Experimental quantification of spatial correlations in quantum dynamics
1Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
2Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
3CCS-Center for Computational Simulation, Campus de Montegancedo UPM, 28660 Boadilla del Monte, Madrid, Spain
4Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
5Department of Physics, College of Science, Swansea University, Singleton Park, Swansea - SA2 8PP, United Kingdom
Published: | 2018-09-03, volume 2, page 90 |
Eprint: | arXiv:1806.08088v2 |
Doi: | https://doi.org/10.22331/q-2018-09-03-90 |
Citation: | Quantum 2, 90 (2018). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Correlations between different partitions of quantum systems play a central role in a variety of many-body quantum systems, and they have been studied exhaustively in experimental and theoretical research. Here, we investigate dynamical correlations in the time evolution of multiple parts of a composite quantum system. A rigorous measure to quantify correlations in quantum dynamics based on a full tomographic reconstruction of the quantum process has been introduced recently [Á. Rivas et al., New Journal of Physics, 17(6) 062001 (2015).]. In this work, we derive a lower bound for this correlation measure, which does not require full knowledge of the quantum dynamics. Furthermore we also extend the correlation measure to multipartite systems. We directly apply the developed methods to a trapped ion quantum information processor to experimentally characterize the correlations in quantum dynamics for two- and four-qubit systems. The method proposed and demonstrated in this work is scalable, platform-independent and applicable to other composite quantum systems and quantum information processing architectures. We apply the method to estimate spatial correlations in environmental noise processes, which are crucial for the performance of quantum error correction procedures.
► BibTeX data
► References
[1] M. B. Plenio and S. Virmani. Quantum Information and Computation, 7(1):1–51, 2007.
[2] K. Modi, A. Brodutch, C. Cable, T. Paterek, and V. Vedral. Reviews of Modern Physics, 84:1655, 2012.
https://doi.org/10.1103/RevModPhys.84.1655
[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Reviews of Modern Physics, 81:865, 2009.
https://doi.org/10.1103/RevModPhys.81.865
[4] R. H. Dicke. Physical Review, 93:99–110, 1954.
https://doi.org/10.1103/PhysRev.93.99
[5] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt. Physical Review Letters, 106:130506, 2011.
https://doi.org/10.1103/PhysRevLett.106.130506
[6] A. Crubellier, S. Liberman, D. Pavolini, and P. Pillet. Journal of Physics B: Atomic and Molecular Physics, 18(18):3811, 1985.
https://doi.org/10.1088/0022-3700/18/18/022
[7] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio. Journal of Chemical Physics, 131:105106, 2009.
https://doi.org/10.1063/1.3223548
[8] P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik. Journal of Physical Chemistry B, 113:9942, 2009.
https://doi.org/10.1021/jp901724d
[9] A. Nazir. Physical Review Letters, 103:146404, 2009.
https://doi.org/10.1103/PhysRevLett.103.146404
[10] P. Nalbach, J. Eckel, and M. Thorwart. New Journal of Physics, 12:065043, 2010.
https://doi.org/10.1088/1367-2630/12/6/065043
[11] C. Olbrich, J. Strümpfer, K. Schulten, and U. Kleinekathöfer. Journal of Physical Chemistry B, 115:758, 2011.
https://doi.org/10.1021/jp1099514
[12] J. Jeske, A. Rivas, M. H. Ahmed, M. A. Martin-Delgado, and J. H. Cole. arXiv:1802.10258, 2018.
arXiv:1802.10258
[13] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller. Nature Physics, 4(11):878, 2008.
https://doi.org/10.1038/nphys1073
[14] F. Verstraete, M. M. Wolf, and J. I. Cirac. Nature Physics, 5(9):633, 2009.
https://doi.org/10.1038/nphys1342
[15] B. Olmos, D. Yu, and I. Lesanovsky. Physical Review A, 89:023616, 2014.
https://doi.org/10.1103/PhysRevA.89.023616
[16] T. E. Lee, C.-K. Chan, and S. F. Yelin. Physical Review A, 90:052109, 2014.
https://doi.org/10.1103/PhysRevA.90.052109
[17] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, and R. Blatt. Nature Physics, 9(6):361, 2013.
https://doi.org/10.1038/nphys2630
[18] J. Jeske, J. H. Cole, and S. F. Huelga. New Journal of Physics, 16(7):073039, 2014.
https://doi.org/10.1088/1367-2630/16/7/073039
[19] D. A. Lidar and T. A. Brun. Quantum error correction. Cambridge University Press, 2013.
https://doi.org/10.1017/CBO9781139034807
[20] P. Zanardi and M. Rasetti. Physical Review Letters, 79:3306–3309, 1997.
https://doi.org/10.1103/PhysRevLett.79.3306
[21] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Physical Review Letters, 81:2594–2597, 1998.
https://doi.org/10.1103/PhysRevLett.81.2594
[22] D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley. Physical Review A, 63:022306, 2001.
https://doi.org/10.1103/PhysRevA.63.022307
[23] D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland. Science, 291(5506):1013–1015, 2001.
https://doi.org/10.1126/science.1057357
[24] H. Häffner, F. Schmidt-Kaler, W. Hänsel, C. F. Roos, T. Körber, M. Chwalla, M. Riebe, J. Benhelm, U. D. Rapol, C. Becher, and R. Blatt. Applied Physics B, 81(2):151–153, 2005.
https://doi.org/10.1007/s00340-005-1917-z
[25] J. Preskill. "Fault-Tolerant Quantum Computation" in "Introduction to Quantum Computation and Information". World Scientific, 1998.
https://doi.org/10.1142/9789812385253_0008
[26] J. P. Clemens, S. Siddiqui, and J. Gea-Banacloche. Physical Review A, 69:062313, 2004.
https://doi.org/10.1103/PhysRevA.69.062313
[27] R. Klesse and S. Frank. Phyical Review Letters, 95:230503, 2005.
https://doi.org/10.1103/PhysRevLett.95.230503
[28] D. Aharonov, A. Kitaev, and J. Preskill. Physical Review Letters, 96:050504, 2006.
https://doi.org/10.1103/PhysRevLett.96.050504
[29] E. Novais and H. U. Baranger. Physical Review Letters, 97:040501, 2006.
https://doi.org/10.1103/PhysRevLett.97.040501
[30] E. Novais, E. R. Mucciolo, and H. U. Baranger. Physical Review Letters, 98:040501, 2007.
https://doi.org/10.1103/PhysRevLett.98.040501
[31] J. Preskill. Quantum Information and Computation, 13:181, 2013.
[32] E. Novais and E. R. Mucciolo. Physical Review Letters, 110:010502, 2013.
https://doi.org/10.1103/PhysRevLett.110.010502
[33] P. W. Shor. Fault-tolerant quantum computation, pages 56–65. IEEE, 1996.
https://doi.org/10.1109/SFCS.1996.548464
[34] J. Preskill. Fault-Tolerant Quantum Computation, pages 213–269. World Scientific, 2011.
https://doi.org/10.1142/9789812385253_0008
[35] Á. Rivas and M. Müller. New Journal of Physics, 17(6):062001, 2015.
https://doi.org/10.1088/1367-2630/17/7/079602
[36] F. G. S. L. Brandao and M. B. Plenio. Nature Physics, 4(11):873, 2008.
https://doi.org/10.1038/nphys1100
[37] G. Gour and R. W. Spekkens. New Journal of Physics, 10(3):033023, 2008.
https://doi.org/10.1088/1367-2630/10/3/033023
[38] F. G. S. L. Brandao, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens. Physical Review Letters, 111(25):250404, 2013.
https://doi.org/10.1103/PhysRevLett.111.250404
[39] V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson. New Journal of Physics, 16(1):013009, 2014.
https://doi.org/10.1088/1367-2630/16/1/013009
[40] T. Baumgratz, M. Cramer, and M. B. Plenio. Physical Review Letters, 113:140401, 2014.
[41] J. I. De Vicente. Journal of Physics A: Mathematical and Theoretical, 47(42):424017, 2014.
https://doi.org/10.1088/1751-8113/47/42/424017
[42] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Y. Halpern. Physics Reports, 583:1–58, 2015.
https://doi.org/10.1016/j.physrep.2015.04.003
[43] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt. Physical Review Letters, 102:040501, 2009.
https://doi.org/10.1103/PhysRevLett.102.040501
[44] M.-D. Choi. Linear Algebra and its Applications, 10(3):285 – 290, 1975.
https://doi.org/10.1016/0024-3795(75)90075-0
[45] A. Jamiołkowski. Reports on Mathematical Physics, 3(4):275 – 278, 1972.
https://doi.org/10.1016/0034-4877(72)90011-0
[46] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
https://doi.org/10.1017/CBO9780511976667
[47] B. Schumacher and M. D. Westmoreland. Contemporary Mathematics, 305:265–290, 2002.
[48] M. Ježek, J. Fiurášek, and Z. Hradil. Physical Review A, 68:012305, 2003.
https://doi.org/10.1103/PhysRevA.68.012305
[49] V. Vedral. Reviews of Modern Physics, 74:197–234, 2002.
https://doi.org/10.1103/RevModPhys.74.197
[50] M. M. Wilde. Quantum information theory. Cambridge University Press, 2013.
https://doi.org/10.1017/CBO9781139525343
[51] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt. New Journal of Physics, 15(12):123012, 2013.
https://doi.org/10.1088/1367-2630/15/12/123012
[52] C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt. Physical Review Letters, 92:220402, 2004.
https://doi.org/10.1103/PhysRevLett.92.220402
[53] A. Bermudez, X. Xu, R. Nigmatullin, J. O'Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller. Physical Review X, 7:041061, 2017.
https://doi.org/10.1103/PhysRevX.7.041061
[54] T. Ruster, H. Kaufmann, M. A. Luda, V. Kaushal, C. T. Schmiegelow, F. Schmidt-Kaler, and U. G. Poschinger. Physical Review X, 7:031050, 2017.
https://doi.org/10.1103/PhysRevX.7.031050
[55] P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Science, 332(6033):1059–1061, 2011.
https://doi.org/10.1126/science.1203329
[56] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt. Science, 345(6194):302–305, 2014.
https://doi.org/10.1126/science.1253742
[57] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and Blatt R. Nature, 429(6993):734, 2004.
https://doi.org/10.1038/nature02570
Cited by
[1] C. L. Edmunds, C. Hempel, R. J. Harris, V. Frey, T. M. Stace, and M. J. Biercuk, "Dynamically corrected gates suppressing spatiotemporal error correlations as measured by randomized benchmarking", Physical Review Research 2 1, 013156 (2020).
[2] Daniel Manzano, "Measuring correlations in quantum systems", Quantum Views 3, 12 (2019).
[3] Riddhi Swaroop Gupta, Claire L. Edmunds, Alistair R. Milne, Cornelius Hempel, and Michael J. Biercuk, "Adaptive characterization of spatially inhomogeneous fields and errors in qubit registers", npj Quantum Information 6 1, 53 (2020).
[4] Uwe von Lüpke, Félix Beaudoin, Leigh M. Norris, Youngkyu Sung, Roni Winik, Jack Y. Qiu, Morten Kjaergaard, David Kim, Jonilyn Yoder, Simon Gustavsson, Lorenza Viola, and William D. Oliver, "Two-Qubit Spectroscopy of Spatiotemporally Correlated Quantum Noise in Superconducting Qubits", PRX Quantum 1 1, 010305 (2020).
[5] Simon J. D Phoenix, Faisal Shah Khan, and Berihu Teklu, "Partitions of correlated N-qubit systems", Quantum Information Processing 20 2, 62 (2021).
[6] Sascha Heußen, Lukas Postler, Manuel Rispler, Ivan Pogorelov, Christian D. Marciniak, Thomas Monz, Philipp Schindler, and Markus Müller, "Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers", Physical Review A 107 4, 042422 (2023).
[7] Francisco Riberi, Leigh M Norris, Félix Beaudoin, and Lorenza Viola, "Frequency estimation under non-Markovian spatially correlated quantum noise", New Journal of Physics 24 10, 103011 (2022).
[8] Eric Chitambar and Gilad Gour, "Quantum resource theories", Reviews of Modern Physics 91 2, 025001 (2019).
[9] Jelmer M. Boter, Xiao Xue, Tobias Krähenmann, Thomas F. Watson, Vickram N. Premakumar, Daniel R. Ward, Donald E. Savage, Max G. Lagally, Mark Friesen, Susan N. Coppersmith, Mark A. Eriksson, Robert Joynt, and Lieven M. K. Vandersypen, "Spatial noise correlations in a Si/SiGe two-qubit device from Bell state coherences", Physical Review B 101 23, 235133 (2020).
[10] Amit Kumar Pal, Philipp Schindler, Alexander Erhard, Ángel Rivas, Miguel-Angel Martin-Delgado, Rainer Blatt, Thomas Monz, and Markus Müller, "Relaxation times do not capture logical qubit dynamics", Quantum 6, 632 (2022).
[11] Zhongchu Ni, Sai Li, Libo Zhang, Ji Chu, Jingjing Niu, Tongxing Yan, Xiuhao Deng, Ling Hu, Jian Li, Youpeng Zhong, Song Liu, Fei Yan, Yuan Xu, and Dapeng Yu, "Scalable Method for Eliminating Residual ZZ Interaction between Superconducting Qubits", Physical Review Letters 129 4, 040502 (2022).
[12] Marco Cattaneo, Gian Luca Giorgi, Sabrina Maniscalco, Gheorghe Sorin Paraoanu, and Roberta Zambrini, "Bath‐Induced Collective Phenomena on Superconducting Qubits: Synchronization, Subradiance, and Entanglement Generation", Annalen der Physik 533 5, 2100038 (2021).
[13] Riddhi Swaroop Gupta, Alistair R. Milne, Claire L. Edmunds, Cornelius Hempel, and Michael J. Biercuk, "Autonomous adaptive noise characterization in quantum computers", arXiv:1904.07225, (2019).
[14] Uwe von Lüpke, Félix Beaudoin, Leigh M. Norris, Youngkyu Sung, Roni Winik, Jack Y. Qiu, Morten Kjaergaard, David Kim, Jonilyn Yoder, Simon Gustavsson, Lorenza Viola, and William D. Oliver, "Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits", arXiv:1912.04982, (2019).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-21 22:13:15) and SAO/NASA ADS (last updated successfully 2023-09-21 22:13:16). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: Perspective in Quantum Views by Daniel Manzano "Measuring correlations in quantum systems"