Electro-mechanical Casimir effect

Mikel Sanz1, Witlef Wieczorek2, Simon Gröblacher3, and Enrique Solano1,4,5

1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
2Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-41296 Göteborg, Sweden
3Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, The Netherlands
4IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
5Department of Physics, Shanghai University, 200444 Shanghai, China

The dynamical Casimir effect is an intriguing phenomenon in which photons are generated from vacuum due to a non-adiabatic change in some boundary conditions. In particular, it connects the motion of an accelerated mechanical mirror to the generation of photons. While pioneering experiments demonstrating this effect exist, a conclusive measurement involving a mechanical generation is still missing. We show that a hybrid system consisting of a piezoelectric mechanical resonator coupled to a superconducting cavity may allow to electro-mechanically generate measurable photons from vacuum, intrinsically associated to the dynamical Casimir effect. Such an experiment may be achieved with current technology, based on film bulk acoustic resonators directly coupled to a superconducting cavity. Our results predict a measurable photon generation rate, which can be further increased through additional improvements such as using superconducting metamaterials.

Quantum mechanics predicts that virtual particles can emerge from vacuum. This phenomenon, known as quantum fluctuations, is a cornerstone to explaining key effects in nature. The dynamical Casimir effect is an intriguing phenomenon which connects the motion of an accelerated mechanical mirror to the generation of photons. While pioneering experiments about this effect exist, a conclusive measurement involving a mechanical movement of the mirror is still missing. In this Article, we show that a hybrid system consisting of a mechanical resonator coupled to a superconducting cavity may allow to electro-mechanically generate measurable photons from vacuum. Additionally, we also identify the technological challenges which should be faced to improve the process.

► BibTeX data

► References

[1] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (ISBN: 978-0201503975, Westview Press, 1995).

[2] M. Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge Univ. Press, 2008).
https://doi.org/10.1017/CBO9780511755606

[3] W. E. Lamb and R. C. Retherford, Fine Structure of the Hydrogen Atom by a Microwave Method, Phys. Rev. 72, 241 (1947).
https://doi.org/10.1103/PhysRev.72.241

[4] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wet. B 51, 793 (1948).

[5] S. K. Lamoreaux, Demonstration of the Casimir Force in the $0.6$ to $6$ $\mu$m Range, Phys. Rev. Lett. 78, 5 (1997).
https://doi.org/10.1103/PhysRevLett.78.5

[6] U. Mohideen and A. Roy, Precision Measurement of the Casimir Force from $0.1$ to $0.9$ $\mu$m, Phys. Rev. Lett. 81, 4549 (1998).
https://doi.org/10.1103/PhysRevLett.81.4549

[7] S. K. Lamoreaux, Progress in Experimental Measurements of the Surface-Surface Casimir Force: Electrostatic Calibrations and Limitations to Accuracy, Casimir Physics, Lecture Notes in Physics, pp. 219-248, (Springer, Berlin, Heidelberg, 2011).
https://doi.org/10.1007/978-3-642-20288-9_7

[8] G. T. Moore, Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity, J. Math. Phys. 11, 2679 (1970).
https://doi.org/10.1063/1.1665432

[9] V. V. Dodonov, Current status of the dynamical Casimir effect, Phys. Scr. 82, 038105 (2010).
https://doi.org/10.1088/0031-8949/82/03/038105

[10] C. Braggio et al., A novel experimental approach for the detection of the dynamical Casimir effect, Europhysics Lett. 70, 754 (2005).
https://doi.org/10.1209/epl/i2005-10048-8

[11] E. Yablonovitch, Accelerating Reference Frame for Electromagnetic Waves in a Rapidly Growing Plasma: Unruh-Davies-Fulling-DeWitt Radiation and the Nonadiabatic Casimir Effect, Phys. Rev. Lett. 62, 1742 (1989).
https://doi.org/10.1103/PhysRevLett.62.1742

[12] A. Lambrecht, M. T. Jaekel, and S. Reynaud, Motion induced radiation from a vibrating cavity, Phys. Rev. Lett. 77, 615 (1996).
https://doi.org/10.1103/PhysRevLett.77.615

[13] V. V. Dodonov and A. B. Klimov, Generation and detection of photons in a cavity with a resonantly oscillating boundary, Phys. Rev. A 53, 2664 (1996).
https://doi.org/10.1103/PhysRevA.53.2664

[14] J.-Y. Ji, H.-H. Jung, J.-W. Park, and K.-S. Soh, Production of photons by the parametric resonance in the dynamical Casimir effect, Phys. Rev. A 56, 4440 (1997).
https://doi.org/10.1103/PhysRevA.56.4440

[15] M. Uhlmann, G. Plunien, R. Schützhold, and G. Soff, Resonant Cavity Photon Creation via the Dynamical Casimir Effect, Phys. Rev. Lett. 93, 193601 (2004).
https://doi.org/10.1103/PhysRevLett.93.193601

[16] M. Crocce, D. A. R. Dalvit, F. C. Lombardo, and F. D. Mazzitelli, Model for resonant photon creation in a cavity with time-dependent conductivity, Phys. Rev. A 70, 033811 (2004).
https://doi.org/10.1103/PhysRevA.70.033811

[17] W.-J. Kim, J. H. Brownell, and R. Onofrio, Detectability of Dissipative Motion in Quantum Vacuum via Superradiance, Phys. Rev. Lett. 96, 200402 (2006).
https://doi.org/10.1103/PhysRevLett.96.200402

[18] G. Günter et al., Sub-cycle switch-on of ultrastrong light-matter interaction, Nature 458, 178 (2009).
https://doi.org/10.1038/nature07838

[19] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti, Extracavity quantum vacuum radiation from a single qubit, Phys. Rev. A 80, 053810 (2009).
https://doi.org/10.1103/PhysRevA.80.053810

[20] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Dynamical Casimir Effect in a Superconducting Coplanar Waveguide, Phys. Rev. Lett. 103, 147003 (2009).
https://doi.org/10.1103/PhysRevLett.103.147003

[21] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010).
https://doi.org/10.1103/PhysRevA.82.052509

[22] P. D. Nation, J. Suh, and M. P. Blencowe, Ultrastrong optomechanics incorporating the dynamical Casimir effect, Phys. Rev. A 93, 022510 (2016).
https://doi.org/10.1103/PhysRevA.93.022510

[23] D. A. R. Dalvit, P. A. M. Neto, and F. D. Mazzitelli, Fluctuations, Dissipation and the Dynamical Casimir Effect, Casimir Physics, Lecture Notes in Physics, pp. 419-457 (Springer, Berlin, Heidelberg, 2011).
https://doi.org/10.1007/978-3-642-20288-9_13

[24] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Stimulating uncertainty: Amplifiying the quantum vacuum with superconducting circuits, Rev. Mod. Phys. 84, 1 (2012).
https://doi.org/10.1103/RevModPhys.84.1

[25] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Nature 479, 376 (2011).
https://doi.org/10.1038/nature10561

[26] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci. USA 110, 4234 (2013).
https://doi.org/10.1073/pnas.1212705110

[27] F. Galve, L. A. Pachón, D. Zueco, Bringing Entanglement to the High Temperature Limit, Phys. Rev. Lett. 105, 180501 (2010).
https://doi.org/10.1103/PhysRevLett.105.180501

[28] J. R. Johansson, G. Johansson, C. M. Wilson, P. Delsing, and F. Nori, Nonclassical microwave radiation from the dynamical Casimir effect, Phys. Rev. A 87, 043804 (2013).
https://doi.org/10.1103/PhysRevA.87.043804

[29] S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson, P. Delsing, and E. Solano, Dynamical Casimir Effect Entangles Artificial Atoms, Phys. Rev. Lett. 113, 093602 (2014).
https://doi.org/10.1103/PhysRevLett.113.093602

[30] D. Z. Rossatto, S. Felicetti, H. Eneriz, E. Rico, M. Sanz, and E. Solano, Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics, Phys. Rev. B 93, 094514 (2016).
https://doi.org/10.1103/PhysRevB.93.094514

[31] B. H. Schneider, A. Bengtsson, I. M. Svensson, T. Aref, G. Johansson, J. Bylander, P. Delsing, Observation of broadband entanglement in microwave radiation from the dynamical Casimir effect, arXiv:1802.05529 [quant-ph] (2018).
arXiv:1802.05529

[32] A. D. O'Connell, et al., Quantum ground state and single-phonon control of a mechanical resonator, Nature 464, 697 (2010).
https://doi.org/10.1038/nature08967

[33] M. Sandberg, F. Persson, I. C. Hoi, C. M. Wilson, P. Delsing, Exploring circuit quantum electrodynamics using a widely tunable superconducting resonator, Physica Scripta T137, 014018 (2009).
https://doi.org/10.1088/0031-8949/2009/T137/014018

[34] J. D. Larson III, P. D. Bradley, S. Wartenberg, and R. C. Ruby, Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system, Proceedings of the IEEE Ultrasonics Symposium 1, 863 (2000).
https://doi.org/10.1109/ULTSYM.2000.922679

[35] K. Nam, et al., Piezoelectric properties of aluminium nitride for thin film bulk acoustic wave resonator, J. Korean Phys. Soc. 47, S309 (2005).

[36] E. P. Menzel et al., Dual-Path State Reconstruction Scheme for Propagating Quantum Microwaves and Detector Noise Tomography, Phys. Rev. Lett. 105, 100401 (2010).
https://doi.org/10.1103/PhysRevLett.105.100401

[37] R. Di Candia et al., Dual-path methods for propagating quantum microwaves, New J. Phys. 16, 015001 (2014).
https://doi.org/10.1088/1367-2630/16/1/015001

[38] S. M. Meenehan et al., Silicon optomechanical crystal resonator at millikelvin temperatures, Phys. Rev. A 90, 011803(R) (2014).
https://doi.org/10.1103/PhysRevA.90.011803

[39] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, M. H. Devoret, Microwave characterization of Josephson junction arrays: implementing a low loss superinductance, Phys. Rev. Lett. 109, 137002 (2012).
https://doi.org/10.1103/PhysRevLett.109.137002

[40] T. Weissl, B. Küng, E. Dumur, A. K. Feofanov, I. Matei, C. Naud, O. Buisson, F. W. J. Hekking, and W. Guichard, Kerr coefficients of plasma resonances in Josephson junction chains, Phys. Rev. B 92, 104508 (2015).
https://doi.org/10.1103/PhysRevB.92.104508

[41] R. Di Candia et al., Quantum teleportation of propagating quantum microwaves, EPJ Quantum Technology 2, 25 (2015).
https://doi.org/10.1140/epjqt/s40507-015-0038-9

[42] K. G. Fedorov et al., Displacement of propagating squeezed microwave states, Phys. Rev. Lett. 117, 020502 (2016).
https://doi.org/10.1103/PhysRevLett.117.020502

[43] K. G. Fedorov et al., Finite-time quantum entanglement in propagating squeezed microwaves, Sci. Rep. 8, 6416 (2018).
https://doi.org/10.1038/s41598-018-24742-z

[44] H. Jin, S. R. Dong, J. K. Luo, and W. I. Milne, Generalised Butterworth-Van Dyke equivalent circuit for thin-film bulk acoustic resonator, Electronic Letters 47, 424 (2011).
https://doi.org/10.1049/el.2011.0343

[45] S. Lee, Design and Modeling of Ferroelectric BST FBARs for Switchable RF Bulk Acoustic Wave Filters (PhD Dissertation, University of Michigan, 2016).

[46] P. R. Reddy and B. C. Mohan, Design and Analysis of Film Bulk Acoustic Resonator(FBAR) Filter for RF Applications, Int. J. Eng. Bus. Manag. 4, 29 (2012).
https://doi.org/10.5772/54921

[47] C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, Piezoelectric coefficient of aluminum nitride and gallium nitride, J. Appl. Phys. 88, 5360 (2000).
https://doi.org/10.1063/1.1317244

[48] M.-A. Dubois and P. Muralt, Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications, Appl. Phys. Lett. 74, 3032 (1999).
https://doi.org/10.1063/1.124055

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.