The classical-quantum divergence of complexity in modelling spin chains

Whei Yeap Suen1, Jayne Thompson1, Andrew J. P. Garner1, Vlatko Vedral1,2,3, and Mile Gu1,4,5

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
2Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
3Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543
4School of Mathematical and Physical Scieces, Nanyang Technological University, Singapore
5Complexity Institute, Nanyang Technological University, Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The minimal memory required to model a given stochastic process - known as the statistical complexity - is a widely adopted quantifier of structure in complexity science. Here, we ask if quantum mechanics can fundamentally change the qualitative behaviour of this measure. We study this question in the context of the classical Ising spin chain. In this system, the statistical complexity is known to grow monotonically with temperature. We evaluate the spin chain's quantum mechanical statistical complexity by explicitly constructing its provably simplest quantum model, and demonstrate that this measure exhibits drastically different behaviour: it rises to a maximum at some finite temperature then tends back towards zero for higher temperatures. This demonstrates how complexity, as captured by the amount of memory required to model a process, can exhibit radically different behaviour when quantum processing is allowed.

Can quantum information fundamentally change the way we perceive what is complex? Statistical complexity quantifies the minimal information we must store about a process to simulate its future behaviour using classical information processing. Here, we construct a quantum variant of this measure, which also allows for simulation using quantum mechanical systems. The resulting complexity measure – quantum statistical complexity – exhibits drastically different qualitative behaviour than its classical counterpart.

We apply this measure to the Ising spin chain – a series of magnetically interacting spins that can each be aligned in one of two directions. The classical statistical complexity of an Ising spin chain only ever increases with temperature. On the other hand, the quantum statistical complexity rises to a maximum at some finite temperature then tends back towards zero for higher temperatures. This difference in the qualitative behaviour of complexity measures shows us that when we also consider quantum perspectives, our conclusions about “What is complex?” may be drastically changed.

► BibTeX data

► References

[1] J. P. Crutchfield and K. Young, Physical Review Letters 63, 105 (1989).
https:/​/​doi.org/​10.1103/​PhysRevLett.63.105

[2] J. P. Crutchfield, Physica D: Nonlinear Phenomena 75, 11 (1994).
https:/​/​doi.org/​10.1016/​0167-2789(94)90273-9

[3] C. R. Shalizi and J. P. Crutchfield, Journal of statistical physics 104, 817 (2001).
https:/​/​doi.org/​10.1023/​A:1010388907793

[4] C. R. Shalizi et al., Ph.D. thesis, University of Wisconsin–Madison (2001).
https:/​/​search.library.wisc.edu/​catalog/​999926044802121

[5] C. R. Shalizi and K. L. Shalizi, in Proceedings of the 20th conference on Uncertainty in artificial intelligence (AUAI Press, 2004), pp. 504–511.

[6] D. Kelly, M. Dillingham, A. Hudson, and K. Wiesner, PloS one 7, e29703 (2012).
https:/​/​doi.org/​10.1371/​journal.pone.0029703

[7] N. Perry and P.-M. Binder, Physical Review E 60, 459 (1999).
https:/​/​doi.org/​10.1103/​PhysRevE.60.459

[8] J. E. Hanson and J. P. Crutchfield, Physica D: Nonlinear Phenomena 103, 169 (1997).
https:/​/​doi.org/​10.1016/​S0167-2789(96)00259-X

[9] W. Gonçalves, R. Pinto, J. Sartorelli, and M. De Oliveira, Physica A: Statistical Mechanics and its Applications 257, 385 (1998).
https:/​/​doi.org/​10.1016/​S0378-4371(98)00164-2

[10] P. Tino and M. Koteles, IEEE Transactions on Neural Networks 10, 284 (1999).
https:/​/​doi.org/​10.1109/​72.750555

[11] J. Crutchfield and D. Feldman, Physical Review E 55, 1239R (1997).
https:/​/​doi.org/​10.1103/​PhysRevE.55.R1239

[12] M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Nature communications 3, 762 (2012).
https:/​/​doi.org/​10.1038/​ncomms1761

[13] R. Tan, D. R. Terno, J. Thompson, V. Vedral, and M. Gu, The European Physical Journal Plus 129, 1 (2014).
https:/​/​doi.org/​10.1140/​epjp/​i2014-14191-2

[14] J. Mahoney, C. Aghamohammadi, and J. Crutchfield, Scientific Reports 6 (2016).
https:/​/​doi.org/​10.1038/​srep20495

[15] P. M. Riechers, J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield, Phys. Rev. A 93 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.93.052317

[16] M. S. Palsson, M. Gu, J. Ho, H. M. Wiseman, and G. J. Pryde, Science Advances, 3.2, e1601302 (2017).
https:/​/​doi.org/​10.1126/​sciadv.1601302

[17] D. P. Feldman, Ph.D. thesis, University of California, Davis (1998).

[18] J. M. Yeomans, Statistical mechanics of phase transitions (Clarendon Press, 1992).

[19] R. Jozsa and J. Schlienz, Physical Review A 62, 012301 (2000).
https:/​/​doi.org/​10.1103/​PhysRevA.62.012301

[20] E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Nature 440, 1007 (2006).
https:/​/​doi.org/​10.1038/​nature04701

[21] T. L. Hill, The Journal of Chemical Physics 30, 383 (1959).
https:/​/​doi.org/​10.1063/​1.1729961

[22] B. Simon and R. B. Griffiths, Communications in Mathematical Physics 33, 145 (1973).
https:/​/​doi.org/​10.1007/​BF01645626

[23] S. Torquato, Physical biology 8, 015017 (2011).
https:/​/​doi.org/​10.1088/​1478-3975/​8/​1/​015017

[24] C. R. Shalizi, K. L. Shalizi, and R. Haslinger, Physical review letters 93, 118701 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.93.118701

[25] J. P. Crutchfield, C. J. Ellison, R. G. James, and J. R. Mahoney, Chaos 30, 3 (2010).
https:/​/​doi.org/​10.1063/​1.3489888

[26] N. Barnett and J. P. Crutchfield, Journal of Statistical Physics 161, 404 (2015).
https:/​/​doi.org/​10.1007/​s10955-015-1327-5

[27] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).

[28] C. Aghamohammadi, J. R. Mahoney and J. P. Crutchfield, Physics Letters A 381, 1223–1227 (2017).
https:/​/​doi.org/​10.1016/​j.physleta.2016.12.036

[29] C. Aghamohammadi, J. R. Mahoney and J. P. Crutchfield, arXiv:1609.03650v2.
arXiv:1609.03650v2

[30] A. J. P. Garner, Q. Liu, J. Thompson, V. Vedral and M. Gu, arXiv:1609.04408.
arXiv:1609.04408

[31] T.J. Elliott, M. Gu, arXiv:1704.04231.
arXiv:1704.04231

[32] J. Thompson, A. J. P. Garner, V. Vedral and M. Gu, npj Quantum Information 3, 6 (2017).
https:/​/​doi.org/​10.1038/​s41534-016-0001-3

Cited by

[1] Thomas J. Elliott, Chengran Yang, Felix C. Binder, Andrew J. P. Garner, Jayne Thompson, and Mile Gu, "Extreme Dimensionality Reduction with Quantum Modeling", Physical Review Letters 125 26, 260501 (2020).

[2] Jayne Thompson, Andrew J. P. Garner, John R. Mahoney, James P. Crutchfield, Vlatko Vedral, and Mile Gu, "Causal Asymmetry in a Quantum World", Physical Review X 8 3, 031013 (2018).

[3] Andrew J P Garner, Qing Liu, Jayne Thompson, Vlatko Vedral, and mile Gu, "Provably unbounded memory advantage in stochastic simulation using quantum mechanics", New Journal of Physics 19 10, 103009 (2017).

[4] Felix C. Binder, Jayne Thompson, and Mile Gu, "Practical Unitary Simulator for Non-Markovian Complex Processes", Physical Review Letters 120 24, 240502 (2018).

[5] Qing Liu, Thomas J. Elliott, Felix C. Binder, Carlo Di Franco, and Mile Gu, "Optimal stochastic modeling with unitary quantum dynamics", Physical Review A 99 6, 062110 (2019).

[6] Chengran Yang, Felix C. Binder, Varun Narasimhachar, and Mile Gu, "Matrix Product States for Quantum Stochastic Modeling", Physical Review Letters 121 26, 260602 (2018).

[7] Thomas J. Elliott, Mile Gu, Andrew J. P. Garner, and Jayne Thompson, "Quantum Adaptive Agents with Efficient Long-Term Memories", Physical Review X 12 1, 011007 (2022).

[8] Andrew J. P. Garner, "The fundamental thermodynamic bounds on finite models", Chaos: An Interdisciplinary Journal of Nonlinear Science 31 6, 063131 (2021).

[9] Thomas J. Elliott and Mile Gu, "Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes", npj Quantum Information 4 1, 18 (2018).

[10] Thomas J Elliott, Andrew J P Garner, and Mile Gu, "Memory-efficient tracking of complex temporal and symbolic dynamics with quantum simulators", New Journal of Physics 21 1, 013021 (2019).

[11] Whei Yeap Suen, Thomas J. Elliott, Jayne Thompson, Andrew J. P. Garner, John R. Mahoney, Vlatko Vedral, and Mile Gu, "Surveying Structural Complexity in Quantum Many-Body Systems", Journal of Statistical Physics 187 1, 4 (2022).

[12] Farzad Ghafari, Nora Tischler, Jayne Thompson, Mile Gu, Lynden K. Shalm, Varun B. Verma, Sae Woo Nam, Raj B. Patel, Howard M. Wiseman, and Geoff J. Pryde, "Dimensional Quantum Memory Advantage in the Simulation of Stochastic Processes", Physical Review X 9 4, 041013 (2019).

[13] Matthew Ho, Mile Gu, and Thomas J. Elliott, "Robust inference of memory structure for efficient quantum modeling of stochastic processes", Physical Review A 101 3, 032327 (2020).

[14] Samuel P. Loomis and James P. Crutchfield, "Strong and Weak Optimizations in Classical and Quantum Models of Stochastic Processes", Journal of Statistical Physics 176 6, 1317 (2019).

[15] Kamil Korzekwa and Matteo Lostaglio, "Quantum Advantage in Simulating Stochastic Processes", Physical Review X 11 2, 021019 (2021).

[16] Matthew Ho, Andri Pradana, Thomas J. Elliott, Lock Yue Chew, and Mile Gu, "Quantum-inspired identification of complex cellular automata", The European Physical Journal Plus 138 6, 540 (2023).

[17] Jayne Thompson, Andrew J. P. Garner, Vlatko Vedral, and Mile Gu, "Using quantum theory to simplify input-output processes", npj Quantum Information 3, 6 (2017).

[18] Paul M. Riechers, John R. Mahoney, Cina Aghamohammadi, and James P. Crutchfield, "Minimized state complexity of quantum-encoded cryptic processes", Physical Review A 93 5, 052317 (2016).

[19] Cina Aghamohammadi, John R. Mahoney, and James P. Crutchfield, "The ambiguity of simplicity in quantum and classical simulation", Physics Letters A 381 14, 1223 (2017).

[20] Andrew J. P. Garner, Jayne Thompson, Vlatko Vedral, and Mile Gu, "Thermodynamics of complexity and pattern manipulation", Physical Review E 95 4, 042140 (2017).

[21] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield, "Extreme Quantum Advantage when Simulating Strongly Coupled Classical Systems", arXiv:1609.03650, (2016).

[22] Andrew J. P. Garner, Jayne Thompson, Vlatko Vedral, and Mile Gu, "Thermodynamics of complexity and pattern manipulation", arXiv:1510.00010, (2015).

[23] Cina Aghamohammadi, John R. Mahoney, and James P. Crutchfield, "The Ambiguity of Simplicity", arXiv:1602.08646, (2016).

The above citations are from Crossref's cited-by service (last updated successfully 2023-09-21 22:40:51) and SAO/NASA ADS (last updated successfully 2023-09-21 22:40:52). The list may be incomplete as not all publishers provide suitable and complete citation data.