377 (15), 2013. 10.1016/​j.physleta.2013.02.045.
https://doi.org/10.1016/j.physleta.2013.02.045

[6] N. Datta. Min- and max-relative entropies and a new entanglement monotone. IEEE Transactions on Information Theory, 55 (6): 2816-2826, 2009. 10.1109/​TIT.2009.2018325.
https://doi.org/10.1109/TIT.2009.2018325

[7] T. Eggeling, D. Schlingemann, and R. Werner. Semicausal operations are semilocalizable. Europhysics Letters, 57 (6): 782-788, 2002. 10.1209/​epl/​i2002-00579-4.
https://doi.org/10.1209/epl/i2002-00579-4

[8] G. Gutoski. Quantum Strategies and Local Operations. PhD thesis, University of Waterloo, 2009. URI: 10012/​4903.
http:/​/​hdl.handle.net/​10012/​4903

[9] G. Gutoski and J. Watrous. Toward a general theory of quantum games. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 565-574, 2007. 10.1145/​1250790.1250873.
https://doi.org/10.1145/1250790.1250873

[10] L. Hardy. The operator tensor formulation of quantum theory. Philosophical Transactions of the Royal Society A, 370 (1971): 3385-3417, 2012. 10.1098/​rsta.2011.0326.
https://doi.org/10.1098/rsta.2011.0326

[11] A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation, volume 47 of Graduate Studies in Mathematics. American Mathematical Society, 2002. 10.1090/​gsm/​047/​08.
https://doi.org/10.1090/gsm/047/08

[12] R. König, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy. IEEE Transactions on Information Theory, 55 (9): 4337-4347, 2009. 10.1109/​TIT.2009.2025545.
https://doi.org/10.1109/TIT.2009.2025545

[13] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. 10.1017/​CBO9780511976667.
https://doi.org/10.1017/CBO9780511976667

[14] J. Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. 10.1017/​9781316848142.
https://doi.org/10.1017/9781316848142

[15] M. Wilde. Quantum Information Theory. Cambridge University Press, 2013. 10.1017/​CBO9781139525343.
https://doi.org/10.1017/CBO9781139525343

[16] H. Wolkowicz, R. Saigal, and L. Vandenberge, editors. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000. 10.1007/​978-1-4615-4381-7.
https://doi.org/10.1007/978-1-4615-4381-7

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.