Non-Markovian Quantum Optics with Three-Dimensional State-Dependent Optical Lattices

A. González-Tudela1,2 and J. I. Cirac1

1Max-Planck-Institut für Quantenoptik Hans-Kopfermann-Str. 1. 85748 Garching, Germany
2Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain.

Quantum emitters coupled to structured photonic reservoirs experience unconventional individual and collective dynamics emerging from the interplay between dimensionality and non-trivial photon energy dispersions. In this work, we systematically study several paradigmatic three dimensional structured baths with qualitative differences in their bath spectral density. We discover non-Markovian individual and collective effects absent in simplified descriptions, such as perfect subradiant states or long-range anisotropic interactions. Furthermore, we show how to implement these models using only cold atoms in state-dependent optical lattices and show how this unconventional dynamics can be observed with these systems.

Quantum optics is the theory which describes the interaction between
quantized light and matter. It captures many relevant phenomena such as the
spontaneous emission of optically excited states. In the simplest scenario,
that is, when the photon timescales are much faster than the emitters ones,
their dynamics can be obtained within a perturbative (Markovian)
description, for example predicting an exponential decay of the emitter

Recent experimental advances in the integration of quantum emitters with
nanophotonic structures, in circuit QED, or in the simulation of quantum
optical phenomena with matter waves provide us with systems where these
perturbative descriptions break and novel non-Markovian phenomena emerge.
In our manuscript, we focus on the implementation of several structured 3D
environments with matter waves and show how new type of dynamics and
interactions emerge from the interplay between the dimensionality and
photon energy dispersion.

► BibTeX data

► References

[1] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).

[2] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, Science 340, 1202 (2013).

[3] A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, and H. Kimblemblrm, Nat. Commun. 5, 3808 (2014).

[4] J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, Phys. Rev. Lett. 113, 263603 (2014).

[5] P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015).

[6] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, Science 354, 847 (2016).

[7] N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, Phys. Rev. Lett. 117, 133603 (2016).

[8] H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, Phys. Rev. Lett. 117, 133604 (2016).

[9] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, Nature communications 8, 1857 (2017).

[10] V. P. Bykov, Soviet Journal of Quantum Electronics 4, 861 (1975).

[11] S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).

[12] G. Kurizki, Phys. Rev. A 42, 2915 (1990).

[13] S. Tanaka, S. Garmon, and T. Petrosky, Phys. Rev. B 73, 115340 (2006).

[14] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Phys. Rev. A 93, 033833 (2016).

[15] T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, Phys. Rev. X 6, 021027 (2016).

[16] P. Facchi, M. S. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, Phys. Rev. A 94, 043839 (2016).

[17] F. Galve, A. Mandarino, M. G. Paris, C. Benedetti, and R. Zambrini, Scientific Reports 7 (2017), 10.1038/​srep42050.

[18] A. González-Tudela and J. I. Cirac, Phys. Rev. Lett. 119, 143602 (2017a).

[19] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, Phys. Rev. X 7, 031024 (2017).

[20] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Phys. Rev. Lett. 118, 113601 (2017).

[21] A. W. Glaetzle, K. Ender, D. S. Wild, S. Choi, H. Pichler, M. D. Lukin, and P. Zoller, Phys. Rev. X 7, 031049 (2017).

[22] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 119, 023603 (2017).

[23] A. Albrecht, L. Henriet, A. Asenjo-Garcia, P. B. Dieterle, O. Painter, and D. E. Chang, arXiv:1803.02115 (2018).

[24] J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, Nature Photonics 9, 326 (2015).

[25] A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. Kimble, Nature Photonics 9, 320 (2015).

[26] E. Shahmoon, P. Grišins, H. P. Stimming, I. Mazets, and G. Kurizki, Optica 3, 725 (2016).

[27] S. John and T. Quang, Phys. Rev. A 50, 1764 (1994).

[28] Q.-J. Tong, J.-H. An, H.-G. Luo, and C. H. Oh, Phys. Rev. A 81, 052330 (2010).

[29] P. Longo, P. Schmitteckert, and K. Busch, Phys. Rev. Lett. 104, 023602 (2010).

[30] S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fortschritte der Physik 61, 261 (2013).

[31] E. S. Redchenko and V. I. Yudson, Phys. Rev. A 90, 063829 (2014).

[32] F. Lombardo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 89, 053826 (2014).

[33] E. Sánchez-Burillo, D. Zueco, L. Martín-Moreno, and J. J. García-Ripoll, Phys. Rev. A 96, 023831 (2017).

[34] R. H. Lehmberg, Phys. Rev. A 2, 883 (1970).

[35] G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer-Verlag, Berlin, 2000).

[36] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).

[37] Y. Liu and A. A. Houck, Nature Physics 13, 48 (2017).

[38] N. M. Sundaresan, R. Lundgren, G. Zhu, A. V. Gorshkov, and A. A. Houck, arXiv:1801.10167 (2018).

[39] M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J. Keller, and O. Painter, arXiv:1802.01708 (2018).

[40] I. de Vega, D. Porras, and J. Ignacio Cirac, Phys. Rev. Lett. 101, 260404 (2008).

[41] C. Navarrete-Benlloch, I. de Vega, D. Porras, and J. I. Cirac, New Journal of Physics 13, 023024 (2011).

[42] L. Krinner, M. Stewart, A. Pazmino, J. Kwon, and D. Schneble, Nature 559, 589 (2018).

[43] M. Stewart, L. Krinner, A. Pazmiño, and D. Schneble, Phys. Rev. A 95, 013626 (2017).

[44] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, Proceedings of the National Academy of Sciences 113, 10507 (2016).

[45] N. Ashcroft and N. D. Mermin, Solid State Physics, Books/​Cole Cengage Learning (Inc, 1976).

[46] C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, and P. Thickstun, Atom-photon interactions: basic processes and applications (Wiley Online Library, 1992).

[47] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349, 842–845 (2015).

[48] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Phys. Rev. Lett. 101, 170504 (2008).

[49] S. Snigirev, A. J. Park, A. Heinz, S. Wissenberg, J. Dalibard, I. Bloch, and S. Blatt, in Quantum Information and Measurement (Optical Society of America, 2017) pp. QT4A-2.

[50] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature 467, 68–72 (2010).

[51] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, Nature 471, 319 (2011).

[52] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[53] H. Nakazato, M. Namiki, and S. Pascazio, International Journal of Modern Physics B 10, 247 (1996).

[54] A. González-Tudela and J. I. Cirac, Phys. Rev. A 96, 043811 (2017b).

[55] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[56] A. J. Guttmann, Journal of Physics A: Mathematical and Theoretical 43, 305205 (2010).

[57] M. Abramowitz, I. A. Stegun, et al., Applied mathematics series 55, 62 (1966).

[58] A. González-Tudela and J. I. Cirac, Phys. Rev. A 97, 043831 (2018).

[59] L. Van Hove, Phys. Rev. 89, 1189 (1953).

[60] R. Wong and J. Lin, Journal of Mathematical Analysis and Applications 64, 173 (1978).

[61] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[62] K. I. Petsas, A. B. Coates, and G. Grynberg, Phys. Rev. A 50, 5173 (1994).

[63] Y. Boretz and L. E. Reichl, Phys. Rev. E 91, 042901 (2015).

[64] L.-J. Lang, S.-L. Zhang, K. T. Law, and Q. Zhou, Phys. Rev. B 96, 035145 (2017).

[65] M. Antezza and Y. Castin, Phys. Rev. A 80, 013816 (2009).

[66] M. Antezza and Y. Castin, Phys. Rev. A 88, 033844 (2013).

[67] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, ``Optical Dipole Traps for Neutral Atoms,'' (2000).

[68] G. H. Wannier, Phys. Rev. 52, 191 (1937).

[69] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

[70] T. Uehlinger, Engineering artificial graphene with an ultracold Fermi gas, Ph.D. thesis, ETH Zurich (2014).

[71] T. Shi, Y.-H. Wu, A. González-Tudela, and J. Cirac, arXiv:1806.02527 (2018).

[72] T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, Phys. Rev. Lett. 113, 237203 (2014).

[73] H. Pichler, T. Ramos, A. J. Daley, and P. Zoller, Phys. Rev. A 91, 042116 (2015).

Cited by

[1] Alejandro González-Tudela and Fernando Galve, "Anisotropic Quantum Emitter Interactions in Two-Dimensional Photonic-Crystal Baths", ACS Photonics 6 1, 221 (2019).

[2] T Shi, Y-H Wu, A González-Tudela, and J I Cirac, "Effective many-body Hamiltonians of qubit-photon bound states", New Journal of Physics 20 10, 105005 (2018).

The above citations are from Crossref's cited-by service (last updated 2019-02-20 08:20:03). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2019-02-20 08:20:03).