Fluctuation-dissipation theorem for non-equilibrium quantum systems

Mohammad Mehboudi1,2, Anna Sanpera1,3, and Juan M. R. Parrondo4

1Departament de Física, Universitat Autònoma de Barcelona - E08193 Bellaterra, Spain
2ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
3ICREA, Psg. Lluís Companys 23, 08001 Barcelona, Spain
4Departamento de Física Atómica, Molecular y Nuclear and GISC, Universidad Complutense Madrid, 28040 Madrid, Spain

full text pdf

The fluctuation-dissipation theorem (FDT) is a central result in statistical physics, both for classical and quantum systems. It establishes a relationship between the linear response of a system under a time-dependent perturbation and time correlations of certain observables in equilibrium. Here we derive a generalization of the theorem which can be applied to any Markov quantum system and makes use of the symmetric logarithmic derivative (SLD). There are several important benefits from our approach. First, such a formulation clarifies the relation between classical and quantum versions of the equilibrium FDT. Second, and more important, it facilitates the extension of the FDT to arbitrary quantum Markovian evolution, as given by quantum maps. Third, it clarifies the connection between the FDT and quantum metrology in systems with a non-equilibrium steady state.


► BibTeX data

► References

[1] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

[2] R. Kubo, Journal of the Physical Society of Japan 12, 570 (1957).

[3] R. Kubo, Reports on Progress in Physics 29, 255 (1966).

[4] D. des Cloizeaux, ``Linear response, generalized susceptibility and dispersion theory,'' (International Atomic Energy Agency, 1968) pp. 325-354.

[5] J. Jensen and A. R. Mackintosh, ``Rare earth magnetism structures and excitations,'' (Clarendon Press, 1991).

[6] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Physics Reports 461, 111 (2008).

[7] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Nat Phys 12, 778 (2016).

[8] S. Pappalardi, A. Russomanno, A. Silva, and R. Fazio, Journal of Statistical Mechanics: Theory and Experiment 2017, 053104 (2017).

[9] T. Shitara and M. Ueda, Phys. Rev. A 94, 062316 (2016).

[10] W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76, 022101 (2007).

[11] S.-J. Gu, International Journal of Modern Physics B 24, 4371 (2010).

[12] M. Mehboudi, L. A. Correa, and A. Sanpera, Phys. Rev. A 94, 042121 (2016).

[13] G. S. Agarwal, Zeitschrift für Physik A Hadrons and nuclei 252, 25 (1972).

[14] U. Seifert, Reports on Progress in Physics 75, 126001 (2012).

[15] G. Verley, R. Chétrite, and D. Lacoste, Journal of Statistical Mechanics: Theory and Experiment 2011, P10025 (2011).

[16] R. Chetrite and S. Gupta, Journal of Statistical Physics 143, 543 (2011).

[17] J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawedzki, Phys. Rev. Lett. 103, 040601 (2009).

[18] R. Chetrite and K. Mallick, Journal of Statistical Physics 148, 480 (2012).

[19] V. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang, Phys. Rev. X 6, 041031 (2016).

[20] M. Baiesi, C. Maes, and B. Wynants, Phys. Rev. Lett. 103, 010602 (2009).

[21] T. Harada and S.-i. Sasa, Phys. Rev. Lett. 95, 130602 (2005).

[22] J. Prost, J.-F. Joanny, and J. M. R. Parrondo, Phys. Rev. Lett. 103, 090601 (2009).

[23] U. Seifert and T. Speck, EPL (Europhysics Letters) 89, 10007 (2010).

[24] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).

[25] S. L. Braunstein, C. M. Caves, and G. Milburn, Annals of Physics 247, 135 (1996).

[26] M. G. A. Paris, International Journal of Quantum Information 07, 125 (2009).

[27] V. Giovannetti, S. Lloyd, and L. Maccone, Nat Photon 5, 222 (2011).

[28] G. Tóth and I. Apellaniz, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).

[29] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).

[30] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).

[31] H.-P. Breuer and F. Petruccione, ``The theory of open quantum systems,'' (Oxford University Press on Demand, 2002).

[32] M. A. Nielsen and I. L. Chuang, ``Quantum computation and quantum information: 10th anniversary edition,'' (Cambridge University Press, New York, NY, USA, 2011) 10th ed.

[33] M. M. Wilde, ``Quantum information theory,'' (Cambridge University Press, 2013).

[34] S. Campbell, M. Mehboudi, G. D. Chiara, and M. Paternostro, New Journal of Physics 19, 103003 (2017).

[35] A. Monras, arXiv:1303.3682 (2013).

[36] Z. Jiang, Phys. Rev. A 89, 032128 (2014).

[37] S. Campbell, G. De Chiara, and M. Paternostro, Scientific Reports 6, 19730 EP (2016).

[38] H. M. Wiseman and G. J. Milburn, ``Quantum measurement and control,'' (Cambridge university press, 2009).

[39] C. W. Gardiner and P. Zoller, ``Quantum noise,'' (Springer, 2004).

[40] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao, D. Alonso, and G. Adesso, Open Systems & Information Dynamics 24, 1740010 (2017).

[41] U. Marzolino and T. c. v. Prosen, Phys. Rev. A 90, 062130 (2014).

[42] G. Tóth and T. Vértesi, Phys. Rev. Lett. 120, 020506 (2018).

[43] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771 (2011).

[44] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).

[45] J. Åberg, Phys. Rev. X 8, 011019 (2018).

[46] G. Manzano, J. M. Horowitz, and J. M. R. Parrondo, Phys. Rev. E 92, 032129 (2015).

[47] G. B. Cuetara, A. Engel, and M. Esposito, New Journal of Physics 17, 055002 (2015).

[48] J. M. Horowitz, Phys. Rev. E 85, 031110 (2012).

[49] W. H. Louisell, ``Quantum statistical properties of radiation,'' (Wiley, New York, NY, 1973).

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.