Cavity assisted measurements of heat and work in optical lattices

Louis Villa1,2 and Gabriele De Chiara2

1Univ Lyon, Ens de Lyon, Univ Claude Bernard,F-69342 Lyon, France
2Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We propose a method to experimentally measure the internal energy of a system of ultracold atoms trapped in optical lattices by coupling them to the fields of two optical cavities. We show that the tunnelling and self-interaction terms of the one-dimensional Bose-Hubbard Hamiltonian can be mapped to the field and photon number of each cavity, respectively. We compare the energy estimated using this method with numerical results obtained using the density matrix renormalisation group algorithm. Our method can be employed for the assessment of power and efficiency of thermal machines whose working substance is a strongly correlated many-body system.

The precise measurement of energy of a physical system during a thermodynamic process is necessary for assessing the power and efficiency of thermal engines and refrigerators. For strongly-interacting quantum systems, measuring the total energy is however challenging. In this paper, we show how to estimate the total internal energy of atoms in optical lattices by coupling the atoms to two optical cavities. Our result can be used for the monitoring of internal energy, work extracted and heat currents in optical lattice gases employed as working fluids for quantum thermal machines.

► BibTeX data

► References

[1] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).

[2] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771 (2011).

[3] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, Journal of Physics A: Mathematical and Theoretical 49, 143001 (2016).

[4] J. Millen and A. Xuereb, New Journal of Physics 18, 011002 (2016).

[5] S. Vinjanampathy and J. Anders, Contemporary Physics 57, 545 (2016).

[6] J. P. Pekola, Nature Physics 11, 118 (2015).

[7] R. Kosloff and Y. Rezek, Entropy 19, 136 (2017).

[8] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, Science 352, 325 (2016).

[9] G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, arXiv preprint arXiv:1702.08672 (2017).

[10] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, Nature 543, 87 (2017).

[11] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev. Lett. 117, 240502 (2016).

[12] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and B. Huard, Proceedings of the National Academy of Sciences 114, 7561 (2017).

[13] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. Quan, and K. Kim, Nature Physics 11, 193 (2015).

[14] Y. Dong, K. Zhang, F. Bariani, and P. Meystre, Phys. Rev. A 92, 033854 (2015).

[15] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, Phys. Rev. Lett. 109, 180601 (2012).

[16] J. P. Pekola, P. Solinas, A. Shnirman, and D. V. Averin, New Journal of Physics 15, 115006 (2013).

[17] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).

[18] L. Mazzola, G. De Chiara, and M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).

[19] M. Campisi, R. Blattmann, S. Kohler, D. Zueco, and P. Hänggi, New Journal of Physics 15, 105028 (2013).

[20] J. Goold, U. Poschinger, and K. Modi, Phys. Rev. E 90, 020101 (2014).

[21] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[22] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, Phys. Rev. Lett. 113, 140601 (2014).

[23] G. De Chiara, A. J. Roncaglia, and J. P. Paz, New Journal of Physics 17, 035004 (2015).

[24] R. G. Lena, G. M. Palma, and G. De Chiara, Phys. Rev. A 93, 053618 (2016).

[25] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[26] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature 467, 68 (2010).

[27] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

[28] C. Maschler and H. Ritsch, Phys. Rev. Lett. 95, 260401 (2005).

[29] J. Larson, B. Damski, G. Morigi, and M. Lewenstein, Phys. Rev. Lett. 100, 050401 (2008).

[30] I. B. Mekhov, C. Maschler, and H. Ritsch, Nature Physics 3, 319 (2007).

[31] S. Fernández-Vidal, G. De Chiara, J. Larson, and G. Morigi, Phys. Rev. A 81, 043407 (2010).

[32] R. Kanamoto and P. Meystre, Phys. Rev. Lett. 104, 063601 (2010).

[33] I. B. Mekhov and H. Ritsch, Journal of Physics B: Atomic, Molecular and Optical Physics 45, 102001 (2012).

[34] H. Habibian, A. Winter, S. Paganelli, H. Rieger, and G. Morigi, Phys. Rev. Lett. 110, 075304 (2013a).

[35] H. Habibian, A. Winter, S. Paganelli, H. Rieger, and G. Morigi, Phys. Rev. A 88, 043618 (2013b).

[36] W. Kozlowski, S. F. Caballero-Benitez, and I. B. Mekhov, Phys. Rev. A 92, 013613 (2015).

[37] M. Zuppardo, J. P. Santos, G. De Chiara, M. Paternostro, F. L. Semião, and G. M. Palma, Phys. Rev. A 91, 033631 (2015).

[38] F. Mivehvar, H. Ritsch, and F. Piazza, Phys. Rev. Lett. 118, 073602 (2017).

[39] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science 322, 235 (2008).

[40] K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, Nature Physics 4, 561 (2008).

[41] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, and T. Esslinger, Nature 532, 476 (2016).

[42] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102 (2007).

[43] R. Gallego, J. Eisert, and H. Wilming, New Journal of Physics 18, 103017 (2016).

[44] P. Talkner and P. Hänggi, Phys. Rev. E 93, 022131 (2016).

[45] M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M. Huber, and A. Acin, Phys. Rev. Lett. 118, 070601 (2017).

[46] H. J. D. Miller and J. Anders, New Journal of Physics 19, 062001 (2017).

[47] D. F. Walls and G. J. Milburn, Quantum optics (Springer Science & Business Media, 2007).

[48] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[49] H. J. Carmichael, Statistical Methods in Quantum Optics (Springer-Verlag, 1999).

[50] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[51] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[52] G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero, Journal of Computational and Theoretical Nanoscience 5, 1277 (2008).

[53] J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

[54] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).

[55] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral, Phys. Rev. Lett. 109, 160601 (2012).

[56] J. Marino and A. Silva, Phys. Rev. B 89, 024303 (2014).

[57] Y. E. Shchadilova, P. Ribeiro, and M. Haque, Phys. Rev. Lett. 112, 070601 (2014).

[58] A. Sindona, J. Goold, N. L. Gullo, and F. Plastina, New J. Phys. 16, 045013 (2014).

[59] E. Mascarenhas, H. Bragança, R. Dorner, M. França Santos, V. Vedral, K. Modi, and J. Goold, Phys. Rev. E 89, 062103 (2014).

[60] L. Fusco, S. Pigeon, T. J. G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, and G. De Chiara, Phys. Rev. X 4, 031029 (2014).

[61] M. Zhong and P. Tong, Phys. Rev. E 91, 032137 (2015).

[62] F. A. Bayocboc and F. N. C. Paraan, Phys. Rev. E 92, 032142 (2015).

[63] S. Paganelli and T. J. G. Apollaro, International Journal of Modern Physics B 31, 1750065 (2017).

[64] F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, and G. De Chiara, Phys. Rev. A 95, 063615 (2017).

Cited by

[1] Pedro Rosario, Alan C. Santos, C.J. Villas-Boas, and R. Bachelard, "Collateral Coupling between Superconducting Resonators: Fast High-Fidelity Generation of Qudit-Qudit Entanglement", Physical Review Applied 20 3, 034036 (2023).

[2] Dominik Šafránek, J. M. Deutsch, and Anthony Aguirre, "Quantum coarse-grained entropy and thermalization in closed systems", Physical Review A 99 1, 012103 (2019).

[3] Louis Villa, Julien Despres, and Laurent Sanchez-Palencia, "Unraveling the excitation spectrum of many-body systems from quantum quenches", Physical Review A 100 6, 063632 (2019).

[4] Adalberto D. Varizi, André P. Vieira, Cecilia Cormick, Raphael C. Drumond, and Gabriel T. Landi, "Quantum coherence and criticality in irreversible work", Physical Review Research 2 3, 033279 (2020).

[5] Bao-Ming Xu, "Quantum fluctuation theorem for initial near-equilibrium system", Journal of Statistical Mechanics: Theory and Experiment 2023 5, 053105 (2023).

[6] John Goold, Francesco Plastina, Andrea Gambassi, and Alessandro Silva, Fundamental Theories of Physics 195, 317 (2018) ISBN:978-3-319-99045-3.

[7] Gabriele De Chiara, Paolo Solinas, Federico Cerisola, and Augusto J. Roncaglia, Fundamental Theories of Physics 195, 337 (2018) ISBN:978-3-319-99045-3.

[8] Nilakantha Meher and S. Sivakumar, "A review on quantum information processing in cavities", The European Physical Journal Plus 137 8, 985 (2022).

[9] Dominik Šafránek, J. M. Deutsch, and Anthony Aguirre, "Quantum coarse-grained entropy and thermodynamics", Physical Review A 99 1, 010101 (2019).

[10] Dominik Šafránek and Dario Rosa, "Measuring energy by measuring any other observable", Physical Review A 108 2, 022208 (2023).

[11] F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, and G. De Chiara, "Nonequilibrium quantum thermodynamics in Coulomb crystals", Physical Review A 95 6, 063615 (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 04:44:10) and SAO/NASA ADS (last updated successfully 2024-04-15 04:44:11). The list may be incomplete as not all publishers provide suitable and complete citation data.