A nonequilibrium quantum phase transition in strongly coupled spin chains

Eduardo Mascarenhas, Giacomo Giudice, and Vincenzo Savona

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We study spin transport in a boundary driven XXZ spin chain. Driving at the chain boundaries is modeled by two additional spin chains prepared in oppositely polarized states. Emergent behavior, both in the transient dynamics and in the long-time quasi-steady state, is demonstrated. Time-dependent matrix-product-state simulations of the system-bath state show ballistic spin transport below the Heisenberg isotropic point. Indications of exponentially vanishing transport are found above the Heisenberg point for low energy initial states while the current decays asymptotically as a power law for high energy states. Precisely at the critical point, non-ballistic transport is observed. Finally, it is found that the sensitivity of the quasi-stationary state on the initial state of the chain is a good witness of the different transport phases.

► BibTeX data

► References

[1] S. Sachdev, Quantum phase transitions (Wiley Online Library, 2007).

[2] D. Hirobe, M. Sato, T. Kawamata, Y. Shiomi, K.-i. Uchida, R. Iguchi, Y. Koike, S. Maekawa, and E. Saitoh, Nat. Phys. 13, 30 (2017).

[3] A. Sologubenko, T. Lorenz, H. Ott, and A. Freimuth, J. of Low Temp. Phys. 147, 387 (2007).

[4] H. Maeter, A. Zvyagin, H. Luetkens, G. Pascua, Z. Shermadini, R. Saint-Martin, A. Revcolevschi, C. Hess, B. Büchner, and H. Klauss, J. Phys.: Condensed Matter 25, 365601 (2013).

[5] C. Hess, Eur. Phys. J.-Spec. Top. 151, 73 (2007).

[6] J.-M. Reiner, M. Marthaler, J. Braumüller, M. Weides, and G. Schön, Phys. Rev. A 94 (2016), 10.1103/​PhysRevA.94.032338.

[7] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, and M. Troyer, Nat. Phys. 10, 218 (2014).

[8] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, et al., Nature 464, 697 (2010).

[9] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, Phys. Rev. Lett. 70, 2253 (1993).

[10] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

[11] G. Roati, C. D'Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature 453, 895 (2008).

[12] C. Schweizer, M. Lohse, R. Citro, and I. Bloch, Phys. Rev. Lett. 117, 170405 (2016).

[13] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349, 842 (2015).

[14] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. Hess, P. Hauke, M. Heyl, D. Huse, and C. Monroe, Nat. Phys. 12, 907 (2016).

[15] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler, I. Bloch, and C. Gross, Phys. Rev. Lett. 113, 147205 (2014).

[16] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler, I. Bloch, and C. Gross, Nature 502, 76 (2013).

[17] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schausz, S. Hild, D. Bellem, U. Schollwock, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, Nat. Phys. 9, 235 (2013).

[18] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 235 (2008).

[19] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011).

[20] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo, L. Pollet, I. Bloch, and C. Gross, Science 353, 1257 (2016).

[21] L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Phys. Rev. Lett. 115, 175301 (2015).

[22] J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Phys. Rev. Lett. 110, 205301 (2013).

[23] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501 (2013), 10.1038/​nature12483.

[24] A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Phys. Rev. Lett. 107, 115301 (2011a).

[25] A. V. Gorshkov, S. R. Manmana, G. Chen, E. Demler, M. D. Lukin, and A. M. Rey, Phys. Rev. A 84, 033619 (2011b).

[26] X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029 (1997).

[27] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011a).

[28] T. Prosen and E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013).

[29] R. Steinigeweg and J. Gemmer, Phys. Rev. B 80, 184402 (2009).

[30] R. Steinigeweg and W. Brenig, Phys. Rev. Lett. 107, 250602 (2011).

[31] T. Antal, Z. Rácz, A. Rákos, and G. M. Schütz, Phys. Rev. E 59, 4912 (1999).

[32] T. Antal, Z. Rácz, A. Rákos, and G. M. Schütz, Phys. Rev. E 57, 5184 (1998).

[33] J. Lancaster and A. Mitra, Phys. Rev. E 81, 061134 (2010).

[34] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz, Phys. Rev. E 71, 036102 (2005).

[35] J. Marino and S. Diehl, Phys. Rev. Lett. 116, 070407 (2016).

[36] M. J. Hartmann, J. Opt. 18, 104005 (2016).

[37] J. Wang and G. Casati, Phys. Rev. Lett. 118, 040601 (2017).

[38] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).

[39] T. Prosen, Phys. Rev. Lett. 107, 137201 (2011b).

[40] R. Steinigeweg, M. Ogiewa, and J. Gemmer, Europhys. Lett.) 87, 10002 (2009).

[41] J. J. Mendoza-Arenas, S. R. Clark, and D. Jaksch, Phys. Rev. E 91, 042129 (2015).

[42] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R. Clark, Phys. Rev. B 87, 235130 (2013).

[43] G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Žnidarič, Phys. Rev. B 80, 035110 (2009a).

[44] G. Benenti, G. Casati, T. Prosen, and D. Rossini, Europhys. Lett 85, 37001 (2009b).

[45] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).

[46] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).

[47] A. De Luca, M. Collura, and J. De Nardis, Phys. Rev. B 96, 020403 (2017).

[48] M. Ljubotina, M. Žnidarič, and T. Prosen, Nature Commun. 8 (2017), 10.1038/​ncomms16117.

[49] L. Bonnes, F. H. Essler, and A. M. Läuchli, Phys. Rev. Lett. 113, 187203 (2014).

[50] V. Alba and F. Heidrich-Meisner, Phys. Rev. B 90, 075144 (2014).

[51] T. Sabetta and G. Misguich, Phys. Rev. B 88, 245114 (2013).

[52] A. De Luca, J. Viti, L. Mazza, and D. Rossini, Phys. Rev. B 90, 161101(R) (2014).

[53] M. Collura and G. Martelloni, J. Stat. Mech. 2014, P08006 (2014).

[54] A. Biella, A. De Luca, J. Viti, D. Rossini, L. Mazza, and R. Fazio, Phys. Rev. B 93, 205121 (2016).

[55] C. Karrasch, R. Ilan, and J. Moore, Phys. Rev. B 88, 195129 (2013).

[56] M. Collura and D. Karevski, Phys. Rev. B 89, 214308 (2014).

[57] C.-C. Chien, M. Di Ventra, and M. Zwolak, Phys. Rev. A 90, 023624 (2014).

[58] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys Rev. Lett. 117, 207201 (2016).

[59] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6 (2016), 10.1103/​PhysRevX.6.041065.

[60] C. Karrasch, J. Moore, and F. Heidrich-Meisner, Phys. Rev. B 89, 075139 (2014).

[61] P. S. Alexander Branschädel, Guenter Schneider, arXiv:1004.4178 (2010).

[62] I. de Vega, U. Schollwöck, and F. A. Wolf, Phys. Rev. B 92, 155126 (2015).

[63] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050404 (2010).

[64] A. Rivas and M. A. Martin-Delgado, Scientific Reports 7, 6350 (2017).

[65] M. Mitchison and M. Plenio, arXiv:1708.05574 (2017).

[66] S. Sotiriadis, Phys. Rev. A 94, 031605 (2016).

[67] U. Schollwöck, Ann. of Phys. 326, 96 (2011).

[68] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143 (2008).

[69] M. Žnidarič, A. Scardicchio, and V. K. Varma, Phys. Rev. Lett. 117, 040601 (2016).

[70] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009).

Cited by

[1] Chu Guo, Ines de Vega, Ulrich Schollwöck, and Dario Poletti, "Stable-unstable transition for a Bose-Hubbard chain coupled to an environment", Physical Review A 97 5, 053610 (2018).

[2] Wim Casteels, Ryan M. Wilson, and Michiel Wouters, "Gutzwiller Monte Carlo approach for a critical dissipative spin model", Physical Review A 97 6, 062107 (2018).

[3] Gabriel T. Landi, Dario Poletti, and Gernot Schaller, "Nonequilibrium boundary-driven quantum systems: Models, methods, and properties", Reviews of Modern Physics 94 4, 045006 (2022).

[4] Xiansong Xu, Juzar Thingna, Chu Guo, and Dario Poletti, "Many-body open quantum systems beyond Lindblad master equations", Physical Review A 99 1, 012106 (2019).

[5] G. Mouloudakis, T. Ilias, and P. Lambropoulos, "Arbitrary-length XX spin chains boundary-driven by non-Markovian environments", Physical Review A 105 1, 012429 (2022).

[6] Xiansong Xu, Chu Guo, and Dario Poletti, "Typicality of nonequilibrium quasi-steady currents", Physical Review A 105 4, L040203 (2022).

[7] Vincenzo Alba, "Entanglement and quantum transport in integrable systems", Physical Review B 97 24, 245135 (2018).

[8] Pooja Manasi and Dibyendu Roy, "Light propagation through one-dimensional interacting open quantum systems", Physical Review A 98 2, 023802 (2018).

[9] Xiansong Xu, Chu Guo, and Dario Poletti, "Emergence of steady currents due to strong prethermalization", Physical Review A 107 2, 022220 (2023).

[10] Juris Reisons, Eduardo Mascarenhas, and Vincenzo Savona, "Emergent transport in a many-body open system driven by interacting quantum baths", Physical Review B 96 16, 165137 (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-26 05:20:50) and SAO/NASA ADS (last updated successfully 2024-05-26 05:20:51). The list may be incomplete as not all publishers provide suitable and complete citation data.