Macroscopic superpositions require tremendous measurement devices

Michalis Skotiniotis1, Wolfgang Dür2, and Pavel Sekatski2

1Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria

We consider fundamental limits on the detectable size of macroscopic quantum superpositions. We argue that a full quantum mechanical treatment of system plus measurement device is required, and that a (classical) reference frame for phase or direction needs to be established to certify the quantum state. When taking the size of such a classical reference frame into account, we show that to reliably distinguish a quantum superposition state from an incoherent mixture requires a measurement device that is quadratically bigger than the superposition state. Whereas for moderate system sizes such as generated in previous experiments this is not a stringent restriction, for macroscopic superpositions of the size of a cat the required effort quickly becomes intractable, requiring measurement devices of the size of the Earth. We illustrate our results using macroscopic superposition states of photons, spins, and position. Finally, we also show how this limitation can be circumvented by dealing with superpositions in relative degrees of freedom.

Recent years have seen attempts to observe quantum effects in larger and larger systems. But will it ever be possible to generate and observe a true macroscopic object in a superposition state, as envisioned by Schrödinger in his famous thought experiment? In this work we derive fundamental limitations for this challenging task. We find that, in many cases of interest, the certification of a superposition state becomes increasingly difficult with system size, as ever higher resolution of the measurement device is required.

Measurement devices are often treated within quantum mechanics as classical systems, with no intrinsic uncertainty, capable of resolving each degree of freedom with unlimited precision. Whereas this is a very good approximation when the measurement device is way larger than the quantum system of interest, it quickly becomes problematic when considering quantum superpositions of larger and larger size. Using the fundamental symmetries of physical laws only, we show that, in many relevant cases, the size of the measurement device has to be quadratically larger than the size of the macroscopic superposition in question in order for this to hold. Moreover, if this is not the case the superposition in question cannot be distinguished form a mere classical mixture. Within a simplified model, our result shows that in order to observe a cat in a superposition of facing the right way up or upside-down one requires a measurement device whose size is equal to the whole Earth.

► BibTeX data

► References

[1] J. S. Bell, Physics 1, 195 (1964).

[2] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[3] N. D. Mermin, Phys. Rev. D 22, 356 (1980).

[4] A. Peres, Quantum Theory:Concepts and Methods, 1st ed., Fundamental Theories of Physics, Vol. 57 (Springer Netherlands, 1995).

[5] J. Kofler and Č. Brukner, Phys. Rev. Lett. 99, 180403 (2007).

[6] P. Sekatski, N. Gisin, and N. Sangouard, Phys. Rev. Lett. 113, 090403 (2014a).

[7] P. Sekatski, N. Sangouard, and N. Gisin, Phys. Rev. A 89, 012116 (2014b).

[8] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).

[9] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Nature 448, 784 (2007).

[10] F. De Martini, F. Sciarrino, and C. Vitelli, Phys. Rev. Lett. 100, 253601 (2008).

[11] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science 342, 607 (2013).

[12] A. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, Nat. Phys. 9, 541 (2013).

[13] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, and M. Bellini, Nat. Phot. 8, 564 (2014).

[14] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature 413, 400 (2001).

[15] S. L. Christensen, J.-B. Béguin, E. Bookjans, H. L. Sørensen, J. H. Müller, J. Appel, and E. S. Polzik, Phys. Rev. A 89, 033801 (2014).

[16] A. Tiranov, J. Lavoie, P. C. Strassmann, N. Sangouard, M. Afzelius, F. Bussières, and N. Gisin, Phys. Rev. Lett. 116, 190502 (2016).

[17] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, and A. Zeilinger, Nature 401, 680 (1999).

[18] S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, et al., Nat. Phys. 3, 711 (2007).

[19] S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tüxen, Phys. Chem. Chem. Phys. 15, 14696 (2013).

[20] A. Peres and P. Scudo, in Quantum Theory: Reconsiderations of Foundations, Math. Modelling in Physics, Engineering and Cognitive Sciences, edited by A. Khrennikov (Växjö University Press, Växjö, Sweden, 2002) p. 283.

[21] F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N. Sangouard, arXiv preprint arXiv:1706.06173 (2017).

[22] A. J. Leggett, Prog.Theor. Phys. Supp. 69, 80 (1980).

[23] A. J. Leggett, J. Phys. Condens. Matter 14, R415 (2002).

[24] A. S. Holevo, J. Multivar. Anal. 3, 337 (1973).

[25] C. W. Helstrom, Quantum detection and estimation theory (Elsevier, 1976).

[26] J. Bae and L.-C. Kwek, J. Phys. A 48, 083001 (2015).

[27] H. Chernoff, Ann. Math. Stat. , 493 (1952).

[28] K. M. R. Audenaert, J. Calsamiglia, R. Muñoz Tapia, E. Bagan, L. Masanes, A. Acin, and F. Verstraete, Phys. Rev. Lett. 98, 160501 (2007).

[29] M. O. Scully and M. Suhail Zubairy, Quantum Optics (Cambridge University Press, 1997).

[30] E. Noether, English Reprint: physics/​0503066 , 57 (1918).

[31] G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952).

[32] E. P. Wigner, Z. Phys. 133, 101 (1952).

[33] H. Araki and M. M. Yanase, Phys. Rev. 120, 622 (1960).

[34] Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967).

[35] M. Ozawa, Phys. Rev. Lett. 88, 050402 (2002).

[36] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).

[37] J. Eisert, Phys. Rev. Lett. 92, 210401 (2004).

[38] S. Boixo, L. Viola, and G. Ortiz, EPL 79, 40003 (2007).

[39] W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett. 70, 1187 (1993).

[40] S. Yu, arXiv preprint arXiv:1302.5311 (2013).

[41] A. Messiah, Quantum Mechanics, two volumes (Dover Publications, New York, 1999).

[42] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).

[43] A. López Incera, P. Sekatski, and W. Dür, (in preparation).

[44] D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).

[45] J. Kofler and C. Brukner, arXiv preprint arXiv:1009.2654 (2010).

[46] E. Bagan, M. Baig, and R. Muñoz Tapia, Phys. Rev. A 70, 030301 (2004).

[47] G. Chiribella, G. M. D'Ariano, P. Perinotti, and M. F. Sacchi, Phys. Rev. Lett. 93, 180503 (2004a).

[48] G. Chiribella, G. M. D'Ariano, P. Perinotti, and M. F. Sacchi, Phys. Rev. A 70, 062105 (2004b).

[49] G. Chiribella, G. M. D'Ariano, and M. F. Sacchi, Phys. Rev. A 72, 042338 (2005).

[50] S. Sternberg, Group Theory and Physics (Cambridge University Press, 1994).

[51] J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 82, 4344 (1999).

► Cited by (beta)

Corssref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.