Confinement and Kink Entanglement Asymmetry on a Quantum Ising Chain

Brian J. J. Khor1,2, D. M. Kürkçüoglu2,3, T. J. Hobbs4, G. N. Perdue2, and Israel Klich1

1Department of Physics, University of Virginia, Charlottesville, VA, USA
2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3Superconducting Quantum Materials and Systems Center (SQMS), Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
4High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this work, we explore the interplay of confinement, string breaking and entanglement asymmetry on a 1D quantum Ising chain. We consider the evolution of an initial domain wall and show that, surprisingly, while the introduction of confinement through a longitudinal field typically suppresses entanglement, it can also serve to increase it beyond a bound set for free particles. Our model can be tuned to conserve the number of domain walls, which gives an opportunity to explore entanglement asymmetry associated with link variables. We study two approaches to deal with the non-locality of the link variables, either directly or following a Kramers-Wannier transformation that maps bond variables (kinks) to site variables (spins). We develop a numerical procedure for computing the asymmetry using tensor network methods and use it to demonstrate the different types of entanglement and entanglement asymmetry.

Confinement is the physical phenomenon in which elementary particles in the nucleus stay bound together despite the fact that these particles have the same charge should have repel each other owing to similar charges. In general, the presence of confinement will reduce the amount of quantum entanglement for well known physical systems such as the one dimensional Ising spin chain. However, we present a situation in which the presence of confinement enhances the amount of quantum entanglement in one dimensional Ising chain. This is possible when we impose a mathematical condition on our spin chain called integrability, and in this case we show that confinement increases entanglement production. Our result will be of interest to the quantum simulation, high energy physics, and condensed matter physics community.

► BibTeX data

► References

[1] Yoav Afik and Juan Ramón Muñoz de Nova. Entanglement and quantum tomography with top quarks at the LHC. The European Physical Journal Plus, 136 (9): 907, 2021. 10.1140/​epjp/​s13360-021-01902-1. URL https:/​/​doi.org/​10.1140/​epjp/​s13360-021-01902-1.
https:/​/​doi.org/​10.1140/​epjp/​s13360-021-01902-1

[2] Filiberto Ares, Sara Murciano, and Pasquale Calabrese. Entanglement asymmetry as a probe of symmetry breaking. Nature Communications, 14 (1): 2036, 2023a. 10.1038/​s41467-023-37747-8. URL https:/​/​doi.org/​10.1038/​s41467-023-37747-8.
https:/​/​doi.org/​10.1038/​s41467-023-37747-8

[3] Filiberto Ares, Sara Murciano, Eric Vernier, and Pasquale Calabrese. Lack of symmetry restoration after a quantum quench: An entanglement asymmetry study. SciPost Phys., 15: 089, 2023b. 10.21468/​SciPostPhys.15.3.089. URL https:/​/​doi.org/​10.21468/​SciPostPhys.15.3.089.
https:/​/​doi.org/​10.21468/​SciPostPhys.15.3.089

[4] Hatem Barghathi, C. M. Herdman, and Adrian Del Maestro. Rényi generalization of the accessible entanglement entropy. Phys. Rev. Lett., 121: 150501, Oct 2018. 10.1103/​PhysRevLett.121.150501. URL https:/​/​doi.org/​10.1103/​PhysRevLett.121.150501.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.150501

[5] Alvise Bastianello, Umberto Borla, and Sergej Moroz. Fragmentation and emergent integrable transport in the weakly tilted ising chain. Phys. Rev. Lett., 128: 196601, May 2022. 10.1103/​PhysRevLett.128.196601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.128.196601.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.196601

[6] Silas R. Beane, David B. Kaplan, Natalie Klco, and Martin J. Savage. Entanglement suppression and emergent symmetries of strong interactions. Phys. Rev. Lett., 122: 102001, Mar 2019. 10.1103/​PhysRevLett.122.102001. URL https:/​/​doi.org/​10.1103/​PhysRevLett.122.102001.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.102001

[7] Bruno Bertini, Katja Klobas, Mario Collura, Pasquale Calabrese, and Colin Rylands. Dynamics of charge fluctuations from asymmetric initial states. Phys. Rev. B, 109: 184312, May 2024. 10.1103/​PhysRevB.109.184312. URL https:/​/​doi.org/​10.1103/​PhysRevB.109.184312.
https:/​/​doi.org/​10.1103/​PhysRevB.109.184312

[8] MJ Bhaseen and AM Tsvelik. Aspects of confinement in low dimensions. From Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial Collection (In 3 Volumes), pages 661–683, 2005. 10.1142/​9789812775344_0019. URL https:/​/​doi.org/​10.1142/​9789812775344_0019.
https:/​/​doi.org/​10.1142/​9789812775344_0019

[9] Riccarda Bonsignori, Paola Ruggiero, and Pasquale Calabrese. Symmetry resolved entanglement in free fermionic systems. Journal of Physics A: Mathematical and Theoretical, 52 (47): 475302, 2019. 10.1088/​1751-8121/​ab4b77. URL https:/​/​dx.doi.org/​10.1088/​1751-8121/​ab4b77.
https:/​/​doi.org/​10.1088/​1751-8121/​ab4b77

[10] Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz. Confined phases of one-dimensional spinless fermions coupled to ${Z}_{2}$ gauge theory. Phys. Rev. Lett., 124: 120503, Mar 2020. 10.1103/​PhysRevLett.124.120503. URL https:/​/​doi.org/​10.1103/​PhysRevLett.124.120503.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.120503

[11] Luca Capizzi and Michele Mazzoni. Entanglement asymmetry in the ordered phase of many-body systems: the Ising field theory. Journal of High Energy Physics, 2023 (12): 144, 2023. 10.1007/​JHEP12(2023)144. URL https:/​/​doi.org/​10.1007/​JHEP12(2023)144.
https:/​/​doi.org/​10.1007/​JHEP12(2023)144

[12] Luca Capizzi and Vittorio Vitale. A universal formula for the entanglement asymmetry of matrix product states, 2024. URL https:/​/​arxiv.org/​abs/​2310.01962.
arXiv:2310.01962

[13] Marcela Carena, Ian Low, Carlos E. M. Wagner, and Ming-Lei Xiao. Entanglement Suppression, Enhanced Symmetry and a Standard-Model-like Higgs Boson, 7 2023. URL https:/​/​arxiv.org/​abs/​2307.08112.
arXiv:2307.08112

[14] Olalla A. Castro-Alvaredo, Máté Lencsés, István M. Szécsényi, and Jacopo Viti. Entanglement oscillations near a quantum critical point. Phys. Rev. Lett., 124: 230601, Jun 2020. 10.1103/​PhysRevLett.124.230601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.124.230601.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.230601

[15] Alba Cervera-Lierta, José I. Latorre, Juan Rojo, and Luca Rottoli. Maximal Entanglement in High Energy Physics. SciPost Phys., 3: 036, 2017. 10.21468/​SciPostPhys.3.5.036. URL https:/​/​doi.org/​10.21468/​SciPostPhys.3.5.036.
https:/​/​doi.org/​10.21468/​SciPostPhys.3.5.036

[16] Radu Coldea, DA Tennant, EM Wheeler, E Wawrzynska, D Prabhakaran, M Telling, K Habicht, P Smeibidl, and K Kiefer. Quantum criticality in an ising chain: experimental evidence for emergent e8 symmetry. Science, 327 (5962): 177–180, 2010. 10.1126/​science.1180085. URL https:/​/​doi.org/​/​10.1126/​science.1180085.
https:/​/​doi.org/​10.1126/​science.1180085

[17] David Dasenbrook and Christian Flindt. Dynamical generation and detection of entanglement in neutral leviton pairs. Phys. Rev. B, 92: 161412, Oct 2015. 10.1103/​PhysRevB.92.161412. URL https:/​/​doi.org/​10.1103/​PhysRevB.92.161412.
https:/​/​doi.org/​10.1103/​PhysRevB.92.161412

[18] Gesualdo Delfino, Giuseppe Mussardo, and P Simonetti. Non-integrable quantum field theories as perturbations of certain integrable models. Nuclear Physics B, 473 (3): 469–508, 1996. https:/​/​doi.org/​10.1016/​0550-3213(96)00265-9. URL https:/​/​doi.org/​10.1016/​0550-3213(96)00265-9.
https:/​/​doi.org/​10.1016/​0550-3213(96)00265-9

[19] Peter J. Ehlers. Entanglement between valence and sea quarks in hadrons of 1+1 dimensional QCD. Annals Phys., 452: 169290, 2023. 10.1016/​j.aop.2023.169290. URL https:/​/​doi.org/​10.1016/​j.aop.2023.169290.
https:/​/​doi.org/​10.1016/​j.aop.2023.169290

[20] Noa Feldman, Augustine Kshetrimayum, Jens Eisert, and Moshe Goldstein. Entanglement estimation in tensor network states via sampling. PRX Quantum, 3: 030312, Jul 2022. 10.1103/​PRXQuantum.3.030312. URL https:/​/​doi.org/​10.1103/​PRXQuantum.3.030312.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.030312

[21] Florent Ferro, Filiberto Ares, and Pasquale Calabrese. Non-equilibrium entanglement asymmetry for discrete groups: the example of the xy spin chain. Journal of Statistical Mechanics: Theory and Experiment, 2024 (2): 023101, 2024. 10.1088/​1742-5468/​ad138f. URL https:/​/​dx.doi.org/​10.1088/​1742-5468/​ad138f.
https:/​/​doi.org/​10.1088/​1742-5468/​ad138f

[22] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases, page 4, 2022a. 10.21468/​SciPostPhysCodeb.4. URL https:/​/​doi.org/​10.21468/​SciPostPhysCodeb.4.
https:/​/​doi.org/​10.21468/​SciPostPhysCodeb.4

[23] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. Codebase release 0.3 for ITensor. SciPost Phys. Codebases, pages 4–r0.3, 2022b. 10.21468/​SciPostPhysCodeb.4-r0.3. URL https:/​/​doi.org/​10.21468/​SciPostPhysCodeb.4-r0.3.
https:/​/​doi.org/​10.21468/​SciPostPhysCodeb.4-r0.3

[24] Zi-Yong Ge, Yu-Ran Zhang, and Franco Nori. Nonmesonic quantum many-body scars in a 1d lattice gauge theory. Phys. Rev. Lett., 132: 230403, Jun 2024. 10.1103/​PhysRevLett.132.230403. URL https:/​/​doi.org/​10.1103/​PhysRevLett.132.230403.
https:/​/​doi.org/​10.1103/​PhysRevLett.132.230403

[25] Moshe Goldstein and Eran Sela. Symmetry-resolved entanglement in many-body systems. Phys. Rev. Lett., 120: 200602, May 2018. 10.1103/​PhysRevLett.120.200602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.120.200602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.200602

[26] Erik J. Gustafson, Andy C. Y. Li, Abid Khan, Joonho Kim, Doga Murat Kurkcuoglu, M. Sohaib Alam, Peter P. Orth, Armin Rahmani, and Thomas Iadecola. Preparing quantum many-body scar states on quantum computers. Quantum, 7: 1171, Nov 2023. ISSN 2521-327X. 10.22331/​q-2023-11-07-1171. URL https:/​/​doi.org/​10.22331/​q-2023-11-07-1171.
https:/​/​doi.org/​10.22331/​q-2023-11-07-1171

[27] Thomas Iadecola and Michael Schecter. Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals. Phys. Rev. B, 101: 024306, Jan 2020. 10.1103/​PhysRevB.101.024306. URL https:/​/​doi.org/​10.1103/​PhysRevB.101.024306.
https:/​/​doi.org/​10.1103/​PhysRevB.101.024306

[28] Andrew J. A. James, Robert M. Konik, and Neil J. Robinson. Nonthermal states arising from confinement in one and two dimensions. Phys. Rev. Lett., 122: 130603, Apr 2019. 10.1103/​PhysRevLett.122.130603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.122.130603.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.130603

[29] P. I. Karpov, G.-Y. Zhu, M. P. Heller, and M. Heyl. Spatiotemporal dynamics of particle collisions in quantum spin chains. Phys. Rev. Res., 4: L032001, Jul 2022. 10.1103/​PhysRevResearch.4.L032001. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.4.L032001.
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.L032001

[30] Dmitri E. Kharzeev and Eugene M. Levin. Deep inelastic scattering as a probe of entanglement. Phys. Rev. D, 95: 114008, Jun 2017. 10.1103/​PhysRevD.95.114008. URL https:/​/​doi.org/​10.1103/​PhysRevD.95.114008.
https:/​/​doi.org/​10.1103/​PhysRevD.95.114008

[31] I. Klich and L. S. Levitov. Scaling of entanglement entropy and superselection rules, 2008. URL https:/​/​arxiv.org/​abs/​0812.0006.
arXiv:0812.0006

[32] Johannes Knaute, Matan Feuerstein, and Erez Zohar. Entanglement and confinement in lattice gauge theory tensor networks. Journal of High Energy Physics, 2024 (2): 174, 2024. 10.1007/​JHEP02(2024)174. URL https:/​/​doi.org/​10.1007/​JHEP02(2024)174.
https:/​/​doi.org/​10.1007/​JHEP02(2024)174

[33] Marton Kormos, Mario Collura, Gabor Takács, and Pasquale Calabrese. Real-time confinement following a quantum quench to a non-integrable model. Nature Physics, 13 (3): 246–249, 2017. 10.1038/​nphys3934. URL https:/​/​doi.org/​10.1038/​nphys3934.
https:/​/​doi.org/​10.1038/​nphys3934

[34] Gianluca Lagnese, Federica Maria Surace, Márton Kormos, and Pasquale Calabrese. False vacuum decay in quantum spin chains. Phys. Rev. B, 104: L201106, Nov 2021. 10.1103/​PhysRevB.104.L201106. URL https:/​/​doi.org/​10.1103/​PhysRevB.104.L201106.
https:/​/​doi.org/​10.1103/​PhysRevB.104.L201106

[35] Gianluca Lagnese, Federica Maria Surace, Sid Morampudi, and Frank Wilczek. Detecting a long lived false vacuum with quantum quenches, 2023. URL https:/​/​arxiv.org/​abs/​2308.08340.
arXiv:2308.08340

[36] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. Parton physics on a quantum computer. Phys. Rev. Res., 2: 013272, Mar 2020. 10.1103/​PhysRevResearch.2.013272. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013272.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013272

[37] Alessio Lerose, Federica M. Surace, Paolo P. Mazza, Gabriele Perfetto, Mario Collura, and Andrea Gambassi. Quasilocalized dynamics from confinement of quantum excitations. Phys. Rev. B, 102: 041118, Jul 2020. 10.1103/​PhysRevB.102.041118. URL https:/​/​doi.org/​10.1103/​PhysRevB.102.041118.
https:/​/​doi.org/​10.1103/​PhysRevB.102.041118

[38] Fangli Liu, Rex Lundgren, Paraj Titum, Guido Pagano, Jiehang Zhang, Christopher Monroe, and Alexey V. Gorshkov. Confined quasiparticle dynamics in long-range interacting quantum spin chains. Phys. Rev. Lett., 122: 150601, Apr 2019. 10.1103/​PhysRevLett.122.150601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.122.150601.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.150601

[39] Qiaofeng Liu, Ian Low, and Thomas Mehen. Minimal entanglement and emergent symmetries in low-energy qcd. Phys. Rev. C, 107: 025204, Feb 2023. 10.1103/​PhysRevC.107.025204. URL https:/​/​doi.org/​10.1103/​PhysRevC.107.025204.
https:/​/​doi.org/​10.1103/​PhysRevC.107.025204

[40] Paolo Pietro Mazza, Gabriele Perfetto, Alessio Lerose, Mario Collura, and Andrea Gambassi. Suppression of transport in nondisordered quantum spin chains due to confined excitations. Phys. Rev. B, 99: 180302, May 2019. 10.1103/​PhysRevB.99.180302. URL https:/​/​doi.org/​10.1103/​PhysRevB.99.180302.
https:/​/​doi.org/​10.1103/​PhysRevB.99.180302

[41] Barry M. McCoy and Tai Tsun Wu. Two-dimensional ising field theory in a magnetic field: Breakup of the cut in the two-point function. Phys. Rev. D, 18: 1259–1267, Aug 1978. 10.1103/​PhysRevD.18.1259. URL https:/​/​doi.org/​10.1103/​PhysRevD.18.1259.
https:/​/​doi.org/​10.1103/​PhysRevD.18.1259

[42] Ashley Milsted, Junyu Liu, John Preskill, and Guifre Vidal. Collisions of false-vacuum bubble walls in a quantum spin chain. PRX Quantum, 3: 020316, Apr 2022. 10.1103/​PRXQuantum.3.020316. URL https:/​/​doi.org/​10.1103/​PRXQuantum.3.020316.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020316

[43] Sara Murciano, Giuseppe Di Giulio, and Pasquale Calabrese. Entanglement and symmetry resolution in two dimensional free quantum field theories. Journal of High Energy Physics, 2020 (8): 73, 2020. 10.1007/​JHEP08(2020)073. URL https:/​/​doi.org/​10.1007/​JHEP08(2020)073.
https:/​/​doi.org/​10.1007/​JHEP08(2020)073

[44] Sara Murciano, Pasquale Calabrese, and Lorenzo Piroli. Symmetry-resolved page curves. Phys. Rev. D, 106: 046015, Aug 2022. 10.1103/​PhysRevD.106.046015. URL https:/​/​doi.org/​10.1103/​PhysRevD.106.046015.
https:/​/​doi.org/​10.1103/​PhysRevD.106.046015

[45] Sara Murciano, Filiberto Ares, Israel Klich, and Pasquale Calabrese. Entanglement asymmetry and quantum mpemba effect in the xy spin chain. Journal of Statistical Mechanics: Theory and Experiment, (1): 013103, Jan 2024. 10.1088/​1742-5468/​ad17b4. URL https:/​/​dx.doi.org/​10.1088/​1742-5468/​ad17b4.
https:/​/​doi.org/​10.1088/​1742-5468/​ad17b4

[46] Antoine Neven, Jose Carrasco, Vittorio Vitale, Christian Kokail, Andreas Elben, Marcello Dalmonte, Pasquale Calabrese, Peter Zoller, Benoit Vermersch, Richard Kueng, and Barbara Kraus. Symmetry-resolved entanglement detection using partial transpose moments. npj Quantum Information, 7 (1): 152, 2021. 10.1038/​s41534-021-00487-y. URL https:/​/​doi.org/​10.1038/​s41534-021-00487-y.
https:/​/​doi.org/​10.1038/​s41534-021-00487-y

[47] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2011. ISBN 9781107002173. https:/​/​doi.org/​10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[48] Maike Ostmann, Matteo Marcuzzi, Juan P. Garrahan, and Igor Lesanovsky. Localization in spin chains with facilitation constraints and disordered interactions. Phys. Rev. A, 99: 060101, Jun 2019. 10.1103/​PhysRevA.99.060101. URL https:/​/​doi.org/​10.1103/​PhysRevA.99.060101.
https:/​/​doi.org/​10.1103/​PhysRevA.99.060101

[49] O. Pomponio, M. A. Werner, G. Zarand, and G. Takacs. Bloch oscillations and the lack of the decay of the false vacuum in a one-dimensional quantum spin chain. SciPost Phys., 12: 061, 2022. 10.21468/​SciPostPhys.12.2.061. URL https:/​/​doi.org/​10.21468/​SciPostPhys.12.2.061.
https:/​/​doi.org/​10.21468/​SciPostPhys.12.2.061

[50] Nishan Ranabhat, Alessandro Santini, Emanuele Tirrito, and Mario Collura. Dynamical deconfinement transition driven by density of excitations, 2023. URL https:/​/​arxiv.org/​abs/​2310.02320.
arXiv:2310.02320

[51] Aniket Rath, Vittorio Vitale, Sara Murciano, Matteo Votto, Jérôme Dubail, Richard Kueng, Cyril Branciard, Pasquale Calabrese, and Benoit Vermersch. Entanglement barrier and its symmetry resolution: Theory and experimental observation. PRX Quantum, 4: 010318, Feb 2023. 10.1103/​PRXQuantum.4.010318. URL https:/​/​doi.org/​10.1103/​PRXQuantum.4.010318.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.010318

[52] Neil J. Robinson, Andrew J. A. James, and Robert M. Konik. Signatures of rare states and thermalization in a theory with confinement. Phys. Rev. B, 99: 195108, May 2019. 10.1103/​PhysRevB.99.195108. URL https:/​/​doi.org/​10.1103/​PhysRevB.99.195108.
https:/​/​doi.org/​10.1103/​PhysRevB.99.195108

[53] S. B. Rutkevich. Decay of the metastable phase in $d=1$ and $d=2$ ising models. Phys. Rev. B, 60: 14525–14528, Dec 1999. 10.1103/​PhysRevB.60.14525. URL https:/​/​doi.org/​10.1103/​PhysRevB.60.14525.
https:/​/​doi.org/​10.1103/​PhysRevB.60.14525

[54] SB Rutkevich. Energy spectrum of bound-spinons in the quantum ising spin-chain ferromagnet. Journal of Statistical Physics, 131 (5): 917–939, 2008. 10.1007/​s10955-008-9495-1. URL https:/​/​doi.org/​10.1007/​s10955-008-9495-1.
https:/​/​doi.org/​10.1007/​s10955-008-9495-1

[55] Stefano Scopa, Pasquale Calabrese, and Alvise Bastianello. Entanglement dynamics in confining spin chains. Phys. Rev. B, 105: 125413, Mar 2022. 10.1103/​PhysRevB.105.125413. URL https:/​/​doi.org/​10.1103/​PhysRevB.105.125413.
https:/​/​doi.org/​10.1103/​PhysRevB.105.125413

[56] Alejandro Sopena, Max Hunter Gordon, Germán Sierra, and Esperanza López. Simulating quench dynamics on a digital quantum computer with data-driven error mitigation. Quantum Science and Technology, 6: 045003, July 2021. 10.1088/​2058-9565/​ac0e7a. URL https:/​/​dx.doi.org/​10.1088/​2058-9565/​ac0e7a.
https:/​/​doi.org/​10.1088/​2058-9565/​ac0e7a

[57] Roberto Verdel, Fangli Liu, Seth Whitsitt, Alexey V. Gorshkov, and Markus Heyl. Real-time dynamics of string breaking in quantum spin chains. Phys. Rev. B, 102: 014308, Jul 2020. 10.1103/​PhysRevB.102.014308. URL https:/​/​doi.org/​10.1103/​PhysRevB.102.014308.
https:/​/​doi.org/​10.1103/​PhysRevB.102.014308

[58] Roberto Verdel, Guo-Yi Zhu, and Markus Heyl. Dynamical localization transition of string breaking in quantum spin chains. Phys. Rev. Lett., 131: 230402, Dec 2023. 10.1103/​PhysRevLett.131.230402. URL https:/​/​doi.org/​10.1103/​PhysRevLett.131.230402.
https:/​/​doi.org/​10.1103/​PhysRevLett.131.230402

[59] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93: 207204, Nov 2004. 10.1103/​PhysRevLett.93.207204. URL https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204

[60] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett., 93: 040502, Jul 2004. 10.1103/​PhysRevLett.93.040502. URL https:/​/​doi.org/​10.1103/​PhysRevLett.93.040502.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.040502

[61] Vittorio Vitale, Andreas Elben, Richard Kueng, Antoine Neven, Jose Carrasco, Barbara Kraus, Peter Zoller, Pasquale Calabrese, Benoit Vermersch, and Marcello Dalmonte. Symmetry-resolved dynamical purification in synthetic quantum matter. SciPost Phys., 12: 106, 2022. 10.21468/​SciPostPhys.12.3.106. URL https:/​/​doi.org/​10.21468/​SciPostPhys.12.3.106.
https:/​/​doi.org/​10.21468/​SciPostPhys.12.3.106

[62] Joseph Vovrosh and Johannes Knolle. Confinement and entanglement dynamics on a digital quantum computer. Sci. Rep., 11 (1): 11577, 2021. 10.1038/​s41598-021-90849-5.
https:/​/​doi.org/​10.1038/​s41598-021-90849-5

[63] Joseph Vovrosh, Rick Mukherjee, Alvise Bastianello, and Johannes Knolle. Dynamical hadron formation in long-range interacting quantum spin chains. PRX Quantum, 3: 040309, Oct 2022. 10.1103/​PRXQuantum.3.040309. URL https:/​/​doi.org/​10.1103/​PRXQuantum.3.040309.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.040309

[64] Steven R. White and Adrian E. Feiguin. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett., 93: 076401, Aug 2004. 10.1103/​PhysRevLett.93.076401. URL https:/​/​doi.org/​10.1103/​PhysRevLett.93.076401.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.076401

[65] Kenneth G. Wilson. Confinement of quarks. Phys. Rev. D, 10: 2445–2459, Oct 1974. 10.1103/​PhysRevD.10.2445. URL https:/​/​doi.org/​10.1103/​PhysRevD.10.2445.
https:/​/​doi.org/​10.1103/​PhysRevD.10.2445

[66] Zhao Zhang, Kirill Amelin, Xiao Wang, Haiyuan Zou, Jiahao Yang, Urmas Nagel, Toomas Rõ om, Tusharkanti Dey, Agustinus Agung Nugroho, Thomas Lorenz, Jianda Wu, and Zhe Wang. Observation of ${E}_{8}$ particles in an ising chain antiferromagnet. Phys. Rev. B, 101: 220411, Jun 2020. 10.1103/​PhysRevB.101.220411. URL https:/​/​doi.org/​10.1103/​PhysRevB.101.220411.
https:/​/​doi.org/​10.1103/​PhysRevB.101.220411

[67] Haiyuan Zou, Yi Cui, Xiao Wang, Z. Zhang, J. Yang, G. Xu, A. Okutani, M. Hagiwara, M. Matsuda, G. Wang, Giuseppe Mussardo, K. Hódsági, M. Kormos, Zhangzhen He, S. Kimura, Rong Yu, Weiqiang Yu, Jie Ma, and Jianda Wu. ${E}_{8}$ spectra of quasi-one-dimensional antiferromagnet ${\mathrm{baco}}_{2}{\mathrm{v}}_{2}{\mathrm{o}}_{8}$ under transverse field. Phys. Rev. Lett., 127: 077201, Aug 2021. 10.1103/​PhysRevLett.127.077201. URL https:/​/​doi.org/​10.1103/​PhysRevLett.127.077201.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.077201

Cited by

[1] Michele Fossati, Filiberto Ares, Jérôme Dubail, and Pasquale Calabrese, "Entanglement asymmetry in CFT and its relation to non-topological defects", Journal of High Energy Physics 2024 5, 59 (2024).

[2] Shuo Liu, Hao-Kai Zhang, Shuai Yin, and Shi-Xin Zhang, "Symmetry restoration and quantum Mpemba effect in symmetric random circuits", arXiv:2403.08459, (2024).

[3] Fabio Caceffo, Sara Murciano, and Vincenzo Alba, "Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems", Journal of Statistical Mechanics: Theory and Experiment 2024 6, 063103 (2024).

[4] Konstantinos Chalas, Filiberto Ares, Colin Rylands, and Pasquale Calabrese, "Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect", arXiv:2405.04436, (2024).

[5] Lata Kh. Joshi, Johannes Franke, Aniket Rath, Filiberto Ares, Sara Murciano, Florian Kranzl, Rainer Blatt, Peter Zoller, Benoît Vermersch, Pasquale Calabrese, Christian F. Roos, and Manoj K. Joshi, "Observing the Quantum Mpemba Effect in Quantum Simulations", Physical Review Letters 133 1, 010402 (2024).

[6] Marco Lastres, Sara Murciano, Filiberto Ares, and Pasquale Calabrese, "Entanglement asymmetry in the critical XXZ spin chain", arXiv:2407.06427, (2024).

[7] Shion Yamashika, Filiberto Ares, and Pasquale Calabrese, "Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems", Physical Review B 110 8, 085126 (2024).

[8] Filiberto Ares, Vittorio Vitale, and Sara Murciano, "The quantum Mpemba effect in free-fermionic mixed states", arXiv:2405.08913, (2024).

[9] Jack Y. Araz, Siddhanth Bhowmick, Matt Grau, Thomas J. McEntire, and Felix Ringer, "State preparation of lattice field theories using quantum optimal control", arXiv:2407.17556, (2024).

[10] Katja Klobas, Colin Rylands, and Bruno Bertini, "Translation symmetry restoration under random unitary dynamics", arXiv:2406.04296, (2024).

[11] Jack Y. Araz, Raghav G. Jha, Felix Ringer, and Bharath Sambasivam, "Thermal state preparation of the SYK model using a variational quantum algorithm", arXiv:2406.15545, (2024).

[12] Xhek Turkeshi, Pasquale Calabrese, and Andrea De Luca, "Quantum Mpemba Effect in Random Circuits", arXiv:2405.14514, (2024).

[13] Johannes Knaute, Matan Feuerstein, and Erez Zohar, "Entanglement and confinement in lattice gauge theory tensor networks", Journal of High Energy Physics 2024 2, 174 (2024).

[14] Alessandro Foligno, Pasquale Calabrese, and Bruno Bertini, "Non-equilibrium dynamics of charged dual-unitary circuits", arXiv:2407.21786, (2024).

[15] Shuo Liu, Hao-Kai Zhang, Shuai Yin, Shi-Xin Zhang, and Hong Yao, "Quantum Mpemba effects in many-body localization systems", arXiv:2408.07750, (2024).

[16] Katja Klobas, "Non-equilibrium dynamics of symmetry-resolved entanglement and entanglement asymmetry: Exact asymptotics in Rule 54", arXiv:2407.21793, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-09 10:08:55). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-09 10:08:53).