Entanglement and squeezing in continuous-variable systems

Manuel Gessner, Luca Pezzè, and Augusto Smerzi

QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We introduce a multi-mode squeezing coefficient to characterize entanglement in $N$-partite continuous-variable systems. The coefficient relates to the squeezing of collective observables in the $2N$-dimensional phase space and can be readily extracted from the covariance matrix. Simple extensions further permit to reveal entanglement within specific partitions of a multipartite system. Applications with nonlinear observables allow for the detection of non-Gaussian entanglement.

Quantum mechanical squeezing shrinks the variance of one observable at the expense of another, and can thereby reduce the quantum noise in a measurement. In collective spin systems, it is possible to quantify the degree of squeezing and relate it to entanglement using spin-squeezing coefficients. Similar tools have so far been unavailable for continuous-variable systems, due to the unbounded Hilbert space. In this article, we introduce a bosonic squeezing coefficient that identifies multimode continuous-variable squeezing. Using this coefficient, we can show that multimode squeezing indeed implies mode entanglement. The coefficient can be obtained directly from the covariance matrix, which is accessible in many experiments.

► BibTeX data

► References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, NY, 2000).

[2] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Non-classical states of atomic ensembles: fundamentals and applications in quantum metrology, arXiv:1609.01609 [quant-ph] (2016).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[4] F. Mintert, A. R. Carvalho, M. Kuś, and A. Buchleitner, Phys. Rep. 415, 207 (2005).

[5] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

[6] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).

[7] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).

[8] A. Sørensen, L. M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63 (2001).

[9] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431 (2001).

[10] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. A 79, 042334 (2009).

[11] J. Ma, X. Wang, C. Sun, and F. Nori, Phys. Rep. 509, 89 (2011).

[12] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. Lett. 99, 250405 (2007).

[13] G. Vitagliano, P. Hyllus, I. L. Egusquiza, and G. Tóth, Phys. Rev. Lett. 107, 240502 (2011).

[14] P. Hyllus, L. Pezzé, A. Smerzi, and G. Tóth, Phys. Rev. A 86, 012337 (2012).

[15] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, and N. Sangouard, Science 352, 441 (2016).

[16] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. A 95, 032326 (2017).

[17] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat. Photon. 7, 982 (2013).

[18] M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett. 112, 120505 (2014).

[19] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, Nat. Photon. 8, 109 (2014).

[20] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, and M. K. Oberthaler, Nature 480, 219 (2011).

[21] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and M. S. Chapman, Nat. Phys. 8, 305 (2012).

[22] J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzé, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, Nat. Commun. 6, 8984 (2015).

[23] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

[24] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

[25] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A 67, 022320 (2003).

[26] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

[27] G. Adesso and F. Illuminati, J. Phys. A 40, 7821 (2007).

[28] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).

[29] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).

[30] L. Pezzè, Y. Li, W. Li, and A. Smerzi, Proc. Natl. Acad. Sci. 113, 11459 (2016).

[31] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. A 94, 020101(R) (2016).

[32] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).

[33] M. G. Paris, Intl. J. Quant. Inf. 7, 125 (2009).

[34] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011).

[35] L. Pezzé and A. Smerzi, in Atom Interferometry, Proceedings of the International School of Physics "Enrico Fermi", Course 188, Varenna, edited by G. Tino and M. Kasevich (IOS Press, Amsterdam, Netherlands, 2014).

[36] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezzè, A. Smerzi, and M. K. Oberthaler, Science 345, 424 (2014).

[37] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 (2016).

[38] P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003).

[39] A. A. Valido, F. Levi, and F. Mintert, Phys. Rev. A 90, 052321 (2014).

[40] R. Y. Teh and M. D. Reid, Phys. Rev. A 90, 062337 (2014).

[41] E. Shchukin and P. van Loock, Phys. Rev. A 92, 042328 (2015).

[42] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, Phys. Rev. Lett. 114, 050501 (2015).

[43] R. F. Werner and M. M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).

[44] W. Heisenberg, Z. Phys. 43, 172 (1927).

[45] H. P. Robertson, Phys. Rev. 34, 163 (1929).

[46] S. P. Walborn, B. G. Taketani, A. Salles, F. Toscano, and R. L. de Matos Filho, Phys. Rev. Lett. 103, 160505 (2009).

[47] Y. Huang, IEEE Trans. Inf. Theo. 59, 6774 (2013).

[48] E. Shchukin and P. van Loock, Phys. Rev. Lett. 117, 140504 (2016).

[49] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian states in continuous variable quantum information (Bibliopolis, Napoli, 2005).

[50] T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, Phys. Rev. Lett. 91, 080404 (2003).

[51] M. Seevinck and J. Uffink, Phys. Rev. A 65, 012107 (2001).

[52] R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, Phys. Rev. A 89, 053828 (2014).

[53] G. Ferrini, J. Roslund, F. Arzani, Y. Cai, C. Fabre, and N. Treps, Phys. Rev. A 91, 032314 (2015).

[54] W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, Nature 462, 74 (2009).

[55] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Nature 467, 68 (2010).

[56] C. F. Roos, T. Monz, K. Kim, M. Riebe, H. Häffner, D. F. V. James, and R. Blatt, Phys. Rev. A 77, 040302 (2008).

[57] A. Abdelrahman, O. Khosravani, M. Gessner, H.-P. Breuer, A. Buchleitner, D. J. Gorman, R. Masuda, T. Pruttivarasin, M. Ramm, P. Schindler, and H. Häffner, Nat. Commun. 8, 15712 (2017).

[58] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, and M. Bellini, Nat. Photon. 8, 564 (2014).

[59] O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, Nat. Photon. 8, 570 (2014).

Cited by

[1] Luca Lepori, Andrea Trombettoni, Domenico Giuliano, Johannes Kombe, Jorge Yago Malo, Andrew J Daley, Augusto Smerzi, and Maria Luisa Chiofalo, "Can multipartite entanglement be characterized by two-point connected correlation functions?", Journal of Physics A: Mathematical and Theoretical 56 30, 305302 (2023).

[2] Manuel Gessner, Augusto Smerzi, and Luca Pezzè, "Metrological Nonlinear Squeezing Parameter", Physical Review Letters 122 9, 090503 (2019).

[3] Philipp Kunkel, Maximilian Prüfer, Helmut Strobel, Daniel Linnemann, Anika Frölian, Thomas Gasenzer, Martin Gärttner, and Markus K. Oberthaler, "Spatially distributed multipartite entanglement enables EPR steering of atomic clouds", Science 360 6387, 413 (2018).

[4] Matteo Fadel, Quantum Science and Technology 57 (2021) ISBN:978-3-030-85471-3.

[5] Mattia Walschaers, "Non-Gaussian Quantum States and Where to Find Them", PRX Quantum 2 3, 030204 (2021).

[6] Martin Gärttner, Tobias Haas, and Johannes Noll, "Detecting continuous-variable entanglement in phase space with the Q distribution", Physical Review A 108 4, 042410 (2023).

[7] Matteo Fadel and Manuel Gessner, "Entanglement of Local Hidden States", Quantum 6, 651 (2022).

[8] Martin Gärttner, Tobias Haas, and Johannes Noll, "General Class of Continuous Variable Entanglement Criteria", Physical Review Letters 131 15, 150201 (2023).

[9] Manuel Gessner, Luca Pezzè, and Augusto Smerzi, "Sensitivity Bounds for Multiparameter Quantum Metrology", Physical Review Letters 121 13, 130503 (2018).

[10] Matteo Fadel and Manuel Gessner, "Relating spin squeezing to multipartite entanglement criteria for particles and modes", Physical Review A 102 1, 012412 (2020).

[11] Manuel Gessner, Augusto Smerzi, and Luca Pezzè, "Multiparameter squeezing for optimal quantum enhancements in sensor networks", Nature Communications 11 1, 3817 (2020).

[12] Zhongzhong Qin, Manuel Gessner, Zhihong Ren, Xiaowei Deng, Dongmei Han, Weidong Li, Xiaolong Su, Augusto Smerzi, and Kunchi Peng, "Characterizing the multipartite continuous-variable entanglement structure from squeezing coefficients and the Fisher information", npj Quantum Information 5 1, 3 (2019).

[13] Zhi-Hong Ren, Yan Li, Yan-Na Li, and Wei-Dong Li, "Development on quantum metrology with quantum Fisher information", Acta Physica Sinica 68 4, 040601 (2019).

[14] Manuel Gessner and Augusto Smerzi, "Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed", Physical Review A 97 2, 022109 (2018).

[15] Zhihong Ren, Weidong Li, Augusto Smerzi, and Manuel Gessner, "Metrological Detection of Multipartite Entanglement from Young Diagrams", Physical Review Letters 126 8, 080502 (2021).

[16] Mingsheng Tian, Yu Xiang, Feng-Xiao Sun, Matteo Fadel, and Qiongyi He, "Characterizing Multipartite non-Gaussian Entanglement for a Three-Mode Spontaneous Parametric Down-Conversion Process", Physical Review Applied 18 2, 024065 (2022).

[17] Manuel Gessner, "Enhancement of the metrological sensitivity limit through knowledge of the average energy", Physical Review A 100 3, 032114 (2019).

[18] Gardo Blado, Francisco Herrera, and Joshuah Erwin, "Entanglement and the generalized uncertainty principle", Physics Essays 31 4, 397 (2018).

[19] Manuel Gessner, Luca Pezzè, and Augusto Smerzi, "Resolution-enhanced entanglement detection", Physical Review A 95 3, 032326 (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-17 23:40:36) and SAO/NASA ADS (last updated successfully 2024-06-17 23:40:36). The list may be incomplete as not all publishers provide suitable and complete citation data.