Achieving quantum supremacy with sparse and noisy commuting quantum computations

Michael J. Bremner1, Ashley Montanaro2, and Dan J. Shepherd3

1Centre for Quantum Computation and Communication Technology, Centre for Quantum Software and Information, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
2School of Mathematics, University of Bristol, UK
33NCSC, Hubble Road, Cheltenham, UK

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The class of commuting quantum circuits known as IQP (instantaneous quantum polynomial-time) has been shown to be hard to simulate classically, assuming certain complexity-theoretic conjectures. Here we study the power of IQP circuits in the presence of physically motivated constraints. First, we show that there is a family of sparse IQP circuits that can be implemented on a square lattice of n qubits in depth O(sqrt(n) log n), and which is likely hard to simulate classically. Next, we show that, if an arbitrarily small constant amount of noise is applied to each qubit at the end of any IQP circuit whose output probability distribution is sufficiently anticoncentrated, there is a polynomial-time classical algorithm that simulates sampling from the resulting distribution, up to constant accuracy in total variation distance. However, we show that purely classical error-correction techniques can be used to design IQP circuits which remain hard to simulate classically, even in the presence of arbitrary amounts of noise of this form. These results demonstrate the challenges faced by experiments designed to demonstrate quantum supremacy over classical computation, and how these challenges can be overcome.

► BibTeX data

► References

[1] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of Computing, 9 (4): 143–252, 2013. arXiv:1011.3245.
https:/​/​doi.org/​10.1145/​1993636.1993682
arXiv:1011.3245

[2] N. Alon, A. Frieze, and D. Welsh. Polynomial time randomized approximation schemes for the Tutte polynomial of dense graphs. In Proc. 35th Annual Symp. Foundations of Computer Science, 1994, page 24.
https:/​/​doi.org/​10.1109/​SFCS.1994.365708

[3] A. Arkhipov. BosonSampling is robust to small errors in the network matrix. Phys. Rev. A, 92: 062326, 2015. arXiv:1412.2516.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062326
arXiv:1412.2516

[4] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of Computer and System Sciences, 58: 193–210, 1999.
https:/​/​doi.org/​10.1145/​225058.225140

[5] R. Beals, S. Brierley, O. Gray, A. Harrow, S. Kutin, N. Linden, D. Shepherd, and M. Stather. Efficient distributed quantum computing. Proc. Roy. Soc. A, 469: 20120686, 2013. arXiv:1207.2307.
https:/​/​doi.org/​10.1098/​rspa.2012.0686
arXiv:1207.2307

[6] J. Bermejo-Vega, D. Hangleiter, M. Schwarz, R. Raussendorf, and J. Eisert. Architectures for quantum simulation showing quantum supremacy, 2017. arXiv:1703.00466.
arXiv:1703.00466

[7] S. Boixo, S. Isakov, V. Smelyanskiy, R. Babbush, N. Ding, Z. Jian, J. Martinis, and H. Neven. Characterizing quantum supremacy in near-term devices, 2016. arXiv:1608.00263.
arXiv:1608.00263

[8] B. Bollobás. The distribution of the maximum degree of a random graph. Discrete Mathematics, 32: 201–203, 1980.
https:/​/​doi.org/​10.1016/​0012-365X(80)90054-0

[9] C. Brand, H. Dell, and M. Roth. Fine-grained dichotomies for the Tutte plane and Boolean #CSP, 2016. arXiv:1606.06581.
arXiv:1606.06581

[10] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. Ser. A, 467 (2126): 459–472, 2011. arXiv:1005.1407.
https:/​/​doi.org/​10.1098/​rspa.2010.0301
arXiv:1005.1407

[11] M. Bremner, A. Montanaro, and D. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett., 117: 080501, 2016. arXiv:1504.07999.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.080501
arXiv:1504.07999

[12] W. Brown and O. Fawzi. Scrambling speed of random quantum circuits, 2012. arXiv:1210.6644.
arXiv:1210.6644

[13] W. Brown and O. Fawzi. Decoupling with random quantum circuits. Comm. Math. Phys., 340 (3): 867–900, 2015. arXiv:1307.0632.
https:/​/​doi.org/​10.1007/​s00220-015-2470-1
arXiv:1307.0632

[14] H. Buhrman, R. Cleve, M. Laurent, N. Linden, A. Schrijver, and F. Unger. New limits on fault-tolerant quantum computation. In Proc. 47th Annual Symp. Foundations of Computer Science, 2006, pages 411–419. quant-ph/​0604141.
https:/​/​doi.org/​10.1109/​FOCS.2006.50
arXiv:quant-ph/0604141

[15] R. Curticapean. Block interpolation: A framework for tight exponential-time counting complexity. In Proc. 42nd International Conference on Automata, Languages and Programming (ICALP'15), 2015, pages 380–392. arXiv:1511.02910.
https:/​/​doi.org/​10.1007/​978-3-662-47672-7_31
arXiv:1511.02910

[16] R. Diestel. Graph Theory. Springer, 2010.

[17] D. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, 2009.

[18] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm, 2014. arXiv:1411.4028.
arXiv:1411.4028

[19] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem, 2014. arXiv:1412.6062.
arXiv:1412.6062

[20] E. Farhi and A. Harrow. Quantum supremacy through the Quantum Approximate Optimization Algorithm, 2016. arXiv:1602.07674.
arXiv:1602.07674

[21] K. Fujii and S. Tamate. Computational quantum-classical boundary of noisy commuting quantum circuits. Scientific Reports, 6: 25598, 2016. arXiv:1406.6932.
https:/​/​doi.org/​10.1038/​srep25598
arXiv:1406.6932

[22] X. Gao, S.-T. Wang, and L.-M. Duan. Quantum supremacy for simulating a translation-invariant Ising spin model. Phys. Rev. Lett., 118: 040502, 2017. arXiv:1607.04947.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.040502
arXiv:1607.04947

[23] D. Hangleiter, M. Kliesch, M. Schwarz, and J. Eisert. Direct certification of a class of quantum simulations. Quantum Science and Technology, 1 (2), 2017. arXiv:1602.00703.
https:/​/​doi.org/​10.1088/​2058-9565/​2/​1/​015004
arXiv:1602.00703

[24] G. Kalai. The quantum computer puzzle. Notices of the AMS, 63 (5): 508–516, 2016. arXiv:1605.00992.
https:/​/​doi.org/​10.1090/​noti1380
arXiv:1605.00992

[25] G. Kalai and G. Kindler. Gaussian noise sensitivity and BosonSampling, 2014. arXiv:1409.3093.
arXiv:1409.3093

[26] J. Kempe, O. Regev, F. Unger, and R. de Wolf. Upper bounds on the noise threshold for fault-tolerant quantum computing. In Proc. 35th International Conference on Automata, Languages and Programming (ICALP'08), 2008, pages 845–856. arXiv:0802.1464.
https:/​/​doi.org/​10.1007/​978-3-540-70575-8_69
arXiv:0802.1464

[27] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. In Proc. 23rd Annual ACM Symp. Theory of Computing, 1991, pages 455–464.
https:/​/​doi.org/​10.1137/​0222080

[28] A. Leverrier and R. García-Patrón. Analysis of circuit imperfections in BosonSampling. Quantum Inf. Comput., 15: 0489–0512, 2015. arXiv:1309.4687.
arXiv:1309.4687

[29] I. Markov and Y. Shi. Simulating quantum computation by contracting tensor networks. SIAM J. Comput., 38: 963–981, 2008. quant-ph/​0511069.
https:/​/​doi.org/​10.1137/​050644756
arXiv:quant-ph/0511069

[30] M. Marvian and D. Lidar. Error suppression for Hamiltonian-based quantum computation using subsystem codes, 2016. arXiv:1606.03795.
arXiv:1606.03795

[31] T. Morimae, K. Fujii, and J. Fitzsimons. On the hardness of classically simulating the one-clean-qubit model. Phys. Rev. Lett., 112: 130502, 2014. arXiv:1312.2496.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.130502
arXiv:1312.2496

[32] R. O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[33] J. Preskill. Quantum computing and the entanglement frontier, 2012. arXiv:1203.5813.
arXiv:1203.5813

[34] S. Rahimi-Keshari, T. Ralph, and C. Caves. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X, 6: 021039, 2016. arXiv:1511.06526.
https:/​/​doi.org/​10.1103/​PhysRevX.6.021039
arXiv:1511.06526

[35] A. Razborov. An upper bound on the threshold quantum decoherence rate. Quantum Inf. Comput., 4 (3): 222–228, 2004. quant-ph/​0310136.
arXiv:quant-ph/0310136

[36] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, 2008.

[37] C. Schnorr and A. Shamir. An optimal sorting algorithm for mesh connected computers. In Proc. 18th Annual ACM Symp. Theory of Computing, 1986, pages 255–263.
https:/​/​doi.org/​10.1145/​12130.12156

[38] M. Schwarz and M. Van den Nest. Simulating quantum circuits with sparse output distributions, 2013. arXiv:1310.6749.
arXiv:1310.6749

[39] V. Shchesnovich. Tight bound on trace distance between a realistic device with partially indistinguishable bosons and the ideal BosonSampling. Phys. Rev. A, 91: 063842, 2015. arXiv:1501.00850.
https:/​/​doi.org/​10.1103/​PhysRevA.91.063842
arXiv:1501.00850

[40] D. Shepherd. Binary matroids and quantum probability distributions, 2010. arXiv:1005.1744.
arXiv:1005.1744

[41] D. Shepherd and M. J. Bremner. Temporally unstructured quantum computation. Proc. Roy. Soc. Ser. A, 465 (2105): 1413–1439, 2009. arXiv:0809.0847.
https:/​/​doi.org/​10.1098/​rspa.2008.0443
arXiv:0809.0847

[42] D. R. Simon. On the power of quantum computation. SIAM J. Comput., 26: 1474–1483, 1997.
https:/​/​doi.org/​10.1137/​S0097539796298637

[43] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20 (5): 865–877, 1991.
https:/​/​doi.org/​10.1137/​0220053

[44] S. Virmani, S. Huelga, and M. Plenio. Classical simulability, entanglement breaking, and quantum computation thresholds. Phys. Rev. A, 71: 042328, 2005. quant-ph/​0408076.
https:/​/​doi.org/​10.1103/​PhysRevA.71.042328
arXiv:quant-ph/0408076

Cited by

[1] Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rieffel, Rupak Biswas, and Salvatore Mandrà, "A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware", npj Quantum Information 5 1, 86 (2019).

[2] Jonathan Olson, "The role of complexity theory in quantum optics—a tutorial for BosonSampling", Journal of Optics 20 12, 123501 (2018).

[3] Dominik Hangleiter, Martin Kliesch, Jens Eisert, and Christian Gogolin, "Sample Complexity of Device-Independently Certified “Quantum Supremacy”", Physical Review Letters 122 21, 210502 (2019).

[4] Alexandra E. Moylett and Peter S. Turner, "Quantum simulation of partially distinguishable boson sampling", Physical Review A 97 6, 062329 (2018).

[5] Hakop Pashayan, Stephen D. Bartlett, and David Gross, "From estimation of quantum probabilities to simulation of quantum circuits", Quantum 4, 223 (2020).

[6] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani, "On the complexity and verification of quantum random circuit sampling", Nature Physics 15 2, 159 (2019).

[7] Juan Miguel Arrazola, Eleni Diamanti, and Iordanis Kerenidis, "Quantum superiority for verifying NP-complete problems with linear optics", npj Quantum Information 4 1, 56 (2018).

[8] Tameem Albash, Victor Martin-Mayor, and Itay Hen, "Temperature Scaling Law for Quantum Annealing Optimizers", Physical Review Letters 119 11, 110502 (2017).

[9] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for classically simulating noisy networked quantum architectures", Quantum Science and Technology 5 1, 014001 (2019).

[10] Kaifeng Bu and Dax Enshan Koh, "Efficient Classical Simulation of Clifford Circuits with Nonstabilizer Input States", Physical Review Letters 123 17, 170502 (2019).

[11] Laszlo Gyongyosi and Sandor Imre, "A Survey on quantum computing technology", Computer Science Review 31, 51 (2019).

[12] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller, "Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models", Physical Review Letters 120 5, 050406 (2018).

[13] Juan Bermejo-Vega, Dominik Hangleiter, Martin Schwarz, Robert Raussendorf, and Jens Eisert, "Architectures for Quantum Simulation Showing a Quantum Speedup", Physical Review X 8 2, 021010 (2018).

[14] Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor Rieffel, Davide Venturelli, and Rupak Biswas, "From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz", Algorithms 12 2, 34 (2019).

[15] Jacob Miller, Stephen Sanders, and Akimasa Miyake, "Quantum supremacy in constant-time measurement-based computation: A unified architecture for sampling and verification", Physical Review A 96 6, 062320 (2017).

[16] Iris Agresti, Niko Viggianiello, Fulvio Flamini, Nicolò Spagnolo, Andrea Crespi, Roberto Osellame, Nathan Wiebe, and Fabio Sciarrino, "Pattern Recognition Techniques for Boson Sampling Validation", Physical Review X 9 1, 011013 (2019).

[17] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).

[18] Mithuna Yoganathan, Richard Jozsa, and Sergii Strelchuk, "Quantum advantage of unitary Clifford circuits with magic state inputs", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 2225, 20180427 (2019).

[19] A. P. Lund, Michael J. Bremner, and T. C. Ralph, "Quantum sampling problems, BosonSampling and quantum supremacy", npj Quantum Information 3 1, 15 (2017).

[20] Daniel Mills, Anna Pappa, Theodoros Kapourniotis, and Elham Kashefi, "Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract)", Electronic Proceedings in Theoretical Computer Science 266, 209 (2018).

[21] Sergey Bravyi, David Gosset, and Robert König, "Quantum advantage with shallow circuits", Science 362 6412, 308 (2018).

[22] Aram W. Harrow and Ashley Montanaro, "Quantum computational supremacy", Nature 549 7671, 203 (2017).

[23] Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate, and Seiichiro Tani, "Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error", Physical Review Letters 120 20, 200502 (2018).

[24] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[25] Yosi Atia and Dorit Aharonov, "Fast-forwarding of Hamiltonians and exponentially precise measurements", Nature Communications 8 1, 1572 (2017).

[26] Man-Hong Yung, Xun Gao, and Joonsuk Huh, " Universal bound on sampling bosons in linear optics and its computational implications", National Science Review 6 4, 719 (2019).

[27] Alex Neville, Chris Sparrow, Raphaël Clifford, Eric Johnston, Patrick M. Birchall, Ashley Montanaro, and Anthony Laing, "Classical boson sampling algorithms with superior performance to near-term experiments", Nature Physics 13 12, 1153 (2017).

[28] Bartłomiej Gardas and Sebastian Deffner, "Quantum fluctuation theorem for error diagnostics in quantum annealers", Scientific Reports 8 1, 17191 (2018).

[29] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", Nature 567 7747, 209 (2019).

[30] Theodoros Kapourniotis and Animesh Datta, "Nonadaptive fault-tolerant verification of quantum supremacy with noise", Quantum 3, 164 (2019).

[31] Niraj Kumar, Iordanis Kerenidis, and Eleni Diamanti, "Experimental demonstration of quantum advantage for one-way communication complexity surpassing best-known classical protocol", Nature Communications 10 1, 4152 (2019).

[32] Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and Salvatore Mandrà, "Establishing the quantum supremacy frontier with a 281 Pflop/s simulation", Quantum Science and Technology 5 3, 034003 (2020).

[33] Vedran Dunjko and Hans J Briegel, "Machine learning & artificial intelligence in the quantum domain: a review of recent progress", Reports on Progress in Physics 81 7, 074001 (2018).

[34] Mariami Gachechiladze, Otfried Gühne, and Akimasa Miyake, "Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states", Physical Review A 99 5, 052304 (2019).

[35] Tameem Albash, Victor Martin-Mayor, and Itay Hen, "Analog errors in Ising machines", Quantum Science and Technology 4 2, 02LT03 (2019).

[36] Alexandra Nagy and Vincenzo Savona, "Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems", Physical Review Letters 122 25, 250501 (2019).

[37] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis, "A blueprint for demonstrating quantum supremacy with superconducting qubits", Science 360 6385, 195 (2018).

[38] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven, "Characterizing quantum supremacy in near-term devices", arXiv:1608.00263, Nature Physics 14 6, 595 (2018).

[39] Jacob D. Biamonte, Mauro E. S. Morales, and Dax Enshan Koh, "Entanglement scaling in quantum advantage benchmarks", Physical Review A 101 1, 012349 (2020).

[40] Man-Hong Yung, "Quantum supremacy: some fundamental concepts", National Science Review 6 1, 22 (2019).

[41] Dominik Hangleiter, Juan Bermejo-Vega, Martin Schwarz, and Jens Eisert, "Anticoncentration theorems for schemes showing a quantum speedup", Quantum 2, 65 (2018).

[42] Xun Gao, Sheng-Tao Wang, and L. -M. Duan, "Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model", Physical Review Letters 118 4, 040502 (2017).

[43] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank, "Compiling quantum circuits to realistic hardware architectures using temporal planners", Quantum Science and Technology 3 2, 025004 (2018).

[44] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, and Hartmut Neven, "Simulation of low-depth quantum circuits as complex undirected graphical models", arXiv:1712.05384.

[45] Scott Aaronson and Lijie Chen, "Complexity-Theoretic Foundations of Quantum Supremacy Experiments", arXiv:1612.05903.

[46] Sergio Boixo, Vadim N. Smelyanskiy, and Hartmut Neven, "Fourier analysis of sampling from noisy chaotic quantum circuits", arXiv:1708.01875.

[47] Aram Harrow and Saeed Mehraban, "Approximate unitary $t$-designs by short random quantum circuits using nearest-neighbor and long-range gates", arXiv:1809.06957.

[48] Keisuke Fujii, "Noise Threshold of Quantum Supremacy", arXiv:1610.03632.

[49] Kyle E. C. Booth, Minh Do, J. Christopher Beck, Eleanor Rieffel, Davide Venturelli, and Jeremy Frank, "Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation", arXiv:1803.06775.

[50] Alex Neville, Chris Sparrow, Raphaël Clifford, Eric Johnston, Patrick M. Birchall, Ashley Montanaro, and Anthony Laing, "No imminent quantum supremacy by boson sampling", arXiv:1705.00686.

[51] Rawad Mezher, Joe Ghalbouni, Joseph Dgheim, and Damian Markham, "Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup", arXiv:1905.01504.

[52] Tomoyuki Morimae, Keisuke Fujii, and Harumichi Nishimura, "Power of one nonclean qubit", Physical Review A 95 4, 042336 (2017).

[53] Man-Hong Yung and Xun Gao, "Can Chaotic Quantum Circuits Maintain Quantum Supremacy under Noise?", arXiv:1706.08913.

[54] Ramis Movassagh, "Cayley path and quantum computational supremacy: A proof of average-case $\#P-$hardness of Random Circuit Sampling with quantified robustness", arXiv:1909.06210.

[55] Daniel Mills, Anna Pappa, Theodoros Kapourniotis, and Elham Kashefi, "Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation", arXiv:1704.01998.

[56] Dax Enshan Koh, "Further extensions of Clifford circuits and their classical simulation complexities", arXiv:1512.07892.

[57] Laura Clinton, Johannes Bausch, and Toby Cubitt, "Hamiltonian Simulation Algorithms for Near-Term Quantum Hardware", arXiv:2003.06886.

[58] Hang Li, Xun Gao, Tao Xin, Man-Hong Yung, and Guilu Long, "Experimental Study of Forrelation in Nuclear Spins", arXiv:1612.01652.

[59] Rawad Mezher, Joe Ghalbouni, Joseph Dgheim, and Damian Markham, "Fault-tolerant quantum speedup from constant depth quantum circuits", arXiv:2005.11539.

The above citations are from Crossref's cited-by service (last updated successfully 2020-05-29 16:48:17) and SAO/NASA ADS (last updated successfully 2020-05-29 16:48:18). The list may be incomplete as not all publishers provide suitable and complete citation data.

2 thoughts on “Achieving quantum supremacy with sparse and noisy commuting quantum computations

  1. Pingback: On experimentally relevant quantum speedups – Quantum

  2. Pingback: Perspective in Quantum Views by Bill Fefferman "On experimentally relevant quantum speedups"