Elementary Thermal Operations

Matteo Lostaglio1, Álvaro M. Alhambra2, and Christopher Perry3

1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain
2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
3QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings interaction in rotating wave approximation and draw a connection to standard descriptions of thermalisation. We then prove that elementary thermal operations present tighter constraints on the allowed transformations than thermal operations. Mathematically, this illustrates the failure at finite temperature of fundamental theorems by Birkhoff and Muirhead-Hardy-Littlewood-Polya concerning stochastic maps. Physically, this implies that stronger constraints than those imposed by single-shot quantities can be given if we tailor a thermodynamic resource theory to the relevant experimental scenario. We provide new tools to do so, including necessary and sufficient conditions for a given change of the population to be possible. As an example, we describe the resource theory of the Jaynes-Cummings model. Finally, we initiate an investigation into how our resource theories can be applied to Heat Bath Algorithmic Cooling protocols.

Recent work using tools from quantum information theory has investigated the laws of thermodynamics at the quantum and nanoscale. In deriving these ultimate limits however, it is assumed that the system under consideration can be manipulated arbitrarily precisely, subject only to constraints such as energy conservation. As such, it is unclear how the newly derived laws relate to real experimental setups. In this work, we provide tools for incorporating physically relevant constraints into the previous analysis, limiting the interactions to those that only act on a reduced amount of energy levels, or/and that can be generated via simple light-matter interaction models. This enables the potential for fundamental limits to be investigated for real physical systems.

► BibTeX data

► References

[1] Ernst Ruch. The diagram lattice as structural principle A. New aspects for representations and group algebra of the symmetric group B. Definition of classification character, mixing character, statistical order, statistical disorder; a general principle for the time evolution of irreversible processes. Theoretica Chimica Acta, 38 (3): 167–183, 1975. 10.1007/​BF01125896.
https:/​/​doi.org/​10.1007/​BF01125896

[2] Ernst Ruch and Alden Mead. The principle of increasing mixing character and some of its consequences. Theoretica chimica acta, 41 (2): 95–117, 1976. ISSN 1432-2234. 10.1007/​BF01178071.
https:/​/​doi.org/​10.1007/​BF01178071

[3] C Alden Mead. Mixing character and its application to irreversible processes in macroscopic systems. The Journal of Chemical Physics, 66 (2): 459–467, 1977. 10.1063/​1.433963.
https:/​/​doi.org/​10.1063/​1.433963

[4] Ernst Ruch, Rudolf Schranner, and Thomas H. Seligman. The mixing distance. J. Chem. Phys., 69 (1): 386–392, 1978. http:/​/​dx.doi.org/​10.1063/​1.436364.
https:/​/​doi.org/​10.1063/​1.436364

[5] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and Th. Beth. Thermodynamic cost of reliability and low temperatures: Tightening Landauer's principle and the second law. Int. J. Theor. Phys., 39 (12): 2717–2753, 2000. 10.1023/​A:1026422630734.
https:/​/​doi.org/​10.1023/​A:1026422630734

[6] Fernando G. S. L. Brandão, Michał Horodecki, Jonathan Oppenheim, Joseph M. Renes, and Robert W. Spekkens. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett., 111: 250404, Dec 2013. 10.1103/​PhysRevLett.111.250404.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.250404

[7] Johan Åberg. Truly work-like work extraction via a single-shot analysis. Nat. Commun., 4: 1925, 2013. 10.1038/​ncomms2712.
https:/​/​doi.org/​10.1038/​ncomms2712

[8] M. Horodecki and J. Oppenheim. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun., 4: 2059, June 2013. 10.1038/​ncomms3059.
https:/​/​doi.org/​10.1038/​ncomms3059

[9] F. G. S. L. Brandão, M. Horodecki, N. H. Y. Ng, J. Oppenheim, and S. Wehner. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U.S.A., 112: 3275, 2015. 10.1073/​pnas.1411728112.
https:/​/​doi.org/​10.1073/​pnas.1411728112

[10] Paul Skrzypczyk, Anthony J Short, and Sandu Popescu. Work extraction and thermodynamics for individual quantum systems. Nat. Commun., 5: 4185, 2014. 10.1038/​ncomms5185.
https:/​/​doi.org/​10.1038/​ncomms5185

[11] D Egloff, O C O Dahlsten, R Renner, and V Vedral. A measure of majorization emerging from single-shot statistical mechanics. New Journal of Physics, 17 (7): 073001, 2015. 10.1088/​1367-2630/​17/​7/​073001.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​7/​073001

[12] Matteo Lostaglio, David Jennings, and Terry Rudolph. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun., 6: 6383, 2015a. 10.1038/​ncomms7383.
https:/​/​doi.org/​10.1038/​ncomms7383

[13] Matteo Lostaglio, Markus P. Müller, and Michele Pastena. Stochastic independence as a resource in small-scale thermodynamics. Phys. Rev. Lett., 115: 150402, Oct 2015b. 10.1103/​PhysRevLett.115.150402.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.150402

[14] V. Narasimhachar and G. Gour. Low-temperature thermodynamics with quantum coherence. Nature Communications, 6: 7689, July 2015. 10.1038/​ncomms8689.
https:/​/​doi.org/​10.1038/​ncomms8689

[15] J. Gemmer and J. Anders. From single-shot towards general work extraction in a quantum thermodynamic framework. New Journal of Physics, 17 (8): 085006, 2015. 10.1088/​1367-2630/​17/​8/​085006.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​8/​085006

[16] Jonathan G Richens and Lluis Masanes. Work extraction from quantum systems with bounded fluctuations in work. Nat. Commun., 7: 13511, 2016. 10.1038/​ncomms13511.
https:/​/​doi.org/​10.1038/​ncomms13511

[17] Lluis Masanes and Jonathan Oppenheim. A general derivation and quantification of the third law of thermodynamics. Nat. Commun., 8: 14538, 2017. 10.1038/​ncomms14538.
https:/​/​doi.org/​10.1038/​ncomms14538

[18] Jakob Scharlau and Markus P Mueller. Quantum Horn's lemma, finite heat baths, and the third law of thermodynamics. arXiv:1605.06092, 2016. URL https:/​/​arxiv.org/​abs/​1605.06092.
arXiv:1605.06092

[19] Henrik Wilming and Rodrigo Gallego. Third law of thermodynamics as a single inequality. Phys. Rev. X, 7: 041033, Nov 2017. 10.1103/​PhysRevX.7.041033.
https:/​/​doi.org/​10.1103/​PhysRevX.7.041033

[20] Nicole Yunger Halpern, Andrew JP Garner, Oscar CO Dahlsten, and Vlatko Vedral. Introducing one-shot work into fluctuation relations. New Journal of Physics, 17 (9): 095003, 2015. 10.1088/​1367-2630/​17/​9/​095003.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​9/​095003

[21] Johan Aberg. Fully quantum fluctuation theorems. arXiv:1601.01302, 2016. URL https:/​/​arxiv.org/​abs/​1601.01302.
arXiv:1601.01302

[22] Álvaro M Alhambra, Jonathan Oppenheim, and Christopher Perry. Fluctuating states: What is the probability of a thermodynamical transition? Phys. Rev. X, 6 (4): 041016, 2016a. 10.1103/​PhysRevX.6.041016.
https:/​/​doi.org/​10.1103/​PhysRevX.6.041016

[23] Álvaro M Alhambra, Lluis Masanes, Jonathan Oppenheim, and Christopher Perry. Fluctuating work: From quantum thermodynamical identities to a second law equality. Phys. Rev. X, 6 (4): 041017, 2016b. 10.1103/​PhysRevX.6.041017.
https:/​/​doi.org/​10.1103/​PhysRevX.6.041017

[24] John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk. The role of quantum information in thermodynamics—a topical review. Journal of Physics A: Mathematical and Theoretical, 49 (14): 143001, 2016. 10.1088/​1751-8113/​49/​14/​143001.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​14/​143001

[25] Sai Vinjanampathy and Janet Anders. Quantum thermodynamics. Contemporary Physics, 57 (4): 545–579, 2016. 10.1080/​00107514.2016.1201896.
https:/​/​doi.org/​10.1080/​00107514.2016.1201896

[26] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[27] Nicole Yunger Halpern. Toward physical realizations of thermodynamic resource theories. In Information and Interaction, pages 135–166. Springer, 2017. 10.1007/​978-3-319-43760-6.
https:/​/​doi.org/​10.1007/​978-3-319-43760-6

[28] Michael Reck, Anton Zeilinger, Herbert J Bernstein, and Philip Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73 (1): 58, 1994. 10.1103/​PhysRevLett.73.58.
https:/​/​doi.org/​10.1103/​PhysRevLett.73.58

[29] Robert Franklin Muirhead. Some methods applicable to identities and inequalities of symmetric algebraic functions of $n$ letters. Proceedings of the Edinburgh Mathematical Society, 21: 144–162, 1902. 10.1017/​S001309150003460X.
https:/​/​doi.org/​10.1017/​S001309150003460X

[30] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. Cambridge University Press, 1952. 10.1007/​978-3-319-44299-0_1.
https:/​/​doi.org/​10.1007/​978-3-319-44299-0_1

[31] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A, 5: 147–151, 1946.

[32] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majorization and Its Applications. Springer, 2010. 10.1007/​978-0-387-68276-1.
https:/​/​doi.org/​10.1007/​978-0-387-68276-1

[33] C. Perry, P. Ć wikliński, J. Anders, M. Horodecki, and J. Oppenheim. A sufficient set of experimentally implementable thermal operations. arXiv 1511.06553, November 2015. URL https:/​/​arxiv.org/​abs/​1511.06553.
arXiv:1511.06553

[34] H. Wilming, R. Gallego, and J. Eisert. Second law of thermodynamics under control restrictions. Phys. Rev. E, 93: 042126, Apr 2016. 10.1103/​PhysRevE.93.042126.
https:/​/​doi.org/​10.1103/​PhysRevE.93.042126

[35] J Lekscha, H Wilming, J Eisert, and R Gallego. Quantum thermodynamics with local control. arXiv:1612.00029, 2016. URL https:/​/​arxiv.org/​abs/​1612.00029.
arXiv:1612.00029

[36] Paweł Mazurek and Michał Horodecki. Decomposability and convex structure of thermal processes. arXiv preprint arXiv:1707.06869, 2017. URL https:/​/​arxiv.org/​abs/​1707.06869.
arXiv:1707.06869

[37] Kamil Korzekwa. Coherence, thermodynamics and uncertainty relations. PhD thesis, Imperial College London, 2016. URL https:/​/​spiral.imperial.ac.uk/​handle/​10044/​1/​43343.
https:/​/​spiral.imperial.ac.uk/​handle/​10044/​1/​43343

[38] Gilad Gour, Markus P Müller, Varun Narasimhachar, Robert W Spekkens, and Nicole Yunger Halpern. The resource theory of informational nonequilibrium in thermodynamics. Physics Reports, 583: 1–58, 2015. http:/​/​dx.doi.org/​10.1016/​j.physrep.2015.04.003.
https:/​/​doi.org/​10.1016/​j.physrep.2015.04.003

[39] Edwin T Jaynes and Frederick W Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51 (1): 89–109, 1963. 10.1109/​PROC.1963.1664.
https:/​/​doi.org/​10.1109/​PROC.1963.1664

[40] Bruce W Shore and Peter L Knight. The Jaynes-Cummings model. Journal of Modern Optics, 40 (7): 1195–1238, 1993. 10.1080/​09500349314551321.
https:/​/​doi.org/​10.1080/​09500349314551321

[41] Johan Åberg. Catalytic coherence. Phys. Rev. Lett., 113: 150402, Oct 2014. 10.1103/​PhysRevLett.113.150402.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.150402

[42] R. Kosloff. Quantum thermodynamics: A dynamical viewpoint. Entropy, 15: 2100–2128, May 2013. 10.3390/​e15062100.
https:/​/​doi.org/​10.3390/​e15062100

[43] Mário Ziman, Peter Stelmachovic, and Vladimír Buzek. Description of quantum dynamics of open systems based on collision-like models. Open systems & information dynamics, 12 (01): 81–91, 2005. 10.1007/​s11080-005-0488-0.
https:/​/​doi.org/​10.1007/​s11080-005-0488-0

[44] Valerio Scarani, Mário Ziman, Peter Stelmachovic, Nicolas Gisin, and Vladimír Buzek. Thermalizing quantum machines: Dissipation and entanglement. Phys. Rev. Lett., 88: 097905, Feb 2002. 10.1103/​PhysRevLett.88.097905.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.097905

[45] H.-P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press, 2002. 10.1093/​acprof:oso/​9780199213900.001.0001.
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

[46] E. B. Davies. Markovian master equations. Comm. Math. Phys., 39 (2): 91–110, 1974. ISSN 1432-0916. 10.1007/​BF01608389.
https:/​/​doi.org/​10.1007/​BF01608389

[47] R. Dümcke. The low density limit for anN-level system interacting with a free Bose or Fermi gas. Comm. Math. Phys., 97 (3): 331–359, 1985. ISSN 1432-0916. 10.1007/​BF01213401.
https:/​/​doi.org/​10.1007/​BF01213401

[48] Wojciech Roga, Mark Fannes, and Karol Życzkowski. Davies maps for qubits and qutrits. Rep. Math. Phys., 66 (3): 311–329, 2010. 10.1016/​S0034-4877(11)00003-6.
https:/​/​doi.org/​10.1016/​S0034-4877(11)00003-6

[49] EB Davies. Embeddable Markov matrices. Electron. J. Probab., 15: 1474–1486, 2010. 10.1214/​EJP.v15-733.
https:/​/​doi.org/​10.1214/​EJP.v15-733

[50] E Brian Davies. Linear operators and their spectra, volume 106. Cambridge University Press, 2007. 10.1017/​CBO9780511618864.
https:/​/​doi.org/​10.1017/​CBO9780511618864

[51] A. F. Veinott. Least d-majorized network flows with inventory and statistical applications. Management Science, 17 (9): 547–567, 1971. 10.1287/​mnsc.17.9.547.
https:/​/​doi.org/​10.1287/​mnsc.17.9.547

[52] Ernst Ruch, Rudolf Schranner, and Thomas H Seligman. Generalization of a theorem by Hardy, Littlewood, and Pólya. J. Math. Analysis and Applications, 76 (1): 222 – 229, 1980. ISSN 0022-247X. http:/​/​dx.doi.org/​10.1016/​0022-247X(80)90075-X.
https:/​/​doi.org/​10.1016/​0022-247X(80)90075-X

[53] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen. Maximal work extraction from finite quantum systems. Europhys. Lett., 67: 565–571, August 2004. 10.1209/​epl/​i2004-10101-2.
https:/​/​doi.org/​10.1209/​epl/​i2004-10101-2

[54] P. Faist, J. Oppenheim, and R. Renner. Gibbs-preserving maps outperform thermal operations in the quantum regime. New Journal of Physics, 17 (4): 043003, April 2015. 10.1088/​1367-2630/​17/​4/​043003.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​4/​043003

[55] Iman Marvian and Robert W. Spekkens. Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A, 90: 062110, Dec 2014. 10.1103/​PhysRevA.90.062110. URL http:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.90.062110.
https:/​/​doi.org/​10.1103/​PhysRevA.90.062110

[56] Matteo Lostaglio, Kamil Korzekwa, David Jennings, and Terry Rudolph. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X, 5: 021001, Apr 2015c. 10.1103/​PhysRevX.5.021001.
https:/​/​doi.org/​10.1103/​PhysRevX.5.021001

[57] Matteo Lostaglio, Kamil Korzekwa, and Antony Milne. Markovian evolution of quantum coherence under symmetric dynamics. Phys. Rev. A, 96: 032109, Sep 2017. 10.1103/​PhysRevA.96.032109.
https:/​/​doi.org/​10.1103/​PhysRevA.96.032109

[58] Piotr Ć wikliński, Michał Studziński, Michał Horodecki, and Jonathan Oppenheim. Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics. Phys. Rev. Lett., 115: 210403, Nov 2015. 10.1103/​PhysRevLett.115.210403.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.210403

[59] David P DiVincenzo et al. The physical implementation of quantum computation. arXiv preprint quant-ph/​0002077, 2000. 10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E.
https:/​/​doi.org/​10.1002/​1521-3978(200009)48:9/​11<771::AID-PROP771>3.0.CO;2-E
arXiv:quant-ph/0002077

[60] P Oscar Boykin, Tal Mor, Vwani Roychowdhury, Farrokh Vatan, and Rutger Vrijen. Algorithmic cooling and scalable NMR quantum computers. Proceedings of the National Academy of Sciences, 99 (6): 3388–3393, 2002. 10.1073/​pnas.241641898.
https:/​/​doi.org/​10.1073/​pnas.241641898

[61] Daniel K Park, Nayeli A Rodriguez-Briones, Guanru Feng, Robabeh Rahimi, Jonathan Baugh, and Raymond Laflamme. Heat bath algorithmic cooling with spins: review and prospects. In Electron Spin Resonance (ESR) Based Quantum Computing, pages 227–255. Springer, 2016. 10.1007/​978-1-4939-3658-8_8.
https:/​/​doi.org/​10.1007/​978-1-4939-3658-8_8

[62] Nayeli A Rodriguez-Briones, Jun Li, Xinhua Peng, Tal Mor, Yossi Weinstein, and Raymond Laflamme. Heat-bath algorithmic cooling with correlated qubit-environment interactions. New Journal of Physics, 19 (11): 113047, 2017. 10.1088/​1367-2630/​aa8fe0.
https:/​/​doi.org/​10.1088/​1367-2630/​aa8fe0

[63] W. Pusz and S.L. Woronowicz. Passive states and KMS states for general quantum systems. Comm. Math. Phys., 58 (3): 273–290, 1978. ISSN 0010-3616. 10.1007/​BF01614224.
https:/​/​doi.org/​10.1007/​BF01614224

[64] A. Lenard. Thermodynamical proof of the Gibbs formula for elementary quantum systems. Journal of Statistical Physics, 19 (6): 575–586, 1978. ISSN 0022-4715. 10.1007/​BF01011769.
https:/​/​doi.org/​10.1007/​BF01011769

Cited by

[1] Elisa Bäumer, Martí Perarnau-Llobet, Philipp Kammerlander, Henrik Wilming, and Renato Renner, "Imperfect Thermalizations Allow for Optimal Thermodynamic Processes", Quantum 3, 153 (2019).

[2] Paweł Mazurek, "Thermal processes and state achievability", Physical Review A 99 4, 042110 (2019).

[3] Francesco Ciccarello, Salvatore Lorenzo, Vittorio Giovannetti, and G. Massimo Palma, "Quantum collision models: Open system dynamics from repeated interactions", Physics Reports 954, 1 (2022).

[4] Yuancheng Liu and Xueyuan Hu, "Cooling and work extraction under memory-assisted Markovian thermal processes", Physical Review A 108 3, 032216 (2023).

[5] Junan Lin, Nayeli A. Rodríguez-Briones, Eduardo Martín-Martínez, and Raymond Laflamme, "Thermodynamic analysis of algorithmic cooling protocols: Efficiency metrics and improved designs", Physical Review A 110 2, 022215 (2024).

[6] Roope Uola, Tristan Kraft, and Alastair A. Abbott, "Quantification of quantum dynamics with input-output games", Physical Review A 101 5, 052306 (2020).

[7] Benjamin Stratton, Chung-Yun Hsieh, and Paul Skrzypczyk, "Dynamical Resource Theory of Informational Nonequilibrium Preservability", Physical Review Letters 132 11, 110202 (2024).

[8] Álvaro M. Alhambra, Lluis Masanes, Jonathan Oppenheim, and Christopher Perry, "Entanglement fluctuation theorems", Physical Review A 100 1, 012317 (2019).

[9] M Hamed Mohammady, "Thermodynamically free quantum measurements", Journal of Physics A: Mathematical and Theoretical 55 50, 505304 (2022).

[10] Giovanni Spaventa, Susana F. Huelga, and Martin B. Plenio, "Capacity of non-Markovianity to boost the efficiency of molecular switches", Physical Review A 105 1, 012420 (2022).

[11] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm, "Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe", EPJ Quantum Technology 9 1, 19 (2022).

[12] Samyadeb Bhattacharya, Bihalan Bhattacharya, and A S Majumdar, "Thermodynamic utility of non-Markovianity from the perspective of resource interconversion", Journal of Physics A: Mathematical and Theoretical 53 33, 335301 (2020).

[13] Frederik vom Ende and Gunther Dirr, "The d-Majorization Polytope", Linear Algebra and its Applications 649, 152 (2022).

[14] Aslı Tuncer, Mohsen Izadyari, Ceren B. Dağ, Fatih Ozaydin, and Özgür E. Müstecaplıoğlu, "Work and heat value of bound entanglement", Quantum Information Processing 18 12, 373 (2019).

[15] Unnati Akhouri, Sarah Shandera, and Gaukhar Yesmurzayeva, "Increasing Extractable Work in Small Qubit Landscapes", Entropy 25 6, 947 (2023).

[16] Mohit Lal Bera, Maciej Lewenstein, and Manabendra Nath Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines", npj Quantum Information 7 1, 31 (2021).

[17] Grzegorz Rajchel-Mieldzioć, Kamil Korzekwa, Zbigniew Puchała, and Karol Życzkowski, "Algebraic and geometric structures inside the Birkhoff polytope", Journal of Mathematical Physics 63 1, 012202 (2022).

[18] Federico Cerisola, Facundo Sapienza, and Augusto J. Roncaglia, "Heat engines with single-shot deterministic work extraction", Physical Review E 106 3, 034135 (2022).

[19] Álvaro M. Alhambra, Matteo Lostaglio, and Christopher Perry, "Heat-Bath Algorithmic Cooling with optimal thermalization strategies", Quantum 3, 188 (2019).

[20] Frederik vom Ende, Emanuel Malvetti, Gunther Dirr, and Thomas Schulte-Herbrüggen, "Exploring the Limits of Controlled Markovian Quantum Dynamics with Thermal Resources", Open Systems & Information Dynamics 30 01, 2350005 (2023).

[21] Niels Lörch, Christoph Bruder, Nicolas Brunner, and Patrick P Hofer, "Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling", Quantum Science and Technology 3 3, 035014 (2018).

[22] Chandan Datta, Tulja Varun Kondra, Marek Miller, and Alexander Streltsov, "Catalysis of entanglement and other quantum resources", Reports on Progress in Physics 86 11, 116002 (2023).

[23] Nicole Yunger Halpern and David T. Limmer, "Fundamental limitations on photoisomerization from thermodynamic resource theories", Physical Review A 101 4, 042116 (2020).

[24] Stella Seah, Stefan Nimmrichter, and Valerio Scarani, "Nonequilibrium dynamics with finite-time repeated interactions", Physical Review E 99 4, 042103 (2019).

[25] Frederik vom Ende and Emanuel Malvetti, "The Thermomajorization Polytope and Its Degeneracies", Entropy 26 2, 106 (2024).

[26] Hanna Wojewódka-Ściążko, Zbigniew Puchała, and Kamil Korzekwa, "Resource engines", Quantum 8, 1222 (2024).

[27] Pedro Hack, Daniel A. Braun, and Sebastian Gottwald, "Majorization requires infinitely many second laws", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 480 2296, 20230464 (2024).

[28] Christopher Perry, Piotr Ćwikliński, Janet Anders, Michał Horodecki, and Jonathan Oppenheim, "A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems", Physical Review X 8 4, 041049 (2018).

[29] Nelly Huei Ying Ng and Mischa Prebin Woods, Fundamental Theories of Physics 195, 625 (2018) ISBN:978-3-319-99045-3.

[30] Krzysztof Ptaszyński, "Non-Markovian thermal operations boosting the performance of quantum heat engines", Physical Review E 106 1, 014114 (2022).

[31] Roberto Rubboli and Marco Tomamichel, "Fundamental Limits on Correlated Catalytic State Transformations", Physical Review Letters 129 12, 120506 (2022).

[32] Nicolai Friis and Marcus Huber, "Precision and Work Fluctuations in Gaussian Battery Charging", Quantum 2, 61 (2018).

[33] Ivan Henao and Raam Uzdin, "Catalytic transformations with finite-size environments: applications to cooling and thermometry", Quantum 5, 547 (2021).

[34] Marco Bellini, Hyukjoon Kwon, Nicola Biagi, Saverio Francesconi, Alessandro Zavatta, and M. S. Kim, "Demonstrating Quantum Microscopic Reversibility Using Coherent States of Light", Physical Review Letters 129 17, 170604 (2022).

[35] Paweł Mazurek and Michał Horodecki, "Decomposability and convex structure of thermal processes", New Journal of Physics 20 5, 053040 (2018).

[36] Thomas Theurer, Elia Zanoni, Carlo Maria Scandolo, and Gilad Gour, "Thermodynamic state convertibility is determined by qubit cooling and heating", New Journal of Physics 25 12, 123017 (2023).

[37] M. Amazioug and M. Daoud, "Quantum steering vs entanglement and extracting work in an anisotropic two-qubit Heisenberg model in presence of external magnetic fields with DM and KSEA interactions", Physics Letters A 493, 129245 (2024).

[38] Matteo Lostaglio, "An introductory review of the resource theory approach to thermodynamics", Reports on Progress in Physics 82 11, 114001 (2019).

[39] Marco Cattaneo, Gabriele De Chiara, Sabrina Maniscalco, Roberta Zambrini, and Gian Luca Giorgi, "Collision Models Can Efficiently Simulate Any Multipartite Markovian Quantum Dynamics", Physical Review Letters 126 13, 130403 (2021).

[40] Feng Ding, Xueyuan Hu, and Heng Fan, "Amplifying asymmetry with correlating catalysts", Physical Review A 103 2, 022403 (2021).

[41] Carlo Sparaciari, Marcel Goihl, Paul Boes, Jens Eisert, and Nelly Huei Ying Ng, "Bounding the resources for thermalizing many-body localized systems", Communications Physics 4 1, 3 (2021).

[42] Frederik vom Ende, "Which bath Hamiltonians matter for thermal operations?", Journal of Mathematical Physics 63 11, 112202 (2022).

[43] Patryk Lipka-Bartosik, Henrik Wilming, and Nelly H. Y. Ng, "Catalysis in quantum information theory", Reviews of Modern Physics 96 2, 025005 (2024).

[44] Clive Cenxin Aw, Lin Htoo Zaw, Maria Balanzó-Juandó, and Valerio Scarani, "Role of Dilations in Reversing Physical Processes: Tabletop Reversibility and Generalized Thermal Operations", PRX Quantum 5 1, 010332 (2024).

[45] Artemy Kolchinsky and David H. Wolpert, "Entropy production given constraints on the energy functions", Physical Review E 104 3, 034129 (2021).

[46] A. de Oliveira Junior, Jeongrak Son, Jakub Czartowski, and Nelly H. Y. Ng, "Entanglement generation from athermality", Physical Review Research 6 3, 033236 (2024).

[47] Kamil Korzekwa and Matteo Lostaglio, "Quantum Advantage in Simulating Stochastic Processes", Physical Review X 11 2, 021019 (2021).

[48] J. Lekscha, H. Wilming, J. Eisert, and R. Gallego, "Quantum thermodynamics with local control", Physical Review E 97 2, 022142 (2018).

[49] Jakub Czartowski, A. de Oliveira Junior, and Kamil Korzekwa, "Thermal Recall: Memory-Assisted Markovian Thermal Processes", PRX Quantum 4 4, 040304 (2023).

[50] Nicole Yunger Halpern, Naga B. T. Kothakonda, Jonas Haferkamp, Anthony Munson, Jens Eisert, and Philippe Faist, "Resource theory of quantum uncomplexity", Physical Review A 106 6, 062417 (2022).

[51] Xueyuan Hu and Feng Ding, "Thermal operations involving a single-mode bosonic bath", Physical Review A 99 1, 012104 (2019).

[52] Kamil Korzekwa and Matteo Lostaglio, "Optimizing Thermalization", Physical Review Letters 129 4, 040602 (2022).

[53] A. de Oliveira Junior, Jakub Czartowski, Karol Życzkowski, and Kamil Korzekwa, "Geometric structure of thermal cones", Physical Review E 106 6, 064109 (2022).

[54] Feng-Jui Chan, Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, Jui-Sheng Chen, Hong-Bin Chen, and Yueh-Nan Chen, "Maxwell's two-demon engine under pure dephasing noise", Physical Review A 106 5, 052201 (2022).

[55] Matteo Lostaglio and Kamil Korzekwa, "Continuous thermomajorization and a complete set of laws for Markovian thermal processes", Physical Review A 106 1, 012426 (2022).

[56] Georgios Styliaris, Álvaro M. Alhambra, and Paolo Zanardi, "Mixing of quantum states under Markovian dissipation and coherent control", Physical Review A 99 4, 042333 (2019).

[57] Nicolò Piccione, Benedetto Militello, Anna Napoli, and Bruno Bellomo, "Simple scheme for extracting work with a single bath", Physical Review E 100 3, 032143 (2019).

[58] Jeongrak Son and Nelly H Y Ng, "Catalysis in action via elementary thermal operations", New Journal of Physics 26 3, 033029 (2024).

[59] Facundo Sapienza, Federico Cerisola, and Augusto J. Roncaglia, "Correlations as a resource in quantum thermodynamics", Nature Communications 10 1, 2492 (2019).

[60] M. H. Mohammady, A. Auffèves, and J. Anders, "Energetic footprints of irreversibility in the quantum regime", Communications Physics 3 1, 89 (2020).

[61] Angeline Shu, Yu Cai, Stella Seah, Stefan Nimmrichter, and Valerio Scarani, "Almost thermal operations: Inhomogeneous reservoirs", Physical Review A 100 4, 042107 (2019).

[62] Joe Dunlop, Federico Cerisola, Jorge Tabanera-Bravo, and Janet Anders, "Thermodynamically optimal protocols for dual-purpose qubit operations", Physical Review Research 6 3, 033005 (2024).

[63] Johan Åberg, "Fully Quantum Fluctuation Theorems", Physical Review X 8 1, 011019 (2018).

[64] Nelly Huei Ying Ng, Mischa Prebin Woods, and Stephanie Wehner, "Surpassing the Carnot efficiency by extracting imperfect work", New Journal of Physics 19 11, 113005 (2017).

[65] Álvaro M. Alhambra and Mischa P. Woods, "Dynamical maps, quantum detailed balance, and the Petz recovery map", Physical Review A 96 2, 022118 (2017).

[66] Johan Aberg, "Fully quantum fluctuation theorems", arXiv:1601.01302, (2016).

The above citations are from Crossref's cited-by service (last updated successfully 2024-09-14 01:45:43) and SAO/NASA ADS (last updated successfully 2024-09-14 01:45:43). The list may be incomplete as not all publishers provide suitable and complete citation data.