Magic state parity-checker with pre-distilled components

Earl T. Campbell and Mark Howard

Department of Physics & Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Magic states are eigenstates of non-Pauli operators. One way of suppressing errors present in magic states is to perform parity measurements in their non-Pauli eigenbasis and postselect on even parity. Here we develop new protocols based on non-Pauli parity checking, where the measurements are implemented with the aid of pre-distilled multiqubit resource states. This leads to a two step process: pre-distillation of multiqubit resource states, followed by implementation of the parity check. These protocols can prepare single-qubit magic states that enable direct injection of single-qubit axial rotations without subsequent gate-synthesis and its associated overhead. We show our protocols are more efficient than all previous comparable protocols with quadratic error reduction, including the protocols of Bravyi and Haah.

► BibTeX data

► References

[1] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549 (7671): 172, 2017. 10.1038/​nature23460.

[2] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71: 022316, 2005. 10.1103/​PhysRevA.71.022316.

[3] Adam M. Meier, Bryan Eastin, and Emanuel Knill. Magic-state distillation with the four-qubit code. Quant. Inf. and Comp., 13: 195, 2013.

[4] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead. Phys. Rev. A, 86: 052329, Nov 2012. 10.1103/​PhysRevA.86.052329.

[5] Cody Jones. Multilevel distillation of magic states for quantum computing. Phys. Rev. A, 87: 042305, Apr 2013a. 10.1103/​PhysRevA.87.042305.

[6] Jeongwan Haah, Matthew B. Hastings, D. Poulin, and D. Wecker. Magic state distillation with low space overhead and optimal asymptotic input count. Quantum, 1: 31, October 2017. ISSN 2521-327X. 10.22331/​q-2017-10-03-31.

[7] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically optimal approximation of single qubit unitaries by clifford and $t$ circuits using a constant number of ancillary qubits. Phys. Rev. Lett., 110: 190502, May 2013. 10.1103/​PhysRevLett.110.190502.

[8] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm for the t-count. Quant. Inf. & Comp., 14 (15-16): 1261–1276, 2014.

[9] Neil J Ross and Peter Selinger. Optimal ancilla-free clifford+ t approximation of z-rotations. Quant. Inf. and Comp., 16: 901, 2016.

[10] Adam Paetznick and Krysta M Svore. Repeat-until-success: Non-deterministic decomposition of single-qubit unitaries. Quant. Inf. & Comp., 14 (15-16): 1277–1301, 2014.

[11] Alex Bocharov, Martin Roetteler, and Krysta M. Svore. Efficient synthesis of probabilistic quantum circuits with fallback. Phys. Rev. A, 91: 052317, May 2015. 10.1103/​PhysRevA.91.052317.

[12] Andrew J Landahl and Chris Cesare. Complex instruction set computing architecture for performing accurate quantum $ z $ rotations with less magic. arXiv preprint arXiv:1302.3240, 2013. URL https:/​/​​pdf/​1302.3240.pdf.

[13] Cody Jones. Distillation protocols for fourier states in quantum computing. arXiv preprint arXiv:1303.3066, 2013b. URL https:/​/​​pdf/​1303.3066.pdf.

[14] Guillaume Duclos-Cianci and David Poulin. Reducing the quantum-computing overhead with complex gate distillation. Phys. Rev. A, 91: 042315, Apr 2015. 10.1103/​PhysRevA.91.042315.

[15] Earl T Campbell and Joe O'Gorman. An efficient magic state approach to small angle rotations. Quantum Science and Technology, 1 (1): 015007, 2016. doi:10.1088/​2058-9565/​1/​1/​015007.

[16] Jeongwan Haah. Towers of generalized divisible quantum codes. arXiv preprint arXiv:1709.08658, 2017. URL https:/​/​​pdf/​1709.08658.pdf.

[17] Cody Jones. Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A, 87: 022328, Feb 2013c. 10.1103/​PhysRevA.87.022328.

[18] Bryan Eastin. Distilling one-qubit magic states into toffoli states. Phys. Rev. A, 87: 032321, Mar 2013. 10.1103/​PhysRevA.87.032321.

[19] Earl T. Campbell and Mark Howard. Unifying gate synthesis and magic state distillation. Phys. Rev. Lett., 118: 060501, Feb 2017a. 10.1103/​PhysRevLett.118.060501.

[20] Earl T. Campbell and Mark Howard. Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost. Phys. Rev. A, 95: 022316, Feb 2017b. 10.1103/​PhysRevA.95.022316.

[21] Jeongwan Haah, Matthew B Hastings, D Poulin, and D Wecker. Magic state distillation at intermediate size. Quant. Inf. and Comp., 18: 0114, 2018.

[22] Matthew B. Hastings and Jeongwan Haah. Distillation with sublogarithmic overhead. Phys. Rev. Lett., 120: 050504, Jan 2018. 10.1103/​PhysRevLett.120.050504.

[23] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402: 390, 1999. 10.1038/​46503.

[24] Earl T. Campbell and Dan E. Browne. On the structure of protocols for magic state distillation. Lecture Notes in Computer Science, 5906: 20, 2009. 10.1007/​978-3-642-10698-9_3. arXiv:0908.0838.

[25] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quantum computer. Annals of Physics, 321 (9): 2242 – 2270, 2006. ISSN 0003-4916. 10.1016/​j.aop.2006.01.012.

[26] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86: 032324, Sep 2012. 10.1103/​PhysRevA.86.032324.

[27] Joe O'Gorman and Earl T. Campbell. Quantum computation with realistic magic-state factories. Phys. Rev. A, 95: 032338, Mar 2017. 10.1103/​PhysRevA.95.032338.

[28] Jeongwan Haah and Matthew B Hastings. Codes and protocols for distilling $ t $, controlled-$ s $, and toffoli gates. arXiv preprint arXiv:1709.02832, 2017. URL https:/​/​​pdf/​1709.02832.pdf.

Cited by

[1] Ryuji Takagi and Hiroyasu Tajima, "Universal limitations on implementing resourceful unitary evolutions", Physical Review A 101 2, 022315 (2020).

[2] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov, "Lower bounds on the non-Clifford resources for quantum computations", Quantum Science and Technology 5 3, 035009 (2020).

[3] Akalank Jain and Shiroman Prakash, "Qutrit and ququint magic states", Physical Review A 102 4, 042409 (2020).

[4] Daniel Litinski, "A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery", Quantum 3, 128 (2019).

[5] Earl Campbell, Ankur Khurana, and Ashley Montanaro, "Applying quantum algorithms to constraint satisfaction problems", Quantum 3, 167 (2019).

[6] Earl Campbell, "Random Compiler for Fast Hamiltonian Simulation", Physical Review Letters 123 7, 070503 (2019).

[7] Lingling Lao and Ben Criger, Proceedings of the 19th ACM International Conference on Computing Frontiers 113 (2022) ISBN:9781450393386.

[8] Xin Wang, Mark M Wilde, and Yuan Su, "Quantifying the magic of quantum channels", New Journal of Physics 21 10, 103002 (2019).

[9] Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, and Fernando G.S.L. Brandão, "Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes", PRX Quantum 3 1, 010329 (2022).

[10] Yiting Liu, Zhi Ma, Lan Luo, Chao Du, Yangyang Fei, Hong Wang, Qianheng Duan, and Jing Yang, "Magic state distillation and cost analysis in fault-tolerant universal quantum computation", Quantum Science and Technology 8 4, 043001 (2023).

[11] Daniel Litinski, "Magic State Distillation: Not as Costly as You Think", Quantum 3, 205 (2019).

[12] Gary J. Mooney, Charles D. Hill, and Lloyd C. L. Hollenberg, "Cost-optimal single-qubit gate synthesis in the Clifford hierarchy", Quantum 5, 396 (2021).

[13] Xin Wang, Mark M. Wilde, and Yuan Su, "Efficiently Computable Bounds for Magic State Distillation", Physical Review Letters 124 9, 090505 (2020).

[14] Christopher Chamberland and Earl T. Campbell, "Universal Quantum Computing with Twist-Free and Temporally Encoded Lattice Surgery", PRX Quantum 3 1, 010331 (2022).

[15] Shraddha Singh, Andrew S. Darmawan, Benjamin J. Brown, and Shruti Puri, "High-fidelity magic-state preparation with a biased-noise architecture", Physical Review A 105 5, 052410 (2022).

[16] James R. Seddon and Earl T. Campbell, "Quantifying magic for multi-qubit operations", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 2227, 20190251 (2019).

[17] Craig Gidney and Austin G. Fowler, "Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation", Quantum 3, 135 (2019).

[18] Jeongwan Haah, "Towers of generalized divisible quantum codes", Physical Review A 97 4, 042327 (2018).

[19] Xin Wang, Mark M. Wilde, and Yuan Su, "Efficiently computable bounds for magic state distillation", arXiv:1812.10145, (2018).

[20] Xin Wang, Mark M. Wilde, and Yuan Su, "Quantifying the magic of quantum channels", arXiv:1903.04483, (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-12 09:21:10) and SAO/NASA ADS (last updated successfully 2024-04-12 09:21:11). The list may be incomplete as not all publishers provide suitable and complete citation data.