Measuring acceleration using the Purcell effect

Kacper Kożdoń1, Ian T. Durham2, and Andrzej Dragan1

1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
2Department of Physics, Saint Anselm College, Manchester, NH 03102, USA

We show that a two-level atom resonantly coupled to one of the modes of a cavity field can be used as a sensitive tool to measure the proper acceleration of a combined atom-cavity system. To achieve it we investigate the relation between the transition probability of a two-level atom placed within an ideal cavity and study how it is affected by the acceleration of the whole. We indicate how to choose the position of the atom as well as its characteristic frequency in order to maximize the sensitivity to acceleration.

► BibTeX data

► References

[1] Shohreh Abdolrahimi. Velocity effects on an accelerated unruh-dewitt detector. Classical and Quantum Gravity, 31: 135009, 2014. https:/​/​doi.org/​10.1088/​0264-9381/​31/​13/​135009.
https://doi.org/https://doi.org/10.1088/0264-9381/31/13/135009

[2] Aida Ahmadzadegan, Robert Mann, and Eduardo Martín-Martinez. Measuring motion through relativistic quantum effects. Physical Review A, 90: 062107, 2014a. https:/​/​doi.org/​10.1103/​PhysRevA.90.062107.
https://doi.org/https://doi.org/10.1103/PhysRevA.90.062107

[3] Aida Ahmadzadegan, Eduardo Martín-Martinez, and Robert Mann. Cavities in curved spacetimes: The response of particle detectors. Physical Review D, 89: 024013, 2014b. https:/​/​doi.org/​10.1103/​PhysRevD.89.024013.
https://doi.org/https://doi.org/10.1103/PhysRevD.89.024013

[4] John Stewart Bell. How to teach special relativity. Progress in Scientific Culture, 1, 1976. https:/​/​doi.org/​10.1017/​CBO9780511815676.011.
https://doi.org/https://doi.org/10.1017/CBO9780511815676.011

[5] Alexey Belyanin, Vitaly V. Kocharovsky, Federico Capasso, Edward Fry, M. Suhail Zubairy, and Marlan O. Scully. Quantum electrodynamics of accelerated atoms in free space and in cavities. Physical Review A, 74: 023807, 2006. https:/​/​doi.org/​10.1103/​PhysRevA.74.023807.
https://doi.org/https://doi.org/10.1103/PhysRevA.74.023807

[6] Iwo Bialynicki-Birula. Solutions of the d'alembert and klein-gordon equations confined to a region with one fixed and one moving wall. Europhysics Letters, 101: 60003, 2013. https:/​/​doi.org/​10.1209/​0295-5075/​101/​60003.
https://doi.org/https://doi.org/10.1209/0295-5075/101/60003

[7] David Edward Bruschi, Andrzej Dragan, Antony R. Lee, Ivette Fuentes, and Jorma Louko. Relativistic motion generates quantum gates and entanglement resonances. Physical Review Letters, 111: 090504, 2013. https:/​/​doi.org/​10.1103/​PhysRevLett.111.090504.
https://doi.org/https://doi.org/10.1103/PhysRevLett.111.090504

[8] Paul C.W. Davies. Scalar production in schwarzschild and rindler metrics. Journal of Physics A, 8: 609, 1975. https:/​/​doi.org/​10.1088/​0305-4470/​8/​4/​022.
https://doi.org/https://doi.org/10.1088/0305-4470/8/4/022

[9] Edmond M. Dewan and Michael J. Beran. Note on stess effects due to relativistic contraction. American Journal of Physics, 27 (7): 517-518, 1959. https:/​/​doi.org/​10.1119/​1.1996214.
https://doi.org/https://doi.org/10.1119/1.1996214

[10] Bryce S. DeWitt. Quantum field theory in curved spacetime. Physical Reports, 19: 295, 1975. https:/​/​doi.org/​10.1016/​0370-1573(75)90051-4.
https://doi.org/https://doi.org/10.1016/0370-1573(75)90051-4

[11] Andrzej Dragan, Ivette Fuentes, and Jorma Louko. Quantum accelerometer: Distinguishing inertial bob from his accelerated twin rob by a local measurement. Physical Review D, 83: 085020, 2010. https:/​/​doi.org/​10.1103/​PhysRevD.83.085020.
https://doi.org/https://doi.org/10.1103/PhysRevD.83.085020

[12] T.M. Dunster. Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM Journal on Mathematical Analysis, 21 (4): 995-1018, 1990. https:/​/​doi.org/​10.1137/​0521055.
https://doi.org/https://doi.org/10.1137/0521055

[13] S.A. Fulling. Nonuniqueness of canonical field quantization in riemannian space-time. Physical Review D, 7: 2850, 1973. https:/​/​doi.org/​10.1103/​PhysRevD.7.2850.
https://doi.org/https://doi.org/10.1103/PhysRevD.7.2850

[14] Pavel Ginzburg, Diane Roth, Mazhar E. Nasir, Paulina Segovia Olvera, Alexey V. Krasavin, James Levitt, Liisa M. Hirvonen, Brian Wells, Klaus Suhling, David Richards, Viktor A. Podolskiy, and Anatoly V. Zayats. Spontaneous Emission in Nonlocal Materials. Light: Science & Applications, 6: e16273, 2017. https:/​/​doi.org/​10.1038/​lsa.2016.273.
https://doi.org/https://doi.org/10.1038/lsa.2016.273

[15] Daniel Kleppner. Inhibited spontaneous emission. Physical Review Letters, 47 (4): 233-236, 1981. https:/​/​doi.org/​10.1103/​PhysRevLett.47.233.
https://doi.org/https://doi.org/10.1103/PhysRevLett.47.233

[16] Michael Koehn. Relativistic wavepackets in classically chaotic quantum cosmological billiards. Physical Review D, 85: 063501, 2012. https:/​/​doi.org/​10.1103/​PhysRevD.85.063501.
https://doi.org/https://doi.org/10.1103/PhysRevD.85.063501

[17] Michael Koehn. Solutions of the klein-gordon equation in an infinite square-well potential with a moving wall. Europhysics Letters, 100 (6): 60008, 2013. https:/​/​doi.org/​10.1209/​0295-5075/​100/​60008.
https://doi.org/https://doi.org/10.1209/0295-5075/100/60008

[18] Jamir Marino, Antonio Noto, Roberto Passante, Lucia Rizzuto, and Salvatore Spagnolo. Effects of a uniform acceleration on atom-field interactions. Physica Scripta, 2014: 014031, 2014. https:/​/​doi.org/​10.1088/​0031-8949/​2014/​T160/​014031.
https://doi.org/https://doi.org/10.1088/0031-8949/2014/T160/014031

[19] E.M. Purcell. Spontaneous emission probabilities at radio frequencies. Physical Review, 69: 681, 1946. https:/​/​doi.org/​10.1103/​PhysRev.69.674.2.
https://doi.org/https://doi.org/10.1103/PhysRev.69.674.2

[20] Marlan O. Scully, Vitaly V. Kocharovsky, Alexey Belyanin, Edward Fry, and Federico Capasso. Enhancing Acceleration Radiation from Ground-State Atoms via Cavity Quantum Electrodynamics. Physical Review Letters, 91: 243004, 2003. https:/​/​doi.org/​10.1103/​PhysRevLett.91.243004.
https://doi.org/https://doi.org/10.1103/PhysRevLett.91.243004

[21] William G. Unruh. Notes on black-hole evaporation. Physical Review D, 14: 870, 1976. https:/​/​doi.org/​10.1103/​PhysRevD.14.870.
https://doi.org/https://doi.org/10.1103/PhysRevD.14.870

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.