Network quantum steering enables randomness certification without seed randomness

Shubhayan Sarkar

Laboratoire d’Information Quantique, Université libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum networks with multiple sources allow the observation of quantum nonlocality without inputs. Consequently, the incompatibility of measurements is not a necessity for observing quantum nonlocality when one has access to multiple quantum sources. Here we investigate the minimal scenario without inputs where one can observe any form of quantum nonlocality. We show that even two parties with two sources that might be classically correlated can witness a form of quantum nonlocality, in particular quantum steering, in networks without inputs if one of the parties is trusted, that is, performs a fixed known measurement. We term this effect as swap-steering. The scenario presented in this work is minimal to observe such an effect. Consequently, a scenario exists where one can observe quantum steering but not Bell non-locality. We further construct a linear witness to observe swap-steering. Interestingly, this witness enables self-testing of the quantum states generated by the sources and the local measurement of the untrusted party. This in turn allows certifying two bits of randomness that can be obtained from the measurement outcomes of the untrusted device without the requirement of initially feeding the device with randomness.

Quantum networks with multiple sources can demonstrate quantum nonlocality without requiring inputs. Our research identifies the simplest setup to observe this effect: two parties using two possibly classically correlated sources, with one party performing a known measurement. This setup reveals "swap-steering," a form of quantum steering that can be observed even when one can not observe non-locality. We developed a method to detect swap-steering, enabling the self-testing of quantum states and local measurements. This also certifies two bits of randomness from the measurement outcomes without needing initial randomness, showcasing new possibilities for practical quantum information processing.

► BibTeX data

► References

[1] Antonio Acín, Stefano Pironio, Tamás Vértesi, and Peter Wittek, ``Optimal randomness certification from one entangled bit'' Phys. Rev. A 93, 040102 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.040102

[2] Alain Aspect, Jean Dalibard, and Gérard Roger, ``Experimental Test of Bell's Inequalities Using Time-Varying Analyzers'' Phys. Rev. Lett. 49, 1804–1807 (1982).
https:/​/​doi.org/​10.1103/​PhysRevLett.49.1804

[3] Alain Aspect, Philippe Grangier, and Gérard Roger, ``Experimental Tests of Realistic Local Theories via Bell's Theorem'' Phys. Rev. Lett. 47, 460–463 (1981).
https:/​/​doi.org/​10.1103/​PhysRevLett.47.460

[4] Ole Andersson, Piotr Badziąg, Irina Dumitru, and Adán Cabello, ``Device-independent certification of two bits of randomness from one entangled bit and Gisin's elegant Bell inequality'' Phys. Rev. A 97, 012314 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.012314

[5] J. S. Bell ``On the Einstein Podolsky Rosen paradox'' Physics Physique Fizika 1, 195–200 (1964).
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[6] John S. Bell ``On the Problem of Hidden Variables in Quantum Mechanics'' Rev. Mod. Phys. 38, 447–452 (1966).
https:/​/​doi.org/​10.1103/​RevModPhys.38.447

[7] C. Branciard, N. Gisin, and S. Pironio, ``Characterizing the Nonlocal Correlations Created via Entanglement Swapping'' Phys. Rev. Lett. 104, 170401 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.104.170401

[8] Jakub J. Borkała, Chellasamy Jebarathinam, Shubhayan Sarkar, and Remigiusz Augusiak, ``Device-Independent Certification of Maximal Randomness from Pure Entangled Two-Qutrit States Using Non-Projective Measurements'' Entropy 24 (2022).
https:/​/​doi.org/​10.3390/​e24030350

[9] Joseph Bowles, Flavien Hirsch, Marco Túlio Quintino, and Nicolas Brunner, ``Sufficient criterion for guaranteeing that a two-qubit state is unsteerable'' Phys. Rev. A 93, 022121 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.022121

[10] Cyril Branciard, Denis Rosset, Nicolas Gisin, and Stefano Pironio, ``Bilocal versus nonbilocal correlations in entanglement-swapping experiments'' Phys. Rev. A 85, 032119 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.85.032119

[11] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner, ``Bell nonlocality'' Rev. Mod. Phys. 86, 419–478 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.419

[12] F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acín, ``Unbounded randomness certification using sequences of measurements'' Phys. Rev. A 95, 020102 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.020102

[13] A. Einstein, B. Podolsky, and N. Rosen, ``Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?'' Phys. Rev. 47, 777–780 (1935).
https:/​/​doi.org/​10.1103/​PhysRev.47.777

[14] Serge Fehr, Ran Gelles, and Christian Schaffner, ``Security and composability of randomness expansion from Bell inequalities'' Phys. Rev. A 87, 012335 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.012335

[15] Tobias Fritz ``Beyond Bell's theorem: correlation scenarios'' New Journal of Physics 14, 103001 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​10/​103001

[16] Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger, ``Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons'' Phys. Rev. Lett. 115, 250401 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250401

[17] S. Gómez, A. Mattar, I. Machuca, E. S. Gómez, D. Cavalcanti, O. Jiménez Farías, A. Acín, and G. Lima, ``Experimental investigation of partially entangled states for device-independent randomness generation and self-testing protocols'' Phys. Rev. A 99, 032108 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.032108

[18] Alexandru Gheorghiu, Petros Wallden, and Elham Kashefi, ``Rigidity of quantum steering and one-sided device-independent verifiable quantum computation'' New J. Phys. 19, 023043 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa5cff

[19] Benjamin D. M. Jones, Ivan Šupić, Roope Uola, Nicolas Brunner, and Paul Skrzypczyk, ``Network Quantum Steering'' Phys. Rev. Lett. 127, 170405 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.170405

[20] Jędrzej Kaniewski, Ivan Šupić, Jordi Tura, Flavio Baccari, Alexia Salavrakos, and Remigiusz Augusiak, ``Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems'' Quantum 3, 198 (2019).
https:/​/​doi.org/​10.22331/​q-2019-10-24-198

[21] O Nieto-Silleras, S Pironio, and J Silman, ``Using complete measurement statistics for optimal device-independent randomness evaluation'' New Journal of Physics 16, 013035 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​1/​013035

[22] Alejandro Pozas-Kerstjens, Nicolas Gisin, and Marc-Olivier Renou, ``Proofs of Network Quantum Nonlocality in Continuous Families of Distributions'' Phys. Rev. Lett. 130, 090201 (2023).
https:/​/​doi.org/​10.1103/​PhysRevLett.130.090201

[23] S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, ``Random numbers certified by Bell's theorem'' Nature 464, 1021–1024 (2010).
https:/​/​doi.org/​10.1038/​nature09008

[24] Marc-Olivier Renouand Salman Beigi ``Nonlocality for Generic Networks'' Phys. Rev. Lett. 128, 060401 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.060401

[25] Marc-Olivier Renou, Elisa Bäumer, Sadra Boreiri, Nicolas Brunner, Nicolas Gisin, and Salman Beigi, ``Genuine Quantum Nonlocality in the Triangle Network'' Phys. Rev. Lett. 123, 140401 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.140401

[26] Marc-Olivier Renou, Jedrzej Kaniewski, and Nicolas Brunner, ``Self-Testing Entangled Measurements in Quantum Networks'' Phys. Rev. Lett. 121, 250507 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.250507

[27] Shubhayan Sarkar, Debashis Saha, Jędrzej Kaniewski, and Remigiusz Augusiak, npj Quantum Information 7, 151 (2021).
https:/​/​doi.org/​10.1038/​s41534-021-00490-3

[28] Shubhayan Sarkar, Jakub J. Borkała, Chellasamy Jebarathinam, Owidiusz Makuta, Debashis Saha, and Remigiusz Augusiak, ``Self-Testing of any Pure Entangled State with the Minimal Number of Measurements and Optimal Randomness Certification in a One-Sided Device-Independent Scenario'' Phys. Rev. Appl. 19, 034038 (2023).
https:/​/​doi.org/​10.1103/​PhysRevApplied.19.034038

[29] Shubhayan Sarkar, Chandan Datta, Saronath Halder, and Remigiusz Augusiak, ``Self-testing composite measurements and bound entangled state in a unified framework'' (2023).
https:/​/​doi.org/​10.48550/​arXiv.2301.11409
arXiv:2301.11409

[30] Shubhayan Sarkar ``Certification of the maximally entangled state using nonprojective measurements'' Phys. Rev. A 107, 032408 (2023).
https:/​/​doi.org/​10.1103/​PhysRevA.107.032408

[31] Shubhayan Sarkar ``Causal links between operationally independent events in quantum theory'' Physical Review A 109 (2024).
https:/​/​doi.org/​10.1103/​physreva.109.l040202

[32] Shubhayan Sarkar ``Witnessing network steerability of every bipartite entangled state without inputs'' (2024).
https:/​/​doi.org/​10.48550/​arXiv.2406.11994
arXiv:2406.11994

[33] Ivan Šupićand Nicolas Brunner ``Self-testing nonlocality without entanglement'' Physical Review A 107 (2023).
https:/​/​doi.org/​10.1103/​physreva.107.062220

[34] Ivan Šupi ć, Jean-Daniel Bancal, and Nicolas Brunner, ``Quantum Nonlocality in Networks Can Be Demonstrated with an Arbitrarily Small Level of Independence between the Sources'' Phys. Rev. Lett. 125, 240403 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.240403

[35] Pavel Sekatski, Sadra Boreiri, and Nicolas Brunner, ``Partial Self-Testing and Randomness Certification in the Triangle Network'' Phys. Rev. Lett. 131, 100201 (2023).
https:/​/​doi.org/​10.1103/​PhysRevLett.131.100201

[36] E. Schrödinger ``Discussion of Probability Relations between Separated Systems'' Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563 (1935).
https:/​/​doi.org/​10.1017/​S0305004100013554

[37] Ivan Šupićand Matty J Hoban ``Self-testing through EPR-steering'' New J. Phys. 18, 075006 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​7/​075006

[38] Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, Peter Bierhorst, Michael A. Wayne, Martin J. Stevens, Thomas Gerrits, Scott Glancy, Deny R. Hamel, Michael S. Allman, Kevin J. Coakley, Shellee D. Dyer, Carson Hodge, Adriana E. Lita, Varun B. Verma, Camilla Lambrocco, Edward Tortorici, Alan L. Migdall, Yanbao Zhang, Daniel R. Kumor, William H. Farr, Francesco Marsili, Matthew D. Shaw, Jeffrey A. Stern, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Thomas Jennewein, Morgan W. Mitchell, Paul G. Kwiat, Joshua C. Bienfang, Richard P. Mirin, Emanuel Knill, and Sae Woo Nam, ``Strong Loophole-Free Test of Local Realism'' Phys. Rev. Lett. 115, 250402 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250402

[39] Shubhayan Sarkar, Debashis Saha, and Remigiusz Augusiak, ``Certification of incompatible measurements using quantum steering'' Phys. Rev. A 106, L040402 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.106.L040402

[40] Ivan Šupić, Remiguisz Augusiak, Alexia Salavrakos, and Antonio Acín, ``Self-testing protocols based on the chained Bell inequalities'' New J. Phys. 18, 035013 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​035013

[41] Ivan Šupić, Jean-Daniel Bancal, Yu Cai, and Nicolas Brunner, ``Genuine network quantum nonlocality and self-testing'' Phys. Rev. A 105, 022206 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.022206

[42] Ivan Šupić, Joseph Bowles, Marc-Olivier Renou, Antonio Acín, and Matty J. Hoban, ``Quantum networks self-test all entangled states'' Nature Physics 19, 670–675 (2023).
https:/​/​doi.org/​10.1038/​s41567-023-01945-4

[43] Armin Tavakoli, Máté Farkas, Denis Rosset, Jean-Daniel Bancal, and Jedrzej Kaniewski, ``Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments'' Science Advances 7 (2021).
https:/​/​doi.org/​10.1126/​sciadv.abc3847

[44] Reinhard F. Werner ``Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model'' Phys. Rev. A 40, 4277–4281 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.40.4277

[45] H. M. Wiseman, S. J. Jones, and A. C. Doherty, ``Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox'' Phys. Rev. Lett. 98, 140402 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.140402

[46] Qing Zhou, Xin-Yu Xu, Shuai Zhao, Yi-Zheng Zhen, Li Li, Nai-Le Liu, and Kai Chen, ``Robust self-testing of multipartite Greenberger-Horne-Zeilinger-state measurements in quantum networks'' Phys. Rev. A 106, 042608 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.106.042608

[47] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ````Event-ready-detectors'' Bell experiment via entanglement swapping'' Phys. Rev. Lett. 71, 4287–4290 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.71.4287

Cited by

[1] Abhishek Sadhu and Siddhartha Das, "Quantum steering under constrained free-will", arXiv:2406.13494, (2024).

[2] Shubhayan Sarkar, "Witnessing network steerability of every bipartite entangled state without inputs", arXiv:2406.11994, (2024).

[3] Shubhayan Sarkar, "Causal links between operationally independent events in quantum theory", Physical Review A 109 4, L040202 (2024).

[4] Shubhayan Sarkar, Alexandre C. Orthey, Gautam Sharma, and Remigiusz Augusiak, "Almost device-independent certification of GME states with minimal measurements", arXiv:2402.18522, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-08 04:01:01). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-08 04:01:00).