Entanglement and squeezing in continuous-variable systems

Manuel Gessner, Luca Pezzè, and Augusto Smerzi

QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy

We introduce a multi-mode squeezing coefficient to characterize entanglement in $N$-partite continuous-variable systems. The coefficient relates to the squeezing of collective observables in the $2N$-dimensional phase space and can be readily extracted from the covariance matrix. Simple extensions further permit to reveal entanglement within specific partitions of a multipartite system. Applications with nonlinear observables allow for the detection of non-Gaussian entanglement.

Quantum mechanical squeezing shrinks the variance of one observable at the expense of another, and can thereby reduce the quantum noise in a measurement. In collective spin systems, it is possible to quantify the degree of squeezing and relate it to entanglement using spin-squeezing coefficients. Similar tools have so far been unavailable for continuous-variable systems, due to the unbounded Hilbert space. In this article, we introduce a bosonic squeezing coefficient that identifies multimode continuous-variable squeezing. Using this coefficient, we can show that multimode squeezing indeed implies mode entanglement. The coefficient can be obtained directly from the covariance matrix, which is accessible in many experiments.

► BibTeX data

► References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, NY, 2000).

[2] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Non-classical states of atomic ensembles: fundamentals and applications in quantum metrology, arXiv:1609.01609 [quant-ph] (2016).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[4] F. Mintert, A. R. Carvalho, M. Kuś, and A. Buchleitner, Phys. Rep. 415, 207 (2005).

[5] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

[6] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).

[7] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).

[8] A. Sørensen, L. M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63 (2001).

[9] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431 (2001).

[10] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. A 79, 042334 (2009).

[11] J. Ma, X. Wang, C. Sun, and F. Nori, Phys. Rep. 509, 89 (2011).

[12] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. Lett. 99, 250405 (2007).

[13] G. Vitagliano, P. Hyllus, I. L. Egusquiza, and G. Tóth, Phys. Rev. Lett. 107, 240502 (2011).

[14] P. Hyllus, L. Pezzé, A. Smerzi, and G. Tóth, Phys. Rev. A 86, 012337 (2012).

[15] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, and N. Sangouard, Science 352, 441 (2016).

[16] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. A 95, 032326 (2017).

[17] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat. Photon. 7, 982 (2013).

[18] M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett. 112, 120505 (2014).

[19] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, Nat. Photon. 8, 109 (2014).

[20] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, and M. K. Oberthaler, Nature 480, 219 (2011).

[21] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and M. S. Chapman, Nat. Phys. 8, 305 (2012).

[22] J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzé, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, Nat. Commun. 6, 8984 (2015).

[23] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

[24] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

[25] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A 67, 022320 (2003).

[26] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

[27] G. Adesso and F. Illuminati, J. Phys. A 40, 7821 (2007).

[28] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).

[29] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).

[30] L. Pezzè, Y. Li, W. Li, and A. Smerzi, Proc. Natl. Acad. Sci. 113, 11459 (2016).

[31] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. A 94, 020101(R) (2016).

[32] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).

[33] M. G. Paris, Intl. J. Quant. Inf. 7, 125 (2009).

[34] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011).

[35] L. Pezzé and A. Smerzi, in Atom Interferometry, Proceedings of the International School of Physics "Enrico Fermi", Course 188, Varenna, edited by G. Tino and M. Kasevich (IOS Press, Amsterdam, Netherlands, 2014).

[36] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezzè, A. Smerzi, and M. K. Oberthaler, Science 345, 424 (2014).

[37] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 (2016).

[38] P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003).

[39] A. A. Valido, F. Levi, and F. Mintert, Phys. Rev. A 90, 052321 (2014).

[40] R. Y. Teh and M. D. Reid, Phys. Rev. A 90, 062337 (2014).

[41] E. Shchukin and P. van Loock, Phys. Rev. A 92, 042328 (2015).

[42] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, Phys. Rev. Lett. 114, 050501 (2015).

[43] R. F. Werner and M. M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).

[44] W. Heisenberg, Z. Phys. 43, 172 (1927).

[45] H. P. Robertson, Phys. Rev. 34, 163 (1929).

[46] S. P. Walborn, B. G. Taketani, A. Salles, F. Toscano, and R. L. de Matos Filho, Phys. Rev. Lett. 103, 160505 (2009).

[47] Y. Huang, IEEE Trans. Inf. Theo. 59, 6774 (2013).

[48] E. Shchukin and P. van Loock, Phys. Rev. Lett. 117, 140504 (2016).

[49] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian states in continuous variable quantum information (Bibliopolis, Napoli, 2005).

[50] T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, Phys. Rev. Lett. 91, 080404 (2003).

[51] M. Seevinck and J. Uffink, Phys. Rev. A 65, 012107 (2001).

[52] R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, Phys. Rev. A 89, 053828 (2014).

[53] G. Ferrini, J. Roslund, F. Arzani, Y. Cai, C. Fabre, and N. Treps, Phys. Rev. A 91, 032314 (2015).

[54] W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, Nature 462, 74 (2009).

[55] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature 467, 68 (2010).

[56] C. F. Roos, T. Monz, K. Kim, M. Riebe, H. Häffner, D. F. V. James, and R. Blatt, Phys. Rev. A 77, 040302 (2008).

[57] A. Abdelrahman, O. Khosravani, M. Gessner, H.-P. Breuer, A. Buchleitner, D. J. Gorman, R. Masuda, T. Pruttivarasin, M. Ramm, P. Schindler, and H. Häffner, Nat. Commun. 8, 15712 (2017).

[58] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, and M. Bellini, Nat. Photon. 8, 564 (2014).

[59] O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, Nat. Photon. 8, 570 (2014).

► Cited by (beta)

[1] Philipp Kunkel, Maximilian Prüfer, Helmut Strobel, Daniel Linnemann, Anika Frölian, Thomas Gasenzer, Martin Gärttner, Markus K. Oberthaler, "Spatially distributed multipartite entanglement enables EPR steering of atomic clouds", Science 360, 413 (2018).

[2] Manuel Gessner, Augusto Smerzi, "Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed", Physical Review A 97, 022109 (2018).

[3] Manuel Gessner, Luca Pezzè, Augusto Smerzi, "Sensitivity Bounds for Multiparameter Quantum Metrology", Physical Review Letters 121, 130503 (2018).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)