Self-testing in parallel with CHSH
Department of Electrical Engineering and Computer Science, Queensland University of Technology
Published: | 2017-04-25, volume 1, page 1 |
Eprint: | arXiv:1609.09584v4 |
Doi: | https://doi.org/10.22331/q-2017-04-25-1 |
Citation: | Quantum 1, 1 (2017). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Self-testing allows classical referees to verify the quantum behaviour of some untrusted devices. Recently we developed a framework for building large self-tests by repeating a smaller self-test many times in parallel. However, the framework did not apply to the CHSH test, which tests a maximally entangled pair of qubits. CHSH is the most well known and widely used test of this type. Here we extend the parallel self-testing framework to build parallel CHSH self-tests for any number of pairs of maximally entangled qubits. Our construction achieves an error bound which is polynomial in the number of tested qubit pairs.
► BibTeX data
► References
[1] Charles-Edwourd Bardyn, Timothy C. H. Liew, Serge Massar, Matthew McKague, and Valerio Scarani. Device-independent state estimation based on Bell's inequalities. Physical Review A (Atomic, Molecular, and Optical Physics), 80(6):062327, 2009. 10.1103/PhysRevA.80.062327. arXiv:0907.2170.
https://doi.org/10.1103/PhysRevA.80.062327
arXiv:0907.2170
[2] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23(15):880–884, Oct 1969. 10.1103/PhysRevLett.23.880.
https://doi.org/10.1103/PhysRevLett.23.880
[3] B. S. Cirel'son. Quantum generalizations of Bell's inequality. Letters in Mathematical Physics, 4(2):93–100, 03 1980. 10.1007/BF00417500.
https://doi.org/10.1007/BF00417500
[4] Andrea W. Coladangelo. Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH. 2016. arXiv:1609.03687.
arXiv:1609.03687
[5] Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay. Perfect parallel repetition theorem for quantum XOR proof systems. Computational Complexity, 17(2):282–299, 2008. 10.1007/s00037-008-0250-4. arXiv:quant-ph/0608146v2.
https://doi.org/10.1007/s00037-008-0250-4
arXiv:quant-ph/0608146v2
[6] Michal Hajdusek, Carlos A. Perez-Delgado, and Joseph F. Fitzsimons. Device-independent verifiable blind quantum computation. 2015. arXiv:1502.02563.
arXiv:1502.02563
[7] Matthew McKague. Interactive proofs for BQP via self-tested graph states. Theory of Computing, 12(3):1–42, 2013. 10.4086/toc.2016.v012a003. arxiv:1309.5675.
https://doi.org/10.4086/toc.2016.v012a003
arXiv:1309.5675
[8] Matthew McKague. Self-testing in parallel. New Journal of Physics, 18(4):045013, 2016. 10.1088/1367-2630/18/4/045013. arXiv:1511.04194.
https://doi.org/10.1088/1367-2630/18/4/045013
arXiv:1511.04194
[9] Frédéric Magniez, Dominic Mayers, Michele Mosca, and Harold Ollivier. Self-testing of quantum circuits. In M Bugliesi et al., editor, Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, number 4052 in Lecture Notes in Computer Science, pp. 72–83, 2006. 10.1007/11786986_8. arXiv:quant-ph/0512111v1.
https://doi.org/10.1007/11786986_8
arXiv:quant-ph/0512111
[10] Carl A. Miller and Yaoyun Shi. Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices. J. ACM, 63(4):33:1–33:63, October 2016. 10.1145/2885493. arXiv:1402.0489.
https://doi.org/10.1145/2885493
arXiv:1402.0489
[11] Dominic Mayers and Andrew Yao. Self testing quantum apparatus. Quantum Information and Computation, 4(4):273–286, July 2004. arXiv:quant-ph/0307205.
arXiv:quant-ph/0307205
[12] Matthew McKague, Tzyh Haur Yang, and Valerio Scarani. Robust self-testing of the singlet. Journal of Physics A: Mathematical and Theoretical, 45(45):455304, 2012. 10.1088/1751-8113/45/45/455304. arXiv:1203.2976.
https://doi.org/10.1088/1751-8113/45/45/455304
arXiv:1203.2976
[13] Sandu Popescu and Daniel Rohrlich. Which states violate Bell's inequality maximally? Physics Letters A, 169(6):411 – 414, 1992. 10.1016/0375-9601(92)90819-8.
https://doi.org/10.1016/0375-9601(92)90819-8
[14] Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems. Nature, 496(7446):456–460, 04 2013. 10.1038/nature12035.
https://doi.org/10.1038/nature12035
[15] Umesh Vazirani and Thomas Vidick. Fully device-independent quantum key distribution. Physical review letters, 113(14):140501, 2014. 10.1103/PhysRevLett.113.140501.
https://doi.org/10.1103/PhysRevLett.113.140501
[16] Xingyao Wu, Jean-Daniel Bancal, Matthew McKague, and Valerio Scarani. Device-independent parallel self-testing of two singlets. Phys. Rev. A, 93:062121, Jun 2016. 10.1103/PhysRevA.93.062121. arXiv:1512.02074.
https://doi.org/10.1103/PhysRevA.93.062121
arXiv:1512.02074
Cited by
[1] Antonio Mandarino and Giovanni Scala, "On the Fidelity Robustness of CHSH–Bell Inequality via Filtered Random States", Entropy 25 1, 94 (2023).
[2] Joseph Bowles, Ivan Šupić, Daniel Cavalcanti, and Antonio Acín, "Self-testing of Pauli observables for device-independent entanglement certification", Physical Review A 98 4, 042336 (2018).
[3] Iris Agresti, Davide Poderini, Leonardo Guerini, Michele Mancusi, Gonzalo Carvacho, Leandro Aolita, Daniel Cavalcanti, Rafael Chaves, and Fabio Sciarrino, "Experimental device-independent certified randomness generation with an instrumental causal structure", Communications Physics 3 1, 110 (2020).
[4] Jędrzej Kaniewski, "Weak form of self-testing", Physical Review Research 2 3, 033420 (2020).
[5] Srijita Kundu, Jamie Sikora, and Ernest Y.-Z. Tan, "A device-independent protocol for XOR oblivious transfer", Quantum 6, 725 (2022).
[6] Tim Coopmans, Jędrzej Kaniewski, and Christian Schaffner, "Robust self-testing of two-qubit states", Physical Review A 99 5, 052123 (2019).
[7] Ivan Šupić, Joseph Bowles, Marc-Olivier Renou, Antonio Acín, and Matty J. Hoban, "Quantum networks self-test all entangled states", Nature Physics 19 5, 670 (2023).
[8] Spencer Breiner, Amir Kalev, and Carl A. Miller, "Parallel Self-Testing of the GHZ State with a Proof by Diagrams", Electronic Proceedings in Theoretical Computer Science 287, 43 (2019).
[9] Qingshan Xu, Xiaoqing Tan, Rui Huang, and Xiaodan Zeng, "Parallel self‐testing for device‐independent verifiable blind quantum computation", Quantum Engineering 2 3(2020).
[10] Ivan Šupić, Daniel Cavalcanti, and Joseph Bowles, "Device-independent certification of tensor products of quantum states using single-copy self-testing protocols", Quantum 5, 418 (2021).
[11] Alex B. Grilo, William Slofstra, and Henry Yuen, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) 611 (2019) ISBN:978-1-7281-4952-3.
[12] Prabuddha Roy and A K Pan, "Device-independent self-testing of unsharp measurements", New Journal of Physics 25 1, 013040 (2023).
[13] Ivan Šupić and Joseph Bowles, "Self-testing of quantum systems: a review", Quantum 4, 337 (2020).
[14] Minu J. Bae, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 372 (2022) ISBN:978-1-6654-9113-6.
[15] David Cui, Arthur Mehta, Hamoon Mousavi, and Seyed Sajjad Nezhadi, "A generalization of CHSH and the algebraic structure of optimal strategies", Quantum 4, 346 (2020).
[16] Amir Kalev and Carl A Miller, "Rigidity of the magic pentagram game", Quantum Science and Technology 3 1, 015002 (2018).
[17] Jedrzej Kaniewski, "Self-testing of binary observables based on commutation", Physical Review A 95 6, 062323 (2017).
[18] Shubhayan Sarkar, "Certification of entangled quantum states and quantum measurements in Hilbert spaces of arbitrary dimension", arXiv:2302.01325, (2023).
[19] Honghao Fu, Daochen Wang, and Qi Zhao, "Parallel self-testing of EPR pairs under computational assumptions", arXiv:2201.13430, (2022).
[20] Jędrzej Kaniewski, "A weak form of self-testing", arXiv:1910.00706, (2019).
[21] Anne Broadbent, Arthur Mehta, and Yuming Zhao, "Quantum delegation with an off-the-shelf device", arXiv:2304.03448, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-06 18:42:52) and SAO/NASA ADS (last updated successfully 2023-12-06 18:42:53). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.