Efficient quantum programming using EASE gates on a trapped-ion quantum computer

Nikodem Grzesiak1, Andrii Maksymov1, Pradeep Niroula2,3, and Yunseong Nam1,4

1IonQ, College Park, MD 20740, USA
2Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD 20742, USA
3Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
4Department of Physics, University of Maryland, College Park, MD 20742, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of parallel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show an $n$-qubit Clifford circuit can be implemented using 6log($n$) EASE gates, an $n$-qubit multiply-controlled NOT gate can be implemented using 3$n$/2 EASE gates, and an $n$-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.

Trapped-ion quantum computers are capable of exotic operations which entangle several qubits at once. One such powerful operation is the Efficient, Arbitrary, Simultaneously Entangling (EASE) gate. We show that EASE gates make it drastically easier to implement circuit elements for universal quantum computation: An n-qubit Clifford circuit can be applied in only 6log(n) EASE gates, an n-qubit multiply-controlled NOT gate in 3n/2 EASE gates, and an n-qubit permutation in only six EASE gates.

► BibTeX data

► References

[1] C. J. Hughes, Synthesis Lectures on Computer Architecture 10, 1 (2015).
https:/​/​doi.org/​10.2200/​S00647ED1V01Y201505CAC032

[2] N. Grzesiak, R. Blümel, K. Wright, K. M. Beck, N. C. Pisenti, M. Li, V. Chaplin, J. M. Amini, S. Debnath, J.-S. Chen, et al., Nature communications 11, 1 (2020).
https:/​/​doi.org/​10.1038/​s41467-020-16790-9

[3] D. Maslov and Y. Nam, New Journal of Physics 20, 033018 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aaa398

[4] K. Groenland, F. Witteveen, K. Schoutens, and R. Gerritsma, New Journal of Physics 22, 063006 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​ab8830

[5] J. van de Wetering, New Journal of Physics 23, 043015 (2021).
https:/​/​doi.org/​10.1088/​1367-2630/​abf1b3

[6] S.-L. Zhu, C. Monroe, and L.-M. Duan, Europhysics Letters (EPL) 73, 485–491 (2006).
https:/​/​doi.org/​10.1209/​epl/​i2005-10424-4

[7] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering, Quantum 4, 279 (2020).
https:/​/​doi.org/​10.22331/​q-2020-06-04-279

[8] Q. Wang, M. Li, C. Monroe, and Y. Nam, Quantum 5, 509 (2021).
https:/​/​doi.org/​10.22331/​q-2021-07-26-509

[9] C. Moore and M. Nilsson, SIAM Journal on Computing 31, 799 (2001).
https:/​/​doi.org/​10.1137/​S0097539799355053

[10] P. Niroula and Y. Nam, npj Quantum Information 7, 1 (2021).
https:/​/​doi.org/​10.1038/​s41534-021-00369-3

Cited by

[1] Qiyao Liang, Mingyu Kang, Ming Li, and Yunseong Nam, "Pulse optimization for high-precision motional-mode characterization in trapped-ion quantum computers", Quantum Science and Technology 9 3, 035007 (2024).

[2] Yuri Alexeev, Maximilian Amsler, Marco Antonio Barroca, Sanzio Bassini, Torey Battelle, Daan Camps, David Casanova, Young Jay Choi, Frederic T. Chong, Charles Chung, Christopher Codella, Antonio D. Córcoles, James Cruise, Alberto Di Meglio, Ivan Duran, Thomas Eckl, Sophia Economou, Stephan Eidenbenz, Bruce Elmegreen, Clyde Fare, Ismael Faro, Cristina Sanz Fernández, Rodrigo Neumann Barros Ferreira, Keisuke Fuji, Bryce Fuller, Laura Gagliardi, Giulia Galli, Jennifer R. Glick, Isacco Gobbi, Pranav Gokhale, Salvador de la Puente Gonzalez, Johannes Greiner, Bill Gropp, Michele Grossi, Emanuel Gull, Burns Healy, Matthew R. Hermes, Benchen Huang, Travis S. Humble, Nobuyasu Ito, Artur F. Izmaylov, Ali Javadi-Abhari, Douglas Jennewein, Shantenu Jha, Liang Jiang, Barbara Jones, Wibe Albert de Jong, Petar Jurcevic, William Kirby, Stefan Kister, Masahiro Kitagawa, Joel Klassen, Katherine Klymko, Kwangwon Koh, Masaaki Kondo, Dog̃a Murat Kürkçüog̃lu, Krzysztof Kurowski, Teodoro Laino, Ryan Landfield, Matt Leininger, Vicente Leyton-Ortega, Ang Li, Meifeng Lin, Junyu Liu, Nicolas Lorente, Andre Luckow, Simon Martiel, Francisco Martin-Fernandez, Margaret Martonosi, Claire Marvinney, Arcesio Castaneda Medina, Dirk Merten, Antonio Mezzacapo, Kristel Michielsen, Abhishek Mitra, Tushar Mittal, Kyungsun Moon, Joel Moore, Sarah Mostame, Mario Motta, Young-Hye Na, Yunseong Nam, Prineha Narang, Yu-ya Ohnishi, Daniele Ottaviani, Matthew Otten, Scott Pakin, Vincent R. Pascuzzi, Edwin Pednault, Tomasz Piontek, Jed Pitera, Patrick Rall, Gokul Subramanian Ravi, Niall Robertson, Matteo A.C. Rossi, Piotr Rydlichowski, Hoon Ryu, Georgy Samsonidze, Mitsuhisa Sato, Nishant Saurabh, Vidushi Sharma, Kunal Sharma, Soyoung Shin, George Slessman, Mathias Steiner, Iskandar Sitdikov, In-Saeng Suh, Eric D. Switzer, Wei Tang, Joel Thompson, Synge Todo, Minh C. Tran, Dimitar Trenev, Christian Trott, Huan-Hsin Tseng, Norm M. Tubman, Esin Tureci, David García Valiñas, Sofia Vallecorsa, Christopher Wever, Konrad Wojciechowski, Xiaodi Wu, Shinjae Yoo, Nobuyuki Yoshioka, Victor Wen-zhe Yu, Seiji Yunoki, Sergiy Zhuk, and Dmitry Zubarev, "Quantum-centric supercomputing for materials science: A perspective on challenges and future directions", Future Generation Computer Systems 160, 666 (2024).

[3] Yanwu Gu, Wei-Feng Zhuang, Xudan Chai, and Dong E. Liu, "Benchmarking universal quantum gates via channel spectrum", Nature Communications 14 1, 5880 (2023).

[4] Sergey Bravyi, Dmitri Maslov, and Yunseong Nam, "Constant-Cost Implementations of Clifford Operations and Multiply-Controlled Gates Using Global Interactions", Physical Review Letters 129 23, 230501 (2022).

[5] Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young, "Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits", Physical Review Letters 129 15, 150502 (2022).

[6] Pascal Baßler, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick H. Huber, Michael Johanning, and Martin Kliesch, "Synthesis of and compilation with time-optimal multi-qubit gates", Quantum 7, 984 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-09-07 22:04:26) and SAO/NASA ADS (last updated successfully 2024-09-07 22:04:27). The list may be incomplete as not all publishers provide suitable and complete citation data.