ProjectQ: an open source software framework for quantum computing

Damian S. Steiger, Thomas Häner, and Matthias Troyer

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-ins for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.

► BibTeX data

► References

[1] IBM Quantum Experience. http:/​/​research.ibm.com/​quantum/​.
http:/​/​research.ibm.com/​quantum/​

[2] Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A software methodology for compiling quantum programs. Quantum Science and Technology, 2018. https:/​/​doi.org/​10.1088/​2058-9565/​aaa5cc.
https:/​/​doi.org/​10.1088/​2058-9565/​aaa5cc

[3] pybind. https:/​/​github.com/​pybind.
https:/​/​github.com/​pybind

[4] Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer. High performance emulation of quantum circuits. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '16, pages 74:1–74:9, Piscataway, NJ, USA, 2016. IEEE Press. ISBN 978-1-4673-8815-3. 10.1109/​SC.2016.73.
https:/​/​doi.org/​10.1109/​SC.2016.73

[5] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron. Quipper: a scalable quantum programming language. In ACM SIGPLAN Notices, volume 48, pages 333–342. ACM, 2013. 10.1145/​2499370.2462177.
https:/​/​doi.org/​10.1145/​2499370.2462177

[6] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. Scaffcc: a framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers, page 1. ACM, 2014. 10.1145/​2597917.2597939.
https:/​/​doi.org/​10.1145/​2597917.2597939

[7] Dave Wecker and Krysta M. Svore. LIQ$Ui|>$: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.
arXiv:1402.4467

[8] ProjectQ website. www.projectq.ch.
http:/​/​www.projectq.ch

[9] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134. IEEE, 1994. 10.1109/​SFCS.1994.365700.
https:/​/​doi.org/​10.1109/​SFCS.1994.365700

[10] Stephane Beauregard. Circuit for shor's algorithm using 2n+ 3 qubits. Quantum Information and Computation, 3 (2): 175–185, 2003.

[11] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition circuits and unbounded fan-out. Quantum Information and Computation, 10 (9&10): 0872–0890, 2010.

[12] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n+2 qubits with Toffoli based modular multiplication. Quantum Information and Computation, 17 (7&8): 0673–0684, 2017. 10.26421/​QIC17.7-8.
https:/​/​doi.org/​10.26421/​QIC17.7-8

[13] Thomas G. Draper. Addition on a quantum computer. arXiv preprint quant-ph/​0008033, 2000.
arXiv:quant-ph/0008033

[14] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52 (5): 3457, 1995. 10.1103/​PhysRevA.52.3457.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[15] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal motion. Physical Review Letters, 82 (9): 1971, 1999. 10.1103/​PhysRevLett.82.1971.
https:/​/​doi.org/​10.1103/​PhysRevLett.82.1971

[16] Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J. Love, and Alán Aspuru-Guzik. Exponentially more precise quantum simulation of fermions in second quantization. New Journal of Physics, 18 (3): 033032, 2016. 10.1088/​1367-2630/​18/​3/​033032.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​033032

[17] Fermilib. https:/​/​github.com/​projectq-framework/​fermilib.
https:/​/​github.com/​projectq-framework/​fermilib

[18] Ludwig E. de Clercq, Hsiang-Yu Lo, Matteo Marinelli, David Nadlinger, Robin Oswald, Vlad Negnevitsky, Daniel Kienzler, Ben Keitch, and Jonathan P. Home. Parallel transport quantum logic gates with trapped ions. Physical Review Letters, 116 (8): 080502, 2016. 10.1103/​PhysRevLett.116.080502.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.080502

[19] Thomas Häner and Damian S. Steiger. 0.5 petabyte simulation of a 45-qubit quantum circuit. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '17, pages 33:1–33:10, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5114-0. 10.1145/​3126908.3126947.
https:/​/​doi.org/​10.1145/​3126908.3126947

[20] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996. 10.1145/​237814.237866.
https:/​/​doi.org/​10.1145/​237814.237866

Cited by

[1] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", Quantum 3, 156 (2019).

[2] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz, "Realization of Real-Time Fault-Tolerant Quantum Error Correction", Physical Review X 11 4, 041058 (2021).

[3] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan, Toru Kawakubo, Yuya O. Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru Yoshimura, Akihiro Hayashi, and Keisuke Fujii, "Qulacs: a fast and versatile quantum circuit simulator for research purpose", Quantum 5, 559 (2021).

[4] Quoc Chuong Nguyen, Le Bin Ho, Lan Nguyen Tran, and Hung Q Nguyen, "Qsun: an open-source platform towards practical quantum machine learning applications", Machine Learning: Science and Technology 3 1, 015034 (2022).

[5] Matthew Otten and Stephen K. Gray, "Accounting for errors in quantum algorithms via individual error reduction", npj Quantum Information 5 1, 11 (2019).

[6] Thomas Ayral, François-Marie Le Régent, Zain Saleem, Yuri Alexeev, and Martin Suchara, "Quantum Divide and Compute: Exploring the Effect of Different Noise Sources", SN Computer Science 2 3, 132 (2021).

[7] Gian Giacomo Guerreschi and Jongsoo Park, "Two-step approach to scheduling quantum circuits", Quantum Science and Technology 3 4, 045003 (2018).

[8] Harrison Ball, Michael J Biercuk, Andre R R Carvalho, Jiayin Chen, Michael Hush, Leonardo A De Castro, Li Li, Per J Liebermann, Harry J Slatyer, Claire Edmunds, Virginia Frey, Cornelius Hempel, and Alistair Milne, "Software tools for quantum control: improving quantum computer performance through noise and error suppression", Quantum Science and Technology 6 4, 044011 (2021).

[9] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller, Matthias Troyer, and Krysta Svore, "Quantum programming languages", Nature Reviews Physics 2 12, 709 (2020).

[10] Ang Li, Omer Subasi, Xiu Yang, and Sriram Krishnamoorthy, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2020) ISBN:978-1-7281-9998-6.

[11] Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht, Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, Leon Wubben, Walter de Jong, Damian Podareanu, Ariana Torres-Knoop, David Elkouss, and Stephanie Wehner, "NetSquid, a NETwork Simulator for QUantum Information using Discrete events", Communications Physics 4 1, 164 (2021).

[12] Thomas Häner, Damian S. Steiger, Torsten Hoefler, and Matthias Troyer, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2021) ISBN:9781450384421.

[13] Abdulah Fawaz, Paul Klein, Sebastien Piat, Simone Severini, and Peter Mountney, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1674 (2019) ISBN:9781450362016.

[14] Aravind Aji, Kurunandan Jain, and Prabhakar Krishnan, 2021 2nd Global Conference for Advancement in Technology (GCAT) 1 (2021) ISBN:978-1-6654-1836-2.

[15] Matthew Amy, Lecture Notes in Computer Science 11497, 87 (2019) ISBN:978-3-030-21499-9.

[16] Davide Ferrari and Michele Amoretti, "Efficient and effective quantum compiling for entanglement-based machine learning on IBM Q devices", International Journal of Quantum Information 16 08, 1840006 (2018).

[17] Matthew Amy and Vlad Gheorghiu, "staq—A full-stack quantum processing toolkit", Quantum Science and Technology 5 3, 034016 (2020).

[18] Jakob S Kottmann, Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Philipp Schleich, Abhinav Anand, Matthias Degroote, Skylar Chaney, Maha Kesibi, Naomi Grace Curnow, Brandon Solo, Georgios Tsilimigkounakis, Claudia Zendejas-Morales, Artur F Izmaylov, and Alán Aspuru-Guzik, "TEQUILA: a platform for rapid development of quantum algorithms", Quantum Science and Technology 6 2, 024009 (2021).

[19] Haodong Bian, Jianqiang Huang, Jiahao Tang, Runting Dong, Li Wu, and Xiaoying Wang, "PAS: A new powerful and simple quantum computing simulator", Software: Practice and Experience spe.3049 (2021).

[20] Agustín Borgna, Simon Perdrix, and Benoît Valiron, Lecture Notes in Computer Science 13008, 121 (2021) ISBN:978-3-030-89050-6.

[21] Daniel Vietz, Johanna Barzen, Frank Leymann, and Karoline Wild, Lecture Notes in Computer Science 12747, 127 (2021) ISBN:978-3-030-77979-5.

[22] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron, Lecture Notes in Computer Science 12648, 148 (2021) ISBN:978-3-030-72018-6.

[23] Nicholas Meinhardt, Bastiaan Dekker, Niels M. P. Neumann, and Frank Phillipson, "Implementation of a Variational Quantum Circuit for Machine Learning with Compact Data Representation", Digitale Welt 4 1, 95 (2020).

[24] Pedro Parrado-Rodríguez, Ciarán Ryan-Anderson, Alejandro Bermudez, and Markus Müller, "Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions", Quantum 5, 487 (2021).

[25] Shubham, Prachi Sajwan, and N. Jayapandian, 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) 598 (2019) ISBN:978-1-7281-4365-1.

[26] Haodong Bian, Jianqiang Huang, Runting Dong, Yuluo Guo, and Xiaoying Wang, Lecture Notes in Computer Science 12453, 111 (2020) ISBN:978-3-030-60238-3.

[27] Will Powell, Jason Riedy, Jeffrey S. Young, and Thomas M. Conte, Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) 1 (2019) ISBN:9781450372275.

[28] Manuel A. Serrano, José A. Cruz-Lemus, Ricardo Pérez-Castillo, and Mario Piattini, "Quantum Software Components and Platforms: Overview and Quality Assessment", ACM Computing Surveys 3548679 (2022).

[29] Robert Wille, Austin Fowler, and Yehuda Naveh, Proceedings of the International Conference on Computer-Aided Design 1 (2018) ISBN:9781450359504.

[30] Antonio D. Corcoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T. McClure, Andrew W. Cross, Kristan Temme, Paul D. Nation, Matthias Steffen, and Jay M. Gambetta, "Challenges and Opportunities of Near-Term Quantum Computing Systems", Proceedings of the IEEE 108 8, 1338 (2020).

[31] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[32] David Plankensteiner, Christoph Hotter, and Helmut Ritsch, "QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems", Quantum 6, 617 (2022).

[33] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner, "Enabling accuracy-aware Quantum compilers using symbolic resource estimation", Proceedings of the ACM on Programming Languages 4 OOPSLA, 1 (2020).

[34] Michael Kühn, Sebastian Zanker, Peter Deglmann, Michael Marthaler, and Horst Weiß, "Accuracy and Resource Estimations for Quantum Chemistry on a Near-Term Quantum Computer", Journal of Chemical Theory and Computation 15 9, 4764 (2019).

[35] Huan-Yu Ku, Neill Lambert, Feng-Jui Chan, Clive Emary, Yueh-Nan Chen, and Franco Nori, "Experimental test of non-macrorealistic cat states in the cloud", npj Quantum Information 6 1, 98 (2020).

[36] Yu Zhang, Haowei Deng, Quanxi Li, Haoze Song, and Leihai Nie, 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE) 184 (2019) ISBN:978-1-7281-3342-3.

[37] Marie Salm, Johanna Barzen, Uwe Breitenbücher, Frank Leymann, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1310, 66 (2020) ISBN:978-3-030-64845-9.

[38] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli, "Xor-And-Inverter Graphs for Quantum Compilation", npj Quantum Information 8 1, 7 (2022).

[39] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli, "LUT-Based Hierarchical Reversible Logic Synthesis", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38 9, 1675 (2019).

[40] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang, "Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design", Quantum 4, 341 (2020).

[41] Lukas Burgholzer, Rudy Raymond, Indranil Sengupta, and Robert Wille, Lecture Notes in Computer Science 12805, 227 (2021) ISBN:978-3-030-79836-9.

[42] Yongsoo Hwang, Taewan Kim, Chungheon Baek, and Byung-Soo Choi, "Integrated Analysis of Performance and Resources in Large-Scale Quantum Computing", Physical Review Applied 13 5, 054033 (2020).

[43] Gian Giacomo Guerreschi, "Fast simulation of quantum algorithms using circuit optimization", Quantum 6, 706 (2022).

[44] Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan, "A Quantum interpretation of separating conjunction for local reasoning of Quantum programs based on separation logic", Proceedings of the ACM on Programming Languages 6 POPL, 1 (2022).

[45] Ussama Assad, Muhammad Arshad Shehzad Hassan, Umar Farooq, Asif Kabir, Muhammad Zeeshan Khan, S. Sabahat H. Bukhari, Zain ul Abidin Jaffri, Judit Oláh, and József Popp, "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods", Energies 15 6, 2003 (2022).

[46] Johanna Barzen, Frank Leymann, Michael Falkenthal, Daniel Vietz, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1399, 25 (2021) ISBN:978-3-030-72368-2.

[47] Michael L. Wall, Matthew R. Abernathy, and Gregory Quiroz, "Generative machine learning with tensor networks: Benchmarks on near-term quantum computers", Physical Review Research 3 2, 023010 (2021).

[48] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza, " Qibo: a framework for quantum simulation with hardware acceleration", Quantum Science and Technology 7 1, 015018 (2022).

[49] Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, and Yueh-Nan Chen, "Benchmarking quantum state transfer on quantum devices", Physical Review Research 3 2, 023038 (2021).

[50] Peter Nimbe, Benjamin Asubam Weyori, and Adebayo Felix Adekoya, "Models in quantum computing: a systematic review", Quantum Information Processing 20 2, 80 (2021).

[51] Zi-Jian Zhang, Thi Ha Kyaw, Jakob S Kottmann, Matthias Degroote, and Alán Aspuru-Guzik, "Mutual information-assisted adaptive variational quantum eigensolver", Quantum Science and Technology 6 3, 035001 (2021).

[52] Jonathan Romero and Alán Aspuru‐Guzik, "Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions", Advanced Quantum Technologies 4 1, 2000003 (2021).

[53] Yongshan Ding and Frederic T. Chong, Quantum Computer Systems (2020) ISBN:978-3-031-00637-1.

[54] Neil J. Ross, "The dawn of quantum programming", Quantum Views 2, 4 (2018).

[55] Essam H. Houssein, Zainab Abohashima, Mohamed Elhoseny, and Waleed M. Mohamed, "Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision", Expert Systems with Applications 194, 116512 (2022).

[56] Pavlo V. Zahorodk, Yevhenii O. Modlo, Olga O. Kalinichenko, Tetiana V. Selivanova, and Serhiy O. Semerikov, Quantum enhanced machine learning: An overview (2021).

[57] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA) 570 (2020) ISBN:978-1-7281-4661-4.

[58] Tom Krüger and Wolfgang Mauerer, Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops 445 (2020) ISBN:9781450379632.

[59] Thomas Häner, Torsten Hoefler, and Matthias Troyer, "Assertion-based optimization of Quantum programs", Proceedings of the ACM on Programming Languages 4 OOPSLA, 1 (2020).

[60] Gabriel Greene‐Diniz and David Muñoz Ramo, "Generalized unitary coupled cluster excitations for multireference molecular states optimized by the variational quantum eigensolver", International Journal of Quantum Chemistry 121 4(2021).

[61] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", Microprocessors and Microsystems 66, 81 (2019).

[62] Tianyin Li, Xingyu Guo, Wai Kin Lai, Xiaohui Liu, Enke Wang, Hongxi Xing, Dan-Bo Zhang, and Shi-Liang Zhu, "Partonic collinear structure by quantum computing", Physical Review D 105 11, L111502 (2022).

[63] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang, "QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation", ACM Transactions on Quantum Computing 3550488 (2022).

[64] Erik Nielsen, Kenneth Rudinger, Timothy Proctor, Antonio Russo, Kevin Young, and Robin Blume-Kohout, "Probing quantum processor performance with pyGSTi", Quantum Science and Technology 5 4, 044002 (2020).

[65] X. Fu, Jintao Yu, Xing Su, Hanru Jiang, Hua Wu, Fucheng Cheng, Xi Deng, Jinrong Zhang, Lei Jin, Yihang Yang, Le Xu, Chunchao Hu, Anqi Huang, Guangyao Huang, Xiaogang Qiang, Mingtang Deng, Ping Xu, Weixia Xu, Wanwei Liu, Yu Zhang, Yuxin Deng, Junjie Wu, and Yuan Feng, "Quingo: A Programming Framework for Heterogeneous Quantum-Classical Computing with NISQ Features", ACM Transactions on Quantum Computing 2 4, 1 (2021).

[66] Philipp Niemann, Alwin Zulehner, Rolf Drechsler, and Robert Wille, "Overcoming the Tradeoff Between Accuracy and Compactness in Decision Diagrams for Quantum Computation", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 12, 4657 (2020).

[67] Geng-Li Zhang, Di Liu, and Man-Hong Yung, "Observation of exceptional point in a PT broken non-Hermitian system simulated using a quantum circuit", Scientific Reports 11 1, 13795 (2021).

[68] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev, Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation 286 (2020) ISBN:9781450376136.

[69] Huo Chen and Daniel A. Lidar, "Hamiltonian open quantum system toolkit", Communications Physics 5 1, 112 (2022).

[70] Fang Li, Xin Liu, Yong Liu, Pengpeng Zhao, Yuling Yang, Honghui Shang, Weizhe Sun, Zhen Wang, Enming Dong, and Dexun Chen, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2021) ISBN:9781450384421.

[71] Marie Salm, Johanna Barzen, Frank Leymann, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1429, 64 (2021) ISBN:978-3-030-87567-1.

[72] Stefan Hillmich, Alwin Zulehner, and Robert Wille, 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC) 115 (2020) ISBN:978-1-7281-4123-7.

[73] Salonik Resch and Ulya R. Karpuzcu, "Benchmarking Quantum Computers and the Impact of Quantum Noise", ACM Computing Surveys 54 7, 1 (2022).

[74] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks, "A verified optimizer for Quantum circuits", Proceedings of the ACM on Programming Languages 5 POPL, 1 (2021).

[75] Kyungbae Jang, Gyeongju Song, Hyunjun Kim, Hyeokdong Kwon, Hyunji Kim, and Hwajeong Seo, "Efficient Implementation of PRESENT and GIFT on Quantum Computers", Applied Sciences 11 11, 4776 (2021).

[76] Priyanka Mukhopadhyay, "Composability of global phase invariant distance and its application to approximation error management", Journal of Physics Communications 5 11, 115017 (2021).

[77] Rozhin Eskandarpour, Kumar Jang Bahadur Ghosh, Amin Khodaei, Aleksi Paaso, and Liuxi Zhang, "Quantum-Enhanced Grid of the Future: A Primer", IEEE Access 8, 188993 (2020).

[78] Christina Petschnigg, Mathias Brandstotter, Horst Pichler, Michael Hofbaur, and Bernhard Dieber, 2019 International Conference on Robotics and Automation (ICRA) 803 (2019) ISBN:978-1-5386-6027-0.

[79] Alwin Zulehner and Robert Wille, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 90 (2019) ISBN:978-3-9819263-2-3.

[80] Nicholas H. Stair and Francesco A. Evangelista, "QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure", Journal of Chemical Theory and Computation 18 3, 1555 (2022).

[81] Nirupma Pathak, Neeraj Kumar Misra, Bandan Kumar Bhoi, and Santosh Kumar, Smart Innovation, Systems and Technologies 235, 523 (2022) ISBN:978-981-16-2876-4.

[82] Thien Nguyen and Alexander J. McCaskey, "Extending Python for Quantum-classical Computing via Quantum Just-in-time Compilation", ACM Transactions on Quantum Computing 3 4, 1 (2022).

[83] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, "A quantum engineer's guide to superconducting qubits", Applied Physics Reviews 6 2, 021318 (2019).

[84] Tyson Jones, Anna Brown, Ian Bush, and Simon C. Benjamin, "QuEST and High Performance Simulation of Quantum Computers", Scientific Reports 9 1, 10736 (2019).

[85] Martin Kong, "On the Impact of Affine Loop Transformations in Qubit Allocation", ACM Transactions on Quantum Computing 2 3, 1 (2021).

[86] Antonio García de la Barrera, Ignacio García‐Rodríguez de Guzmán, Macario Polo, and Mario Piattini, "Quantum software testing: State of the art", Journal of Software: Evolution and Process (2021).

[87] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal constraint-based compilation for noisy intermediate-scale quantum systems", Microprocessors and Microsystems 66, 102 (2019).

[88] Khaled Khalfaoui, Tahar Boudjedaa, and El Hillali Kerkouche, "Automatic design of quantum circuits", Quantum Information Processing 20 9, 283 (2021).

[89] Gyeongju Song, Kyungbae Jang, Hyunji Kim, Wai-Kong Lee, Zhi Hu, and Hwajeong Seo, Lecture Notes in Computer Science 13218, 421 (2022) ISBN:978-3-031-08895-7.

[90] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada, "Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer", Quantum 6, 798 (2022).

[91] Thomas Grurl, Jurgen Fub, and Robert Wille, 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) 87 (2021) ISBN:978-1-7281-9224-6.

[92] Wai-Kong Lee, Kyungbae Jang, Gyeongju Song, Hyunji Kim, Seong Oun Hwang, and Hwajeong Seo, "Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications", IEEE Access 10, 59661 (2022).

[93] Hua Wu, Yuxin Deng, Ming Xu, and Wenjie Du, Lecture Notes in Computer Science 12545, 307 (2020) ISBN:978-3-030-64275-4.

[94] Mostafizar Rahman and Goutam Paul, "Grover on KATAN: Quantum Resource Estimation", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[95] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", Chemical Reviews 119 19, 10856 (2019).

[96] Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao, Tenghui Wang, Feng Wu, Gengyan Zhang, Hsiang-Sheng Ku, Zhengxiong Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng, and Jianxin Chen, "Efficient parallelization of tensor network contraction for simulating quantum computation", Nature Computational Science 1 9, 578 (2021).

[97] Damien Nguyen, Dmitry Mikushin, and Yung Man-Hong, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1056 (2021) ISBN:978-3-9819263-5-4.

[98] Stephen Diadamo, Janis Notzel, Benjamin Zanger, and Mehmet Mert Bese, "QuNetSim: A Software Framework for Quantum Networks", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[99] Robert Wille, Rod Van Meter, and Yehuda Naveh, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1234 (2019) ISBN:978-3-9819263-2-3.

[100] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Quantum computational finance: Monte Carlo pricing of financial derivatives", Physical Review A 98 2, 022321 (2018).

[101] Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines", Physical Review A 98 6, 062324 (2018).

[102] Michael L. Wall and Giuseppe D'Aguanno, "Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted", Physical Review A 104 4, 042408 (2021).

[103] Paramita Basak Upama, Md Jobair Hossain Faruk, Mohammad Nazim, Mohammad Masum, Hossain Shahriar, Gias Uddin, Shabir Barzanjeh, Sheikh Iqbal Ahamed, and Akond Rahman, 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) 520 (2022) ISBN:978-1-6654-8810-5.

[104] Ryan LaRose, "Overview and Comparison of Gate Level Quantum Software Platforms", Quantum 3, 130 (2019).

[105] Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba, and Andrea De Lucia, "Software engineering for quantum programming: How far are we?", Journal of Systems and Software 190, 111326 (2022).

[106] Aniruddha Bapat, Zachary Eldredge, James R. Garrison, Abhinav Deshpande, Frederic T. Chong, and Alexey V. Gorshkov, "Unitary entanglement construction in hierarchical networks", Physical Review A 98 6, 062328 (2018).

[107] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[108] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 280 (2019) ISBN:978-3-9819263-2-3.

[109] Matthias Möller and Merel Schalkers, Lecture Notes in Computer Science 12142, 451 (2020) ISBN:978-3-030-50432-8.

[110] Niels M. P. Neumann, Maran P. P. van Heesch, Frank Phillipson, and Antoine A. P. Smallegange, 2021 International Conference on Military Communication and Information Systems (ICMCIS) 1 (2021) ISBN:978-1-6654-4586-3.

[111] Aeyoung Kim, Seong-Min Cho, Chang-Bae Seo, Sokjoon Lee, and Seung-Hyun Seo, "Quantum Modular Adder over GF(2n − 1) without Saving the Final Carry", Applied Sciences 11 7, 2949 (2021).

[112] M. P. Madhu and Sunanda Dixit, Lecture Notes on Data Engineering and Communications Technologies 44, 714 (2020) ISBN:978-3-030-37050-3.

[113] David Wierichs, Christian Gogolin, and Michael Kastoryano, "Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer", Physical Review Research 2 4, 043246 (2020).

[114] Hai-Ling Liu, Yu-Sen Wu, Lin-Chun Wan, Shi-Jie Pan, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen, "Variational quantum algorithm for the Poisson equation", Physical Review A 104 2, 022418 (2021).

[115] Yukio Kawashima, Erika Lloyd, Marc P. Coons, Yunseong Nam, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, and Takeshi Yamazaki, "Optimizing electronic structure simulations on a trapped-ion quantum computer using problem decomposition", Communications Physics 4 1, 245 (2021).

[116] Thomas Grurl, Jurgen Fus, Stefan Hillmich, Lukas Burgholzer, and Robert Wille, 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL) 176 (2020) ISBN:978-1-7281-5406-0.

[117] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for classically simulating noisy networked quantum architectures", Quantum Science and Technology 5 1, 014001 (2020).

[118] Ahmed Abid Moueddene, Nader Khammassi, Koen Bertels, and Carmen G. Almudever, "Realistic simulation of quantum computation using unitary and measurement channels", Physical Review A 102 5, 052608 (2020).

[119] Prakash Verma, Lee Huntington, Marc P. Coons, Yukio Kawashima, Takeshi Yamazaki, and Arman Zaribafiyan, "Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments", The Journal of Chemical Physics 155 3, 034110 (2021).

[120] Kyungbae Jang, Gyeongju Song, Hyeokdong Kwon, Siwoo Uhm, Hyunji Kim, Wai-Kong Lee, and Hwajeong Seo, "Grover on PIPO", Electronics 10 10, 1194 (2021).

[121] Alexander McCaskey, Eugene Dumitrescu, Dmitry Liakh, and Travis Humble, 2018 IEEE International Conference on Rebooting Computing (ICRC) 1 (2018) ISBN:978-1-5386-9170-0.

[122] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet Kaur, Muhammad Usman, and Rajkumar Buyya, "Quantum computing: A taxonomy, systematic review and future directions", Software: Practice and Experience 52 1, 66 (2022).

[123] Axel Dahlberg and Stephanie Wehner, "SimulaQron—a simulator for developing quantum internet software", Quantum Science and Technology 4 1, 015001 (2018).

[124] Vikas Hassija, Vinay Chamola, Vikas Saxena, Vaibhav Chanana, Prakhar Parashari, Shahid Mumtaz, and Mohsen Guizani, "Present landscape of quantum computing", IET Quantum Communication 1 2, 42 (2020).

[125] Samuel Jaques and Thomas Häner, "Leveraging State Sparsity for More Efficient Quantum Simulations", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[126] Zhihao Wu, Junjie Wu, and Anqi Huang, "PhotoniQLAB: a framework for simulating photonic quantum information processing experiments", Quantum Science and Technology 6 2, 024001 (2021).

[127] Shaun Miller, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 141 (2020) ISBN:978-1-7281-5775-7.

[128] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan, Lecture Notes in Computer Science 11562, 187 (2019) ISBN:978-3-030-25542-8.

[129] Vincent Russo, "toqito -- Theory of quantum information toolkit: A Python package for studying quantum information", Journal of Open Source Software 6 61, 3082 (2021).

[130] Róbert Izsák, Christoph Riplinger, Nick S. Blunt, Bernardo de Souza, Nicole Holzmann, Ophelia Crawford, Joan Camps, Frank Neese, and Patrick Schopf, "Quantum computing in pharma: A multilayer embedding approach for near future applications", Journal of Computational Chemistry jcc.26958 (2022).

[131] Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nelson Leung, Yunong Shi, David I. Schuster, Henry Hoffmann, and Frederic T. Chong, Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture 266 (2019) ISBN:9781450369381.

[132] Thomas Grurl, Richard Kueng, Jurgen FuB, and Robert Wille, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) 194 (2021) ISBN:978-3-9819263-5-4.

[133] Ilya G. Ryabinkin, Tzu-Ching Yen, Scott N. Genin, and Artur F. Izmaylov, "Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer", Journal of Chemical Theory and Computation 14 12, 6317 (2018).

[134] Oumarou Oumarou, Alexandru Paler, and Robert Basmadjian, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 126 (2020) ISBN:978-1-7281-5775-7.

[135] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang, 2021 58th ACM/IEEE Design Automation Conference (DAC) 439 (2021) ISBN:978-1-6654-3274-0.

[136] Axel Dahlberg, Bart van der Vecht, Carlo Delle Donne, Matthew Skrzypczyk, Ingmar te Raa, Wojciech Kozlowski, and Stephanie Wehner, "NetQASM—a low-level instruction set architecture for hybrid quantum–classical programs in a quantum internet", Quantum Science and Technology 7 3, 035023 (2022).

[137] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and Nathan Shammah, "Pulse-level noisy quantum circuits with QuTiP", Quantum 6, 630 (2022).

[138] David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler, "QIRO: A Static Single Assignment-based Quantum Program Representation for Optimization", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[139] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta, "Open Quantum Assembly Language", arXiv:1707.03429, (2017).

[140] Jarrod R. McClean, Kevin J. Sung, Ian D. Kivlichan, Yudong Cao, Chengyu Dai, E. Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner, Tarini Hardikar, Vojtěch Havlíček, Oscar Higgott, Cupjin Huang, Josh Izaac, Zhang Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas O'Brien, Bryan O'Gorman, Isil Ozfidan, Maxwell D. Radin, Jhonathan Romero, Nicholas Rubin, Nicolas P. D. Sawaya, Kanav Setia, Sukin Sim, Damian S. Steiger, Mark Steudtner, Qiming Sun, Wei Sun, Daochen Wang, Fang Zhang, and Ryan Babbush, "OpenFermion: The Electronic Structure Package for Quantum Computers", arXiv:1710.07629, (2017).

[141] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan, "t|ket⟩: a retargetable compiler for NISQ devices", Quantum Science and Technology 6 1, 014003 (2021).

[142] Kanav Setia and James D. Whitfield, "Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer", Journal of Chemical Physics 148 16, 164104 (2018).

[143] Frederic T. Chong, Diana Franklin, and Margaret Martonosi, "Programming languages and compiler design for realistic quantum hardware", Nature 549 7671, 180 (2017).

[144] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank, "Compiling quantum circuits to realistic hardware architectures using temporal planners", Quantum Science and Technology 3 2, 025004 (2018).

[145] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán Aspuru-Guzik, "qTorch: The quantum tensor contraction handler", PLoS ONE 13 12, e0208510 (2018).

[146] Jin-Guo Liu and Lei Wang, "Differentiable Learning of Quantum Circuit Born Machine", arXiv:1804.04168, (2018).

[147] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis Humble, "Validating quantum-classical programming models with tensor network simulations", PLoS ONE 13 12, e0206704 (2018).

[148] Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler, "Q#: Enabling scalable quantum computing and development with a high-level domain-specific language", arXiv:1803.00652, (2018).

[149] Kyle E. C. Booth, Minh Do, J. Christopher Beck, Eleanor Rieffel, Davide Venturelli, and Jeremy Frank, "Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation", arXiv:1803.06775, (2018).

[150] Thomas Häner and Damian S. Steiger, "0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit", arXiv:1704.01127, (2017).

[151] Alwin Zulehner and Robert Wille, "Advanced Simulation of Quantum Computations", arXiv:1707.00865, (2017).

[152] Hao Tang, Yan-Yan Zhu, Jun Gao, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: A Graphical Interface Program for Photonic Analog Quantum Computing", arXiv:1810.02289, (2018).

[153] Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani, "QSystem: bitwise representation for quantum circuit simulations", arXiv:2004.03560, (2020).

[154] Randy Lewis and R. M. Woloshyn, "A qubit model for U(1) lattice gauge theory", arXiv:1905.09789, (2019).

[155] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán Aspuru-Guzik, "qTorch: The Quantum Tensor Contraction Handler", arXiv:1709.03636, (2017).

[156] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger, "A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper", arXiv:2005.08396, (2020).

[157] Mathias Soeken, Thomas Häner, and Martin Roetteler, "Programming Quantum Computers Using Design Automation", arXiv:1803.01022, (2018).

[158] Adarsh Kumar, Ali Ismail Awad, Gaurav Sharma, Rajalakshmi Krishnamurthi, Saurabh Jain, P. Srikanth, Kriti Sharma, Mustapha Hedabou, and Surinder Sood, "Revolutionizing Modern Networks: Advances in AI, Machine Learning, and Blockchain for Quantum Satellites and UAV-based Communication", arXiv:2303.11753, (2023).

[159] Alexander Singh, Konstantinos Giannakis, and Theodore Andronikos, "Qumin, a minimalist quantum programming language", arXiv:1704.04460, (2017).

[160] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "An Experimental Microarchitecture for a Superconducting Quantum Processor", arXiv:1708.07677, (2017).

[161] Evandro Chagas Ribeiro da Rosa and Rafael de Santiago, "Classical and Quantum Data Interaction in Programming Languages: A Runtime Architecture", arXiv:2006.00131, (2020).

[162] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems", arXiv:1903.03276, (2019).

[163] Youssef Moawad, Wim Vanderbauwhede, and René Steijl, "Transformations for accelerator-based quantum circuit simulation in Haskell", arXiv:2210.12703, (2022).

[164] Keith A. Britt, Fahd A. Mohiyaddin, and Travis S. Humble, "Quantum Accelerators for High-Performance Computing Systems", arXiv:1712.01423, (2017).

[165] Mathias Soeken and Mariia Mykhailova, "Automatic oracle generation in Microsoft's Quantum Development Kit using QIR and LLVM passes", arXiv:2212.01740, (2022).

[166] Osman Ceylan and Ihsan Yilmaz, "Simulation Tests of Tokyo Quantum Network", Materials Science and Engineering Conference Series 1187 1, 012023 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2022-09-13 02:40:15) and SAO/NASA ADS (last updated successfully 2024-05-16 15:51:11). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-05-16 15:51:00: cURL error 28: Operation timed out after 10000 milliseconds with 305496 bytes received

3 thoughts on “ProjectQ: an open source software framework for quantum computing

  1. Pingback: Qstarter award for Quantum! – Quantum

  2. Pingback: Qstarter award for Quantum! – Quantum Electronics

  3. Pingback: Perspective in Quantum Views by Neil J. Ross "The dawn of quantum programming"