Extremal eigenvalues of local Hamiltonians

Aram W. Harrow1 and Ashley Montanaro2

1Center for Theoretical Physics, Department of Physics, MIT
2School of Mathematics, University of Bristol, UK

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We apply classical algorithms for approximately solving constraint satisfaction problems to find bounds on extremal eigenvalues of local Hamiltonians. We consider spin Hamiltonians for which we have an upper bound on the number of terms in which each spin participates, and find extensive bounds for the operator norm and ground-state energy of such Hamiltonians under this constraint. In each case the bound is achieved by a product state which can be found efficiently using a classical algorithm.

► BibTeX data

► References

[1] N. Bansal, S. Bravyi, and B. Terhal. Classical approximation schemes for the ground-state energy of quantum and classical Ising spin hamiltonians on planar graphs. Quantum Inf. Comput., 9(8):0701–0720, 2009, arXiv:0705.1115.
arXiv:0705.1115

[2] B. Barak, A. Moitra, R. O'Donnell, P. Raghavendra, O. Regev, D. Steurer, L. Trevisan, A. Vijayaraghavan, D. Witmer, and J. Wright. Beating the random assignment on constraint satisfaction problems of bounded degree, 2015, arXiv:1505.03424.
arXiv:1505.03424

[3] F. G. S. L. Brandão and A. W. Harrow. Product-state approximations to quantum ground states. Communications in Mathematical Physics, 342(1):47–80, 2006. arXiv:1310.0017.
https:/​/​doi.org/​10.1007/​s00220-016-2575-1
arXiv:1310.0017

[4] F. G. S. L. Brandao and M. Cramer. Equivalence of statistical mechanical ensembles for non-critical quantum systems, 2015, arXiv:1502.03263.
arXiv:1502.03263

[5] P. Delsarte, J. Goethals, and J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363–388, 1977.
https:/​/​doi.org/​10.1007/​BF03187604

[6] I. Dinur, E. Friedgut, G. Kindler, and R. O'Donnell. On the Fourier tails of bounded functions over the discrete cube. Israel Journal of Mathematics, 160:389–412, 2007.
https:/​/​doi.org/​10.1007/​s11856-007-0068-9

[7] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. Technical Report MIT-CTP/​4610, MIT, 2014, arXiv:1411.4028.
arXiv:1411.4028

[8] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Technical Report MIT-CTP/​4628, MIT, 2014, arXiv:1412.6062.
arXiv:1412.6062

[9] M. H. Freedman and M. B. Hastings. Quantum systems on non-$k$-hyperfinite complexes: A generalization of classical statistical mechanics on expander graphs, 2013, arXiv:1301.1363.
arXiv:1301.1363

[10] M. Hartmann, G. Mahler, and O. Hess. Gaussian quantum fluctuations in interacting many particle systems. Letters in Mathematical Physics, 68(2):103–112, 2004, arXiv:math-ph/​0312045.
https:/​/​doi.org/​10.1023/​B:MATH.0000043321.00896.86
arXiv:math-ph/0312045

[11] A. Montanaro. Some applications of hypercontractive inequalities in quantum information theory. Journal of Mathematical Physics, 53(12):122206, 2012, arXiv:1208.0161.
https:/​/​doi.org/​10.1063/​1.4769269
arXiv:1208.0161

[12] R. O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[13] J. Renes, R. Blume-Kohout, A. J. Scott, and C. Caves. Symmetric informationally complete quantum measurements. J. Math. Phys., 45(6):2171–2180, 2003. quant-ph/​0310075.
https:/​/​doi.org/​10.1063/​1.1737053
arXiv:quant-ph/0310075

[14] J. Håstad. On bounded occurrence constraint satisfaction. Inf. Proc. Lett., 74:1–6, 2000.
https:/​/​doi.org/​10.1016/​S0020-0190(00)00032-6

[15] J. Håstad. Improved bounds for bounded occurrence constraint satisfaction, 2015. http:/​/​www.csc.kth.se/​ johanh/​bounded2.pdf.
http:/​/​www.csc.kth.se/​~johanh/​bounded2.pdf

[16] J. Řeháček, B.-G. Englert, and D. Kaszlikowski. Minimal qubit tomography. Phys. Rev. A, 70:052321, 2004. quant-ph/​0405084.
https:/​/​doi.org/​10.1103/​PhysRevA.70.052321
arXiv:quant-ph/0405084

Cited by

[1] Sergey Bravyi, David Gosset, Robert König, and Kristan Temme, "Approximation algorithms for quantum many-body problems", Journal of Mathematical Physics 60 3, 032203 (2019).

[2] Brian Swingle and Mike Winer, "Bosonic model of quantum holography", Physical Review B 109 9, 094206 (2024).

[3] Anurag Anshu, David Gosset, Karen J. Morenz Korol, and Mehdi Soleimanifar, "Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians", Physical Review Letters 127 25, 250502 (2021).

[4] Lauren Preston and Shivashankar, Lecture Notes in Computer Science 10477, 56 (2023) ISBN:978-3-031-36029-9.

[5] Chi-Fang Chen, Alexander M. Dalzell, Mario Berta, Fernando G. S. L. Brandão, and Joel A. Tropp, "Sparse Random Hamiltonians Are Quantumly Easy", Physical Review X 14 1, 011014 (2024).

[6] Hsin-Yuan Huang, Sitan Chen, and John Preskill, "Learning to Predict Arbitrary Quantum Processes", PRX Quantum 4 4, 040337 (2023).

[7] A. Roggero and A. Baroni, "Short-depth circuits for efficient expectation-value estimation", Physical Review A 101 2, 022328 (2020).

[8] Yaroslav Herasymenko, Maarten Stroeks, Jonas Helsen, and Barbara Terhal, "Optimizing sparse fermionic Hamiltonians", Quantum 7, 1081 (2023).

[9] Cedric Yen-Yu Lin and Yechao Zhu, "Performance of QAOA on Typical Instances of Constraint Satisfaction Problems with Bounded Degree", arXiv:1601.01744, (2016).

[10] Brian Swingle and Michael Winer, "A Bosonic Model of Quantum Holography", arXiv:2311.01516, (2023).

[11] Thiago Bergamaschi, "Improved Product-state Approximation Algorithms for Quantum Local Hamiltonians", arXiv:2210.08680, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-28 18:26:35) and SAO/NASA ADS (last updated successfully 2024-03-28 18:26:36). The list may be incomplete as not all publishers provide suitable and complete citation data.