Halving the cost of quantum addition

Craig Gidney

Google, Santa Barbara, CA 93117, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We improve the number of T gates needed to perform an n-bit adder from $8n + O(1)$ to $4n + O(1)$. We do so via a "temporary logical-AND" construction which uses four T gates to store the logical-AND of two qubits into an ancilla and zero T gates to later erase the ancilla. This construction is equivalent to one by Jones, except that our framing makes it clear that the technique is far more widely applicable than previously realized. Temporary logical-ANDs can be applied to integer arithmetic, modular arithmetic, rotation synthesis, the quantum Fourier transform, Shor's algorithm, Grover oracles, and many other circuits. Because T gates dominate the cost of quantum computation based on the surface code, and temporary logical-ANDs are widely applicable, this represents a significant reduction in projected costs of quantum computation. In addition to our n-bit adder, we present an n-bit controlled adder circuit with T-count of $8n + O(1)$, a temporary adder that can be computed for the same cost as the normal adder but whose result can be kept until it is later uncomputed without using T gates, and discuss some other constructions whose T-count is improved by the temporary logical-AND.

► BibTeX data

► References

[1] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32 (6): 818–830, jun 2013. 10.1109/​tcad.2013.2244643.

[2] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear T complexity. arXiv preprint arXiv:1805.03662, 2018. URL https:/​/​arxiv.org/​abs/​1805.03662.

[3] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52 (5): 3457–3467, nov 1995. 10.1103/​physreva.52.3457.

[4] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508: 500–503, 2014. 10.1038/​nature13171. arXiv:1402.4848.

[5] S. B. Bravyi and A. Yu. Kitaev. Quantum codes on a lattice with boundary. arXiv:quant-ph/​9811052, 1998. URL https:/​/​arxiv.org/​abs/​quant-ph/​9811052.

[6] Richard P Brent and H-T_ Kung. A regular layout for parallel adders. IEEE transactions on Computers, (3): 260–264, 1982. 10.1109/​TC.1982.1675982.

[7] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. A new quantum ripple-carry addition circuit, 2004. URL https:/​/​arxiv.org/​abs/​quant-ph/​0410184.

[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. J. Math. Phys., 43: 4452–4505, 2002. 10.1063/​1.1499754. arXiv:quant-ph/​0110143.

[9] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-depth quantum carry-lookahead adder. 2004. URL https:/​/​arxiv.org/​abs/​quant-ph/​0406142.

[10] Austin Fowler, Dmitri Maslov, Cody Jones, and Matt Amy. Private correspondence, Aug 2017.

[11] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86 (3), sep 2012. 10.1103/​physreva.86.032324.

[12] J. M. Gambetta, J. M. Chow, and M. Steffen. Building logical qubits in a superconducting quantum computing system. npj Quantum Information, 3 (2), 2017. 10.1038/​s41534-016-0004-0. arXiv:1510.04375.

[13] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. Surface code quantum computing by lattice surgery. New Journal of Physics, 14 (12): 123011, 2012. 10.1088/​1367-2630/​14/​12/​123011.

[14] Mark Howard and Earl Campbell. Application of a resource theory for magic states to fault-tolerant quantum computing. Physical review letters, 118 (9): 090501, 2017. 10.1103/​PhysRevLett.118.090501.

[15] Cody Jones. Low-overhead constructions for the fault-tolerant toffoli gate. Physical Review A, 87 (2), feb 2013. 10.1103/​physreva.87.022328.

[16] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Soc., 2002. 10.1090/​gsm/​047.

[17] V. Lahtinen and J. K. Pachos. A short introduction to topological quantum computation. 10.21468/​SciPostPhys.3.3.021. URL https:/​/​arxiv.org/​abs/​1705.04103.

[18] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger. Blueprint for a microwave trapped-ion quantum computer. Science Advances, 3 (2): e1601540, 2017. 10.1126/​sciadv.1601540. arXiv:1508.00420.

[19] Edgard Muñoz-Coreas and Himanshu Thapliyal. T-count optimized design of quantum integer multiplication, 2017. URL https:/​/​arxiv.org/​abs/​1706.05113.

[20] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2009. 10.1017/​cbo9780511976667.

[21] R. Raussendorf and J. Harrington. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett., 98: 190504, 2007. 10.1103/​PhysRevLett.98.190504. arXiv:quant-ph/​0610082.

[22] Robert Raussendorf, Jim Harrington, and Kovid Goyal. Topological fault-tolerance in cluster state quantum computation. New Journal of Physics, 9 (6): 199, 2007. 10.1088/​1367-2630/​9/​6/​199.

[23] Malte Schlosser, Sascha Tichelmann, Jens Kruse, and Gerhard Birkl. Scalable architecture for quantum information processing with atoms in optical micro-structures. Quantum Information Processing, 10 (6): 907, 2011. 10.1007/​s11128-011-0297-z. 1108.5136.

Cited by

[1] Alexander F. Shaw, Pavel Lougovski, Jesse R. Stryker, and Nathan Wiebe, "Quantum Algorithms for Simulating the Lattice Schwinger Model", Quantum 4, 306 (2020).

[2] Alexandru Paler, Oumarou Oumarou, and Robert Basmadjian, "Parallelizing the queries in a bucket-brigade quantum random access memory", Physical Review A 102 3, 032608 (2020).

[3] Jesse R. Stryker, "Oracles for Gauss's law on digital quantum computers", Physical Review A 99 4, 042301 (2019).

[4] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, "Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization", Quantum 4, 296 (2020).

[5] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, "Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization", Quantum 3, 208 (2019).

[6] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Guolong Cui, Zhiqiang Wei, and Yongjian Gu, "Quantum circuits design for evaluating transcendental functions based on a function-value binary expansion method", Quantum Information Processing 19 10, 347 (2020).

[7] Yuval R. Sanders, Dominic W. Berry, Pedro C.S. Costa, Louis W. Tessler, Nathan Wiebe, Craig Gidney, Hartmut Neven, and Ryan Babbush, "Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization", PRX Quantum 1 2, 020312 (2020).

[8] Miguel-Angel Sicilia, Salvador Sánchez-Alonso, Marçal Mora-Cantallops, and Elena García-Barriocanal, Communications in Computer and Information Science 1266, 292 (2020) ISBN:978-3-030-58792-5.

[9] Ryan Babbush, Dominic W. Berry, and Hartmut Neven, "Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization", Physical Review A 99 4, 040301 (2019).

[10] Hyeongrak Choi, Mihir Pant, Saikat Guha, and Dirk Englund, "Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories", npj Quantum Information 5 1, 104 (2019).

[11] Reza Azarderakhsh, Jean-François Biasse, Rami El Khatib, Brandon Langenberg, and Benjamin Pring, "Parallelism strategies for the tuneable golden-claw finding problem", International Journal of Computer Mathematics: Computer Systems Theory 1 (2021).

[12] Craig Gidney and Martin Ekerå, "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits", arXiv:1905.09749, Quantum 5, 433 (2021).

[13] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken, Lecture Notes in Computer Science 12100, 425 (2020) ISBN:978-3-030-44222-4.

[14] Earl Campbell, "Random Compiler for Fast Hamiltonian Simulation", Physical Review Letters 123 7, 070503 (2019).

[15] Himanshu Thapliyal, Edgard Munoz-Coreas, and Vladislav Khalus, 2020 IEEE 38th International Conference on Computer Design (ICCD) 5 (2020) ISBN:978-1-7281-9710-4.

[16] Yuval R. Sanders, Guang Hao Low, Artur Scherer, and Dominic W. Berry, "Black-Box Quantum State Preparation without Arithmetic", Physical Review Letters 122 2, 020502 (2019).

[17] Edgard Munoz-Coreas and Himanshu Thapliyal, 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 360 (2019) ISBN:978-1-7281-3391-1.

[18] Himanshu Thapliyal, Edgard Muñoz-Coreas, and Vladislav Khalus, "Quantum circuit designs of carry lookahead adder optimized for T-count T-depth and qubits", Sustainable Computing: Informatics and Systems 29, 100457 (2021).

[19] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller, Matthias Troyer, and Krysta Svore, "Quantum programming languages", Nature Reviews Physics 2 12, 709 (2020).

[20] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Giovanni De Micheli, 2020 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2020) ISBN:978-1-7281-3320-1.

[21] Yunseong Nam, Yuan Su, and Dmitri Maslov, "Approximate quantum Fourier transform with O(n log(n)) T gates", arXiv:1803.04933, npj Quantum Information 6 1, 26 (2020).

[22] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov, "Lower bounds on the non-Clifford resources for quantum computations", Quantum Science and Technology 5 3, 035009 (2020).

[23] Earl Campbell, Ankur Khurana, and Ashley Montanaro, "Applying quantum algorithms to constraint satisfaction problems", arXiv:1810.05582, Quantum 3, 167 (2019).

[24] Annie Y. Wei, Preksha Naik, Aram W. Harrow, and Jesse Thaler, "Quantum algorithms for jet clustering", Physical Review D 101 9, 094015 (2020).

[25] Gary J. Mooney, Charles D. Hill, and Lloyd C. L. Hollenberg, "Cost-optimal single-qubit gate synthesis in the Clifford hierarchy", Quantum 5, 396 (2021).

[26] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea, "Grover Adaptive Search for Constrained Polynomial Binary Optimization", Quantum 5, 428 (2021).

[27] Daniel Litinski, "Magic State Distillation: Not as Costly as You Think", Quantum 3, 205 (2019).

[28] Yunseong Nam and Dmitri Maslov, "Low-cost quantum circuits for classically intractable instances of the Hamiltonian dynamics simulation problem", npj Quantum Information 5 1, 44 (2019).

[29] Mathias Soeken and Martin Roetteler, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 366 (2020) ISBN:978-1-7281-8969-7.

[30] F. Orts, G. Ortega, A. C. Cucura, E. Filatovas, and E. M. Garzón, "Optimal fault-tolerant quantum comparators for image binarization", The Journal of Supercomputing (2021).

[31] S. S. Gayathri, R. Kumar, Samiappan Dhanalakshmi, Gerard Dooly, and Dinesh Babu Duraibabu, "T-Count Optimized Quantum Circuit Designs for Single-Precision Floating-Point Division", Electronics 10 6, 703 (2021).

[32] Craig Gidney and Austin G. Fowler, "Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation", Quantum 3, 135 (2019).

[33] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", Chemical Reviews 119 19, 10856 (2019).

[34] Daniel Litinski, "A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery", Quantum 3, 128 (2019).

[35] Andreas Fischer and Alexandru Paler, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing 1378 (2019) ISBN:9781450359337.

[36] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven, "Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity", Physical Review X 8 4, 041015 (2018).

[37] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang, "Techniques to Reduce $\pi/4$-Parity-Phase Circuits, Motivated by the ZX Calculus", arXiv:1911.09039.

[38] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang, "Fast and effective techniques for T-count reduction via spider nest identities", arXiv:2004.05164.

[39] Hai-Sheng Li, Ping Fan, Haiying Xia, Huiling Peng, and Gui-Lu Long, "Efficient quantum arithmetic operation circuits for quantum image processing", Science China Physics, Mechanics, and Astronomy 63 8, 280311 (2020).

[40] Alexandru Paler, "Controlling distilleries in fault-tolerant quantum circuits: problem statement and analysis towards a solution", arXiv:1806.07266.

[41] Élie Gouzien and Nicolas Sangouard, "Factoring 2048 RSA integers in 177 days with 13436 qubits and a multimode memory", arXiv:2103.06159.

The above citations are from Crossref's cited-by service (last updated successfully 2021-04-23 08:17:08) and SAO/NASA ADS (last updated successfully 2021-04-23 08:17:09). The list may be incomplete as not all publishers provide suitable and complete citation data.