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Dissipation induced by interactions with
an external environment typically hinders
the performance of quantum computation,
but in some cases can prove to be a useful
resource. In the field of quantum reser-
voir computing, we show the advantages
induced by dissipation when tunable local
losses are introduced into models of spin
networks. Our approach, based on contin-
uous dissipation, is compared with exist-
ing quantum reservoir computing models
based on discontinuous erasing maps. A
clear improvement in the computational
capabilities of the system is shown, as
tested in different benchmark tasks involv-
ing linear and nonlinear memory as well
as forecasting capacity. The effect of finite
ensembles is also addressed. Finally, we
formally prove that, under non-restrictive
conditions, our dissipative models form
a universal class for reservoir computing.
This means that they can approximate any
fading memory map with arbitrary preci-
sion.

1 Introduction

Quantum science holds promise to revolution-
ize the technological perspectives in fields such
as computing [1, 2], communication [3], sensing
[4], or cryptography [5]. In particular, the intro-
duction of quantum logic allows the development
of algorithms that outperform the corresponding
classical ones [6, 7, 8, 9, 10], with broad and in-
terdisciplinary applications in chemistry [11], fi-
nance [12, 13] and machine learning [14]. Still,
the experimental implementation of these algo-
rithms is a challenging task with state-of-the-art
technology [15, 16]. Currently, available devices
mostly rely on a few (up to hundreds) of noisy
qubits, an obstacle that must be overcome to

achieve a quantum advantage in “real world” com-
putational problems or quantum error correction.

A common problem is that dissipation, caused
by the interaction between qubits and the exter-
nal environment, produces decoherence phenom-
ena that hinder fragile quantum resources. Dis-
sipation, however, can be turned into a positive
computational resource in some cases as for dis-
sipation engineering, which exploits the system-
environment interaction as an integral part of the
computation process [17] and for quantum mem-
ories [18]. Applications range from quantum con-
trol [19] to non-equilibrium quantum thermody-
namics [20, 21], quantum biology [22] or quantum
synchronization [23, 24]. The aim of this work is
to establish the beneficial effect of tunable dissi-
pation on quantum machine learning and, in par-
ticular, on the field of quantum reservoir comput-
ing (QRC) [25].

Reservoir computing (RC) is a machine learn-
ing method rooted in Recurrent Neural Networks
and is particularly suited for time series process-
ing [26]. Classical RC was initially proposed as
Liquid State Machines [27] and Echo State Net-
works [28] and later generalized to include a broad
spectrum of physical implementations [29]. Two
important advantages of RC are the simplicity of
the training process, which requires only linear re-
gression optimization rather than the gradient de-
scent procedures of traditional neural networks,
and the ability to multitask. RC is now well-
established as a powerful analog neuromorphic
method in classical machine learning. Success-
ful experimental realizations of temporal process-
ing with RC and applications have been reported
in the last years, including electronic, spintronic,
and photonic systems [30, 31, 32, 33].

Recently, this supervised machine learning ap-
proach has been proposed in quantum substrates
[25] to solve both classical [34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46] and quantum tasks [47,
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48, 49, 50, 51, 52, 53], in platforms as diverse as
spin networks [34, 35, 36, 37, 38, 39], fermionic
setups [48, 49], continuous-variable bosonic os-
cillators [40, 41, 42, 53], superconducting qubits
quantum computers [43, 44, 45] and photonic in-
tegrated circuits [46]. The main motivation for
this burgeoning interest is that the superposition
principle allows quantum reservoirs to reach an
exponential advantage over the classical ones in
terms of the number of degrees of freedom. Evi-
dence of this feature has been observed and quan-
tified in QRC through the Information Processing
Capacity [54] with spins [38] and with Gaussian
networks as well [41]. However, taking advantage
of all the degrees of freedom in a real experiment,
as discussed in Refs. [55, 56, 57] and in Sec. 5.1,
is a non-trivial task due to the limitations im-
posed by the finite number of measurement sam-
ples available.

In spite of the variety of dynamical systems
that can serve RC purposes, there are some key
features needed for temporal series processing in
this architecture (formally defined in Sec. 3). In
a nutshell, the system is required to store some
past input information (fading memory) and to
forget its initial conditions (echo state property).
For quantum RC, it is known that the presence
of dissipation is a necessary feature [34, 36] and,
consequently, all the proposed QRC frameworks
contain some dissipation.

The pioneering work of Fuji and Nakajima
(FN) is based on a spin-network QRC scheme
[34] and a discrete erase-and-write map. This
alternates a unitary evolution followed by an in-
stantaneous input encoding (resetting one qubit).
The erasure can be realized via a local dissipa-
tion restricted to the input node(s) and mod-
eled by a Lindblad master equation (Sec. 2 and
Appendix A). An alternative paradigm for QRC
that we propose is based on the presence of en-
gineered losses for each of the spin nodes, giving
rise to continuous dissipation (CD), acting at all
times, and on a continuous input drive obtained
by tuning an external magnetic field. We will
show that the degree of adaptability of such a
tailored dissipation allows the system to optimize
its performance according to the task faced, thus
outperforming the FN model, where the control
over dissipation is very low. Furthermore, we will
demonstrate that the CD model achieves univer-
sal QRC, which means that any generic task to

be solved with RC can be arbitrarily well approx-
imated by considering only these kinds of models.

The paper is structured as follows: in Sec. 2,
we review the FN model and introduce the CD
one, discussing its universality in Sec. 3; in Sec.
4.1, we analyze the memory properties of such
models while in Sec. 4.2 we test them in time-
series forecasting tasks; in Sec. 5, we study the ef-
fects of limiting the number of measurement sam-
ples on the performance of the systems, and we
present possible experimental platforms for im-
plementing the CD model; finally, discussion and
conclusions are given in Sec. 6.

2 Quantum reservoirs

According to the RC theory, a general model of a
reservoir must satisfy some necessary conditions
to operate. One is the echo state property, which
consists of the disappearance of the dependence
of the initial condition on the reservoir dynamics
over time [58]. This is a necessary feature because
otherwise, the training phase would also have to
consider the initial state choice, making the whole
procedure inefficient. Furthermore, a proper RC
system needs fading memory to process the in-
formation of a time series without requiring an
infinite amount of physical resources [59]. There-
fore, in the quantum case, dissipation is a crucial
feature to satisfy these two conditions [36]. Fi-
nally, an RC model must also be able to discrim-
inate between different input sequences in order
to adapt its behavior to the particular problem
of interest [60]. We will formalize and contextu-
alize all these features for our case study in Ap-
pendix B. In this section, we will consider two dif-
ferent quantum reservoir computers focusing on
the role played by dissipation in their functioning
and performance. In all the cases, we will con-
sider spin network-like reservoir systems, whose
output layer is given by a linear combination of
local and/or global observables. Moreover, as we
will show, all the models presented are designed
to process discrete-time signals.

Let us start our discussion by recalling the first
model of QRC introduced by Fuji and Nakajima
(FN) in Ref. [34] and based on a transverse-field
Ising model characterized by the Hamiltonian

H =
N∑

i<j

Jijσ
x
i σ

x
j + h

N∑
i=1

σz
i , (1)
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where the i, j label the sites of the network, σa
i

(a = x, y, z) are the Pauli matrices acting on the
i-th site, h is the value of the homogeneous mag-
netic field and Jij is the spin-spin coupling fol-
lowing a uniform distribution in a pre-determined
interval [−Js, Js]. We will consider a real input
sequence of length M , {sk}M

k=1, and rescaled, so
that sk ∈ [0, 1] ∀k. The FN updating rule of the
reservoir is obtained by feeding the input to the
state of one qubit of the network, for the sake
of the definiteness we say the first one. In par-
ticular, the state of the first qubit is prepared in
an input-dependent coherent superposition ρ(1)

k =
|ψsk

⟩ ⟨ψsk
| where |ψsk

⟩ =
√

1 − sk |0⟩ + √
sk |1⟩

(see [61] for a discussion of this and different
encoding effects). Then, the system unitarily
evolves for a certain interval of time ∆t, only fol-
lowing the dynamics generated by the Hamilto-
nian H. The complete update rule is:

ρk+1 = e−iH∆tρ
(1)
k+1 ⊗ Tr(1){ρk}eiH∆t (2)

where Tr(1){·} is the partial trace over the first
qubit and e−iH∆t is the time evolution operator,
assumed as unitary between the input injections.
Still, the map (2) exhibits dissipation and deco-
herence and this occurs instantaneously at each
input injection (as modeled by the partial trace).

A natural way to experimentally realize such
injection on a NISQ device consists of realizing a
measurement on the first spin and, subsequently,
setting its state with a quantum gate conditioned
by its outcome. In digital implementations like
the IBM quantum computer, the reset of qubits
after a measure is a recently implemented feature
[62] although it is rather slow and then suscepti-
ble to uncontrollable decoherence [63].

Let us instead consider an alternative QRC ap-
proach characterized by interactions with an ex-
ternal environment under Markovian conditions.
The most general time evolution of a density
matrix is described by the Gorini-Kossakowski-
Sudarshan-Lindblad (GKLS) Master Equation
[64, 65, 66]:

ρ̇ = L[ρ] ≡ −i[H, ρ] +
∑

i

γi(LiρL
†
i − 1

2{L†
iLi, ρ})

(3)
where {γi} are the decay rates of the qubits
in each external environment and the operators
{Li}, called jump operators, identify the environ-
ment action on the qubits. In Eq. (3), we identify

unitary U and dissipative D superoperators:

ρ̇ = (U + D)[ρ]

with U[ρ] = −i[H, ρ] and D[ρ] equal to the re-
maining (Lindbladian) term. We will consider
dissipation leading to local losses (i.e. indepen-
dent losses at each of the N reservoir nodes) mod-
eled by N jump operators Li = σ−

i ≡ 1
2(σx

i −iσy
i ).

We notice that this model adequately accounts
for Markovian dissipation in independent baths
whenever the interaction between reservoir nodes
is weak (for a more accurate discussion see [67]).
Furthermore, protocols to engineer a Lindbladian
with these characteristics are also known [17]. In
Appendix A, we show how dissipation acting lo-
cally on the first oscillator leads to an evolution
that is able to reproduce the FN map (2).

Let us now introduce a different model of quan-
tum reservoir computing characterized by contin-
uous dissipation (CD) where the input is injected
into the system through temporal driving, vary-
ing a Hamiltonian parameter. We consider, in
particular, a variable magnetic field modulated
in the x-direction into the Hamiltonian (1):

H
′ =

N∑
i<j

Jijσ
x
i σ

x
j + h

N∑
i=1

σz
i + h′(t)

N∑
i=1

σx
i , (4)

where the spin-spin coupling coefficients are ran-
domly chosen from a uniform distribution in
[−Js, Js] as in Eq. (1). The time-dependent
h′(t) encodes the input time series and coher-
ently modifies the evolution of the reservoir. For
each input sk ∈ [0, 1], driving persists for a cer-
tain interval ∆t according to the assignment rule
h′

k(t) = h · (sk + 1). As dissipation is required for
QRC [36], the unitary dynamics generated by the
Hamiltonian (4) will not be sufficient for our pur-
poses. The simplest kind of dissipation we can
introduce consists of adding local, uniform losses
to the reservoir nodes (γi = γ ∀i). We will see
that the decay rate γ strongly affects the mem-
ory and computational properties of the system.
During each time interval, the reservoir dynamics
is governed by

ρ̇ = −i[H ′
k, ρ] + DL[ρ] (5)

where the local (L) dissipator is given by DL[ρ] ≡
γ
∑

i(σ−
i ρσ

+
i − 1

2{σ+
i σ

−
i , ρ}) and where H ′

k =
H ′(h′

k). Therefore, in this case, U and DL are
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functions of the input and γ respectively and the
updating rule of the reservoir is:

ρk+1 = e[U(sk+1)+DL(γ)]∆tρk ≡ eL̄(sk+1)∆tρk (6)

where the specific choice of continuous-
dissipation and input-driven dynamics is
distinguished by the bar in L̄. A schematic
representation of this CD model is shown in Fig.
1.

3 Universality

As anticipated in Sec. 2, a reservoir computing
model, to properly work, must fulfill a set of nec-
essary features, namely the echo state property
[58], fading memory [59] and input separability
[60]. These properties clearly determine the class
of problems that this machine-learning paradigm
is designed to solve. A reservoir computing model
is universal if it exhibits these properties. Then,
in principle, its outputs can reproduce any fading
memory map arbitrarily well [27, 68, 43, 41]. In-
deed, as in other contexts, universality refers to
the capability of a class of systems (reservoir com-
puters here) to approximate any map in a much
larger class, with arbitrary precision.

As one of our main results, in Appendix B,
we prove that the proposed CD model has the
universality property. Previous results of univer-
sal QRC in other settings have been reported in
Refs. [36, 41]. Beyond the specific model pro-
posed here, our proof can be applied to a wider
class of quantum reservoirs that evolve according
to a master equation. In short, we showed that if
a generic input-dependent generator L(sk) (i) ad-
mits only one stationary state, (ii) is a continuous
function of sk and (iii) takes different stationary
states for different inputs, then the correspond-
ing quantum reservoir model, for a value of ∆t
sufficiently long, is universal. Interestingly, these
general conditions can be used for finding new
quantum reservoir models even beyond spin net-
work implementations.

4 Computational benchmark tasks

We now proceed to numerically evaluate the com-
puting performance of the FN and CD models.
We will tackle two families of benchmark tasks
that usually appear in the RC literature, namely

Figure 1: Schematic of the CD model proposed in Eq.
(6): spin network (with Hamiltonian H ′ given in Eq.
(4)) with uniform losses at rate γ governed by DL. The
discrete input (bottom right) is injected uniformly into
the network nodes through a time-dependent magnetic
field (bottom left). The output layer is constructed by
measuring a portion of the observables of the density
matrix of the reservoir.

memory and forecasting tasks. We set the reser-
voir to N = 5 spins, which implies a density
matrix with a number of elements ∼ 45. This
reservoir size allows us to achieve reasonably good
performance in all considered tasks, while still not
requiring excessive numerical resources and being
accessible on a standard desktop computer. The
effect of increasing or decreasing the reservoir size
is discussed in Appendix E.

For the readout layer, we choose a linear combi-
nation of the expectation values of Pauli strings
with length one (⟨σa

i ⟩) and two (⟨σa
i σ

a
j ⟩), with

a = x, y, z, and 1 ≤ i, j ≤ N , i ̸= j. Altogether,
the output layer is made of 45 nodes which are the
parameters determined during the training phase.
This set of observables is adequate for solving
all the tasks we have tackled with high accuracy
while utilizing a large number of degrees of free-
dom that scales polynomially with the number of
qubits.

In all the cases studied, we have subjected the
systems to a washout phase before carrying out
a training and an evaluation phase. It consists in
letting the reservoir evolve for a certain number of
time steps in order to guarantee the ESP [55]. We
have found that a number of 1000 time steps is al-
ways a sufficient value for the washout. The sub-
sequent 1000 points of the dynamics, were used to
train the free weights of the output layer (train-
ing phase) [30], while the next 1000 points were
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used to evaluate the performance (evaluation or
test phase). We have numerically verified that the
data sets employed in all the tasks considered are
sufficiently long to avoid overfitting and to collect
meaningful statistics to properly evaluate perfor-
mance. More details about how we trained the
reservoirs of interest can be found in Appendix
D.

4.1 Memory tasks
In this section, we will present the performance of
tasks related to the capacity of the systems to lin-
early and nonlinearly process the memory of pre-
vious inputs, starting with a linear memory test:
the short-term memory task (STM) [69]. Follow-
ing the standard procedure, the input originates
from a uniform random distribution in the inter-
val [0, 1] and the expected target at each time
step (yk) is to reproduce the previous input for a
given delay τ

yk = sk−τ .

Indeed, the STM task measures the ability of a
system to store information about the input re-
ceived a certain number τ of time steps in the
past, which is an indicator of linear memory. The
metric chosen to evaluate all the presented mem-
ory tasks is the capacity:

C = cov2(y, ȳ)
σ(y)2σ(ȳ)2

where y and ȳ are respectively the time series of
the targets and the predictions, cov(·) is the co-
variance and σ(·) is the standard deviation. The
coefficient C ranges between C = 0 (complete
mismatch of the predictions) and C = 1 (perfect
accuracy).

Our analysis encompasses a coarse-grained ex-
ploration to optimize the hyperparameters of the
models for all the tasks discussed in this pa-
per. Working in the units of Js, the degrees of
freedom h, ∆t, and γ are varied by orders of
magnitude, taking values from the following set:
{0.01, 0.1, 1, 10}. For each possible combination
of these hyperparameters, we simulated 100 dif-
ferent random pairs of coupling sets {Jij} and
input sequences and took the metric average over
them as a representative value. Finally, the com-
bination with the average of the maximum perfor-
mance in the given task was considered optimal.

The results of the STM task, specifying the val-
ues of the hyperparameters, are shown in Fig. 2

(a). In general, for different orders of delay, the
optimal set of free parameters varies for all the
models, which makes it evident that the learn-
ing capability of the reservoir is strongly influ-
enced by the choice of such hyperparameters. We
found that FN reservoir memory is maximized for
h = 0.1 and ∆t = 10 when τ < τ∗

1 = 5 while
in the complementary case ∆t and h change to
1. For our proposal (CD model (6)) four differ-
ent optimal sets have been found. Indicating the
free hyperparameters through a triple of the form
(h,∆t, γ), for the regions of delay τ < τ1 = 2,
τ1 ≤ τ < τ2 = 6, τ2 ≤ τ < τ3 = 16 and
τ3 ≤ τ ≤ 20 the optimal sets are respectively (0.1,
10, 1), (0.01, 10, 0.1), (0.01, 10, 0.01) and (0.01,
1, 0.1). For all the values of the delay, the CD
dynamical map (6) is able to reach better perfor-
mances than the FN model. This suggests that
the tunable damping rate introduced in the dy-
namics, which is an additional free hyperparam-
eter with no equivalent in the FN map, allows us
to have more control over the linear dependence
from the past injected input.

The generality of this result is also addressed in
Appendix E where we report the STM achieved
at delay 10 for a smaller (N = 3, 4) and a larger
(N = 6, 7) number of qubits. Our results indicate
that the advantage in the performance of the CD
model is sustained.

Another well-established and challenging
benchmark test studied in the context of RC
is the nonlinear auto-regressive moving average
(NARMA) task, first introduced in the context
of RNNs [70]. This task, beyond requiring
linear memory, also adds the requirement of
non-linear memory, and its formulation depends
on a given order of delay n. At any time step,
the NARMA(n) target is

yk = 0.3yk−1 + 0.05yk−1

n∑
j=1

yk−j

+ 1.5sk−nsk−1 + 0.1. (7)

As usual, to prevent divergences until an order
of delay equal to 20, it is necessary to define the
target of the task rescaling the input in the in-
terval [0, 0.02]. The NARMA task performances,
for both systems, are shown in Fig. 2 (b). Also
in this case the results show that the CD model
performs better than the FN one, broadening our
conclusions about the STM task, also for a target
that includes some nonlinearity.
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Figure 2: Performance evaluation of different memory
tasks for the FN model described in Eq. (2) (red) and
for CD in Eq. (6) (blue). Capacity for STM task (a),
NARMA task (b), and parity check (c). Optimized hy-
perparameters as specified in the main text for the STM
task, while for NARMA and parity check the hyperpa-
rameters are also optimized but not reported, being not
relevant for the conclusions. A number of 1000 time
steps have always been used for the washout, training,
and evaluation phases. In all the plots the shadow re-
gions cover one standard deviation taken as statistical
error over the 100 random realizations of spin coupling
values for the Hamiltonians of the systems {Jij}.

We conclude our analysis of the memory prop-
erties considering the parity-check task [71]. In
this case, we work with a binary random input
sequence sk ∈ {0, 1}. The desired output for a
delay τ is given by

yk =
τ∑

j=1
sk−j mod 2.

This task is strictly non-linear and, in fact, for
a delay equal to τ , it has the degree of nonlin-
earity of a monomial of degree τ of the previous
inputs. In order to reach performances not neg-
ligible for τ > 1, we have introduced in both the
QRC models the time multiplexing, considering
V = 15 virtual nodes. It means that, for each in-
put injection, during the evolution time ∆t, the
observables in the readout have been collected not
only in the final time but in V equidistant times of
the dynamics [34, 38]. The optimal performances
for this task are shown in Fig. 2 (c). Even for this
fully nonlinear task, the CD model outperforms
the FN one.

Therefore, from the results obtained, we can
conclude that the CD model, with the introduc-
tion of the new tunable dissipation γ, reaches bet-
ter performances for all the memory tasks consid-
ered. The proposed approach of continuous dissi-
pation allows indeed to achieve better control of
the dynamical system response. We also remark
that the optimal results for the FN model are in
agreement with the ones theorized in [72], where
the role of the QRC performance in connection
with dynamical phase transitions was discussed.
However, for the CD case, the optimal hyperpa-
rameters cannot be related to the same physi-
cal phenomena. In fact, the CD model does not
present any dynamical phases and, as expected,
we have found different optimal values of h and
∆t for the tasks considered. In this case, the
physical interpretation is related to the interplay
between the unitary and dissipative parts of the
system evolution.

4.2 Time series forecasting

Apart from memory tasks, RC is especially suited
for chaotic time series forecasting. A popular
benchmark application is the prediction of the
well-known Mackey-Glass (MG) dynamical evo-
lution [73]. The target obeys the following differ-
ential equation:

ṡ(t) = −0.1s(t) + 0.2s(t− τ)
1 + s(t− τ)10 (8)

being in the chaotic regime for τ = 17, as re-
ported in previous works on time series forecast-
ing [74, 75].

During the training phase, we have injected, as
input sequence into the system, the numerical so-
lutions of Eq. (8) sampled with a time resolution
tr = 3 (see [76] for more details) and with input
values rescaled in the interval [0, 1]. The readout
weights were trained to solve the one-step-ahead
prediction task:

yk = sk+1

During the evaluation phase, the systems have
been left to evolve in an autonomous way taking,
at each time step, their previous prediction as a
current input.

Here, we can distinguish between the short-
term (weather-like) forecast of the dynamical tra-
jectories and the long-term (climate-like) forecast
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of the chaotic attractor [77]. We first show in Fig.
3 (a) that both the CD and FN models are able
to reproduce the shape of the chaotic attractor of
the Mackey-Glass time series (climate-like fore-
cast). In order to perform a quantitative analysis,
we have also tested the capabilities of the systems
to predict the oscillations of the target trajectory
from the start of the autonomous phase (weather-
like forecast). The metrics used to evaluate the
performances for this task was the mean squared
error:

MSE =
∑M

i=1(ȳi − yi)2

M

where the index i iterates the times and M is the
number of points analyzed. Setting M = 150, we
were able to see differences as plotted in Fig. 3
(b). The average MSE values for the CD and FN
models over these 150 samples are 8 · 10−3 and
5 · 10−2, respectively. This last result allows us
to conclude that also for the forecasting task ex-
plored here, the introduction of local losses makes
it possible to achieve higher performance.

5 Experimental feasibility
In this section, we discuss relevant aspects of the
experimental implementation of the CD model
on real hardware. First, we consider the case
where access to a number of measurement sam-
ples is limited, going beyond ideal conditions, [55,
56, 57], and address the achievable performance.
Then, we will present some potential experimen-
tal platforms where the proposed QRC model can
be implemented.

5.1 Measurement effects
Access to the information contained in the dy-
namics of a quantum system is generally limited
by the stochastic nature of quantum mechanics.
In the benchmark tasks presented so far, our anal-
ysis has been performed in the ideal case where
the readout layer is built up from the exact expec-
tation values of selected observables. In a real ex-
periment, however, only finite measurement sam-
ples can be accessed. We will now show how the
performance of the two QRC models under con-
sideration (FN and CD) is affected by this fun-
damental limitation. In particular, denoting by
Ns the number of samples (i.e. the size of the
available ensemble), we will construct the out-
put layers of the models by approximating each

Figure 3: Results of the Mackey-Glass time-series pre-
diction of the systems. In all the cases we have set 1000
points for the washout and training phase. The optimal
free hyperparameters found, and fixed in the following
plots, are h = 1, ∆t = 10 for FN model and h = 0.1,
∆t = 0.1, γ = 10 for the CD model. (a) Chaotic at-
tractor autonomous reproductions (CD and FN) in the
phase space y(t)-y(t−6) compared to the target attrac-
tor (MG) for one exemplary realization of the systems
couplings {Jij}. 2000 points have been used for the
plots. (b) Predictions of 150 points in the autonomous
phase contrasted to target values of the series averaged
over 100 random realizations of the coupling values. The
shadows cover one standard deviation taken as a statis-
tical error.

observable of interest ⟨Ô⟩ with the mean of its
measurement:

⟨Ô⟩Ns =
∑Ns

i=1 Oi

Ns

where we use Oi to indicate a generic value of the
measurement. We follow the same approach as in
[55]: considering that Ns >> 1, we can apply the
central limit theorem so that each ⟨Ô⟩Ns is ran-
domly drawn from a Gaussian distribution whose
mean is the ideal expectation ⟨Ô⟩, while its max-
imum standard deviation is σmax(Ns) = 1/

√
Ns.

The effect of this finite-size statistic is assessed
by varying the order of magnitude of Ns in the
case of the STM task presented above. For each
combination of delay value τ and number of sam-
ples Ns, we have optimized and tested the mod-
els in the same way as done in Sec. 4.1, keeping
the same dataset sizes and exploring the hyper-
parameter space with the same criteria. From
Fig. 4 we can clearly see that the prediction ac-
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Figure 4: STM task performance as a function of the
number of samples NS . Two delay values are considered,
τ = 2 and τ = 10, while varying the magnitude of NS

from 104 to 1012. The right part of the plot shows the
ideal performance.

curacy for both models increases with Ns as a
consequence of the better precision of the observ-
able estimates. We have considered both a short
(τ = 2) and a longer (τ = 10) delay. For these
two STM tasks, we observe that for a relatively
small sample size, the FN model achieves higher
capacities than the CD model, although the per-
formance is not optimal for either. We also ob-
serve that the FN model can saturate its best
performance for smaller samples (e.g. Ns ∼ 107

for τ = 10) but in general, the CD model can
outperform the FN model. Actually, even for a
large delay, while the STM of the FN model sat-
urates to rather poor values (for Ns ≳ 107), the
CD achieves a very good performance.

It is important to note that the relationship
between the number of measurements and the
performance found is specific to the model be-
ing considered, and can be assessed precisely only
in some special cases [56]. While the precision
of observable expectation values is expected to
improve with a general trend of approximately
1/

√
N , predicting how this translates into the

performance in different tasks is more complex
and cannot be done in general. As expected, the
performance for averages obtained considering a
sufficiently broad sample saturates to the ideal
value, where averages are estimated over an infi-
nite ensemble (represented by the rightmost val-
ues in Fig. 3).

In a real experimental implementation, due to
the back-action effect of projective measurements

after each sample is taken, the reservoir can no
longer be used and a new experiment must be
started, as analyzed in Ref. [55]. The fading
memory property, which will be discussed in de-
tail in section B, can significantly reduce the ex-
perimental time required. In fact, it is not neces-
sary to inject the whole time series in each exper-
iment, but only a shorter number of points equal
to the time width that the reservoir is able to re-
member. In addition, the experimental time can
be further reduced by using a weak measurement
protocol [55]. The relationship between contin-
uous dissipation models and weak measurement
schemes is an issue to be addressed in the future.

5.2 Platforms

Various driven-dissipative systems have been ex-
perimentally realized in numerous platforms such
as cavity QED and cold atoms [78, 79, 80], circuit
QED [81], and trapped ions [82, 83, 84], due to
the rapid progress of experimental techniques in
the last 20 years. In addition, they are prominent
platforms for quantum simulation and quantum
computation [17], especially relevant for quantum
computing systems in the NISQ era.

In particular, several experimental platforms
capable of implementing dissipative Ising mod-
els, which include our CD model, have been pro-
posed in the literature. We mention significant
results obtained with Rydberg atoms [85, 86, 87,
88], ions traps [88, 89, 90, 91] and cold atoms
[92, 93]. For all these physical systems, the lo-
cal independent dissipation present in Eq. 5 can
be easily implemented using standard techniques.
Following the pioneering work of Ref. [17], the de-
sired dissipation can be achieved by coupling each
qubit to an ancillary one that presents sponta-
neous emission through the well-known strategies
of Ref. [94]. Moreover, this model of dissipation
can be easily implemented by means of optical
pumping [95].

Beyond the analog system approach to QRC
[96], we also mention that quantum circuits can
efficiently simulate generic Markovian dynamics,
like that of Eq. 5. In particular, the strategy
consists of implementing the collision model algo-
rithm [97] as it has been experimentally demon-
strated on the IBM platform [63].
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6 Discussion and Conclusions
In this paper, we have shown that tunable losses
in external environments can be turned into a
crucial factor for quantum reservoir computing,
to tailor and optimize the memory capabilities
of the system. In our analysis, we have com-
pared the performances of continuous dissipation
(CD) QRC maps with alternative ones based on
a discontinuous erase-and-write, as proposed by
Fuji and Nakajima (FN) [34]. The CD reservoir
is based on an input-dependent generator of the
dynamics L̄(sk) and on the presence of Marko-
vian dissipation modeled through a local master
equation in the Lindblad form, with uniform and
tunable decay rates.

Through a set of non-linear memory and fore-
casting tasks commonly employed to benchmark
time series processing, we have shown that the de-
gree of tunability of the losses represents a power-
ful tool that allows the system to be reconfigured
with respect to the specific problem under consid-
eration. Indeed, for each task, we have found a
range of values of the losses for which the perfor-
mance indicators exceed those obtained with the
FN model, both for memory and temporal predic-
tion tasks. This improvement was also shown to
be robust in the realistic case of a finite number
of measurement samples.

As a further major result, we have analytically
shown that the CD model fulfills the three nec-
essary conditions for time series processing as a
reservoir computer (the echo state, fading mem-
ory and input separability properties) proving
that it forms a class of universality, approximat-
ing any fading memory map with arbitrary pre-
cision. Finally, our proof has shown that this
last result is a more general feature of Marko-
vian dynamics in open quantum systems. In fact,
universality is achieved if the generator of the dy-
namics has the following general, mild properties:
for each input injection at sufficiently long ∆t, it
must admit only one stationary state; it must be
a continuous function of the input; finally, for dif-
ferent inputs, the corresponding stationary states
must be in turn different.

Some considerations can be added about the
generality and interpretation of our results.
Looking at the FN and CD CPTP maps, we can
say that the FN model of Eq. (2) can be de-
scribed as a sequential map composed by a dissi-
pation (ΦD) and a Hamiltonian evolution (ΦU ):

Φ = ΦU ◦ ΦD. A slightly different approach
was taken in Refs. [44, 45] in the attempt to
model the decoherent noise in a quantum cir-
cuit, where the roles of ΦU and ΦD were re-
versed: Φ = ΦD◦ΦU . The Markovian continuous-
dissipation map of Eq. (6) goes beyond these
proposals as dissipation and driving act in a con-
tinuous and, in general, non-factorizable way.

Interestingly, our map can approximate all
these factorized ones [34, 44, 45] by a proper
choice of the dissipation rates and their time de-
pendence. Indeed, for the erase and write map
of Eq. (2) this is shown in Appendix A. On the
other hand, the model used in Refs. [44, 45] as-
sumes a noise modeled by a Markovian channel
ΦD so that also Φ is Markovian, and in general
can be written in the GKLS form (3). In con-
clusion, we remark that the major generality and
tunability obtained with our formalism has been
revealed to be useful in practical applications as
shown in the performance improvements found in
Sec. 4.

From a more physical point of view, we can
relate the substantial improvements found in the
CD model with the form of dissipation and driv-
ing (continuous information erasure and injec-
tion) in the reservoir. Indeed, an essential in-
gredient for RC to work is to find a balance be-
tween information spreading across the reservoir
and dissipation, which is essential for the fading
memory property. In the FN model, the input is
injected locally and needs to spread during the
evolution [72], while dissipation is operated by
the partial trace and not optimized. On the con-
trary, in the CD case, information is already in-
jected over the entire reservoir, and at the same
time, the degree of dissipation can be fine-tuned
by the parameter γ. These two limiting features
of the FN map are at the origin of the higher
performance of the CD one, even varying the di-
mensions as shown in Appendix E.

While a clear improvement is already obtained
here assuming the simplest form of dissipation,
the idea of dissipation engineering can be ex-
plored also considering non-local losses [24], as
well as non-Markovian dissipation [98], opening
the way to study a wider range of quantum reser-
voir computers. In conclusion, in this work, we
have established a new paradigm of QRC based
on Markovian dynamics that is suitable for gener-
alization to more complex dissipation engineering
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techniques.
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Figure 5: Hilbert-Schmidt distance of states evolving
according to the left-hand side or the right-hand side of
Eq. (9), say ρA and ρB , as a function of the amount of
dissipation. Values are averaged over 100 random pairs
of density matrices and inputs, respectively ρk and sk in
the formula.

A Fuji-Nakajima map and Lindblad
dynamics
In the following, we want to frame the FN model
into our Markovian strategy to obtain dissipation
by designing an equivalent input injection strat-
egy. The idea is to replace the role played by the
partial trace by introducing a strong loss on the
first qubit and then preparing its state by apply-
ing the rotation operator

Ry(θk) =
(

cos θk sin θk

− sin θk cos θk

)

to it. More precisely the network’s damping rates
will be

γi =
{
γ, if i = 1
0, otherwise

and the input sk will be converted into an angle
of rotation θk according to θk = arccos

(√
1 − sk

)
.

Accounting for the two steps, we can determine
the conditions for the entire process, at each input
injection, to be equivalent to the updating step of
Eq. (2), i.e.,

R(1)
y (θk+1)eD1∆tdρk ≈ ρ

(1)
k+1 ⊗ Tr(1){ρk}, (9)

B Proof of universality
In this section, we will prove that the CD model
proposed in Eq. (6) forms a universality class for
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reservoir computing. In the context of QRC, uni-
versality corresponds to an approximation prop-
erty and, in particular, is referred to the capa-
bility to arbitrarily well approximate any fading
memory map [27, 68, 43, 41]. It will be shown
that our proposal satisfies both the echo state
property (ESP) and the fading memory property
(FMP). Finally, we will prove separability verify-
ing that the hypotheses of the Stone-Weierstrass
theorem are fulfilled, then proving the universal-
ity.

B.1 Echo state property

The ESP refers to the capability of a reservoir
to forget the initial conditions in the limit of
an infinite input sequence [58]. It has been re-
cently shown that this is equivalent to the usual
definition of a unique solution in the RC litera-
ture, under some mild conditions (Theorem 1 in
[99]). In our case of study, it means that given
a left infinite and time-ordered input sequence
{· · · , s−1, s0} (where the 0-th time step corre-
sponds to the last input) and given two different
initial quantum states ρ1 and, ρ2, whose dynam-
ics is driven by this sequence, the evolved states
will become indistinguishable:

lim
k→−∞

∥
0∏

i=k

eL̄(sk)∆t (ρ1 − ρ2) ∥ = 0, (10)

where the limit is considered to be pointwise and
∥ · ∥ indicates any matrix norm (since all norms
are equivalent in finite-dimensional spaces).

A sufficient condition for this relation to hold is
strict contractivity (Theorem 2.2 in Ref. [100]):
||eL̄(sk)∆t(ρ1 − ρ2)|| ≤ r||ρ1 − ρ2|| for all sk and
any pair of states ρ1 and ρ2, where 0 ≤ r < 1.
In particular, this can be ensured for Markovian
maps that provide a unique stationary state for
a generic input sk, a property that our model
possesses according to Theorem 2 [101], setting
a long enough value of ∆t. More precisely, for a
generic generator L̄(sk), we can always define a
finite mixing time, denoted as ∆tmix, such that if
∆t ≥ ∆tmix then the map is strictly contractive
and the ESP holds.

As a further observation, we estimated the
∆tmix trend as the system dimensions increase.
Our numerical analysis suggests that the ∆tmix

upper bound has an asymptotic behavior ∼ N
γ

(see Appendix C for more details). Concluding,

the mixing time of all the proposed maps eL̄(sk)∆t

in addition to being finite, according to what we
have observed numerically, scales efficiently with
the number of qubits.

B.2 Fading memory
Considering the set of left infinite sequences of
inputs belonging to the interval [0, 1], K−([0, 1]),
the fading memory property is a condition of con-
tinuity of functionals defined on this set with a
given norm. For a sequence s ∈ K−([0, 1]), this
norm is defined starting from a generic null se-
quence, say w = {wk}k≥0 such that limk→∞wk =
0, in the following way:

∥s∥w = sup
k∈Z−

|sk|w−k,

where sk and w−k are respectively elements of s
and w and Z− is the set of negative integers. By
definition, we say that a map has fading mem-
ory if, for any null sequence w, it is continuous
in (K−([0, 1]), ∥ · ∥w). In order to prove that the
model of Eq. (6) has fading memory, it is suf-
ficient to prove that eL̄(sk)∆t, with ∆t > ∆tmix

to ensure the ESP, is a continuous function of sk

according to [36] (Lemma 3). If L̄(sk) is continu-
ous then the continuity of its exponential will be
a direct consequence. Let sk,uk ∈ [0, 1], ∥ · ∥2 be
the Hilbert-Schmidt norm and ρ be a unit density
matrix belonging to C2N ×2N . Then

sup
ρ

∥∥∥(L̄(sk) − L̄(uk))ρ
∥∥∥

2
=

sup
ρ

∥∥∥∥∥(sk − uk)
[

N∑
i=1

σx
i , ρ

]∥∥∥∥∥
2

≤ 2 ·N · |sk − uk|

(11)

where the first inequality is a consequence
of the following property of the commutator:
∥[σx

i , ρ]∥2 ≤ 2 · ∥ρ∥2 = 2 which can be proven ex-
panding ρ as a linear combination of Pauli strings
and using their commutation rules. The last term
of Eq. (11) implies continuity because it shows
that an arbitrarily small distance between the two
functions, let us say ϵ, is reached when the dis-
tance of the two inputs is |sk − uk| < δϵ = ϵ

2N .
We then conclude that the family, say L, of

functionals defined by Eq. (6), with the output
layer of expected values, belongs to the set of
fading memory functionals C(K−([0, 1]), ∥ · ∥w),
which map input sequences into real expected val-
ues of observables.
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B.3 Stone-Weierstrass theorem
The universality condition is obtained if L is
also a dense subset of C(K−([0, 1]), ∥ · ∥w).
It implies that any fading memory map f ∈
C(K−([0, 1])) can be arbitrarily well approxi-
mated by an element of L. Quantitatively for
any f ∈ C(K−([0, 1])) and for any ϵ > 0 exist
l ∈ L such that the following condition holds:

|f − l|∞ = sup
s∈K−([0,1])

|f(s) − l(s)| < ϵ.

A sufficient condition to obtain this result is given
by the well-known Stone-Weierstrass theorem:
Let E be a compact metric space and C(E) be the
set of real-valued continuous functions defined on
E. If a subalgebra A of C(E) contains the con-
stant functions and separates points of E, then A
is dense in C(E).

A first important observation is that the input
space (K−([0, 1]), ∥ · ∥w) is a compact space ac-
cording to [102] (Lemma 2) as required.

B.4 Input separability
Now we prove the separability of L. It means
that given two sequences s, s̄ ∈ K−([0, 1]) such
that s ̸= s̄ exists at least one element of L able
to separate them. In our context it is translated
to the condition that the corresponding density
matrices at the 0-th time step must be different:
∥ρ0 − ρ̄0∥ ≠ 0.

It is useful at this point to show an important
property of Eq. (6):

Lemma 1: Given two different inputs sk, uk

then the corresponding stationary states of L̄(sk)
and L̄(uk) are different.

Proof:
We firstly give a necessary condition for a sta-

tionary state ρss which corresponds to a generator
L̄(sk). It is helpful to expand ρss in the basis of
Pauli strings:

ρss =
∑

i1,··· ,iN

Tr
{
σi1 ⊗ · · · ⊗ σiN · ρss

}
σi1⊗· · ·⊗σiN

where the indexes {in} label single Pauli ma-
trices: in = x, y, z or the identity matrix, say
σ0 = I, for the Hilbert space of a single qubit. A
necessary condition can be found projecting the
definition of ρss (i.e. L̄(sk)ρss = 0) on a given
Pauli string; we will consider σz

i :

Tr
{
σz

i L̄(sk)ρss

}
= 0. (12)

Observing that we can write the Lindbladian of
Eq. (6) as a sum of single qubit dissipators:

D = γ
N∑

i=1
di

where di(ρ) = σ−
i ρσ

+
i − 1

2{σ+
i σ

−
i , ρ} with σ+ =

σ−†, its action on the single qubit Hilbert space:

di(I) = −σz

di(σz) = −σz

di(σy) = −1
2σ

y

di(σx) = −1
2σ

x

implies the following expression for Eq. (12):

γ ·αz
i + γ

2N
−
∑
j ̸=i

Ji,j ·2·αy,x
i,j −2·h·(sk +1)·αy

i = 0,

(13)
where αz

i = Tr{σz
i ρss}, αy,x

i,j = Tr
{
σy

i σ
x
j ρss

}
,

αy
i = Tr{σy

i ρss}.
Considering now another generic input uk, such

that uk ̸= sk, if ρss is a common stationary state
of both, the following relation must be satisfied:(

L̄(sk) − L̄(uk)
)
ρss = 0,

implying that [
N∑

i=1
σx

i , ρss

]
= 0. (14)

Equation (14) gives necessary conditions for the
coefficients of ρss and, among these, it gives these
relations: Tr{σa

i ρss} = αa
i = 0, Tr

{
σa

i σ
x
j ρss

}
=

αax
ij = 0 with a = y, z and 1 ≤ i, j ≤ N . Then

Eq. (13) becomes γ
2N = 0 which is not satis-

fied because we are assuming that γ ̸= 0 in order
to guarantee the ESP. As a consequence, we can
conclude that Lemma 1 holds. ■

Another useful statement to arrive at the input
separability is the following:

Lemma 2: Let sk and ρss(sk) be a generic input
and its corresponding unique stationary state, let
P be the set of the density matrices of the consid-
ered N qubits system and let d : P × P → R+ be
the distance induced by the Hilbert-Schmidt prod-
uct, then the following function g : R+ × P →
R+, (t, ρ) 7→ d

(
eL̄(sk)tρ, ρss(sk)

)
is bounded,

its maximum
(
d

(sk)
max

)
always exists and it is

strictly decreasing in t when t > ∆tmix.
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Proof:
We first observe that for any fixed value of the

time g is a continuous function on P. This is be-
cause it is a composition of continuous functions:
the action of eL̄(sk)t composed to the action of the
distance from a fixed point. As a consequence
because P is a compact set and because the con-
tinuous image of a compact set is a compact set
we arrive at the following relation:

g(P)|t =
[
0, d(sk)

max(t)
]
. (15)

We observe that for the boundaries of the set of
the density matrices d(sk)

max(t) ≤ 2. Considering
now the action of g for a fixed density matrix
in P, we know that g(t)|ρ = d(eL̄(sk)tρ, ρss(sk)) is
strictly decreasing for all ρ ̸= ρss(sk) if t > ∆tmix

as a consequence of the already mentioned strict
contractivity of eL̄(sk)t. Finally the same property
must hold for d(sk)

max(t) while limt→+∞ d
(sk)
max(t) = 0

and d(sk)
max(0) = 2. ■

We can now return to the problem of the sep-
arability in which we have the two generic dif-
ferent sequences s and s̄. Considering the small-
est index J such as s−J ̸= s̄−J , applying Lemma
1 we know that two different stationary states
exist: ρss(s−J) and ρss(s̄−J). We define two
open balls of radius r respectively centered on
the two states: Br(ρss(s−J)) and Br(ρss(s̄−J))
such that Br(ρss(s−J)) ∩ Br(ρss(s̄−J)) = ∅.
The last condition is easily satisfied if r <
d(ρss(s−J), ρss(s̄−J))/2. In order to find an el-
ement of L which separates the sequences, apply-
ing Lemma 2, we have to set ∆t into a sufficiently
long value so that: d(s−J )

max (∆t), d(s̄−J )
max (∆t) < r.

With this condition, it is ensured that after
the applications of the two inputs, the resulting
states of the reservoirs will be different regard-
less of their states at the time-step −J . After
this injection by hypothesis, the subsequent in-
puts will be the same, and necessary the corre-
sponding states of the reservoir at the time 0 will
be different because eL̄(sk)t is a full rank linear
operator. We can in this way conclude that the
input separability is satisfied.

B.5 Polynomial algebra and final considera-
tions about the universality
Another hypothesis that must be satisfied in or-
der to have universality is the presence of a sub-
algebra in L. Since we are working on a sys-

tem that gives as output a linear combination
of observables of the density matrix we have to
look for a polynomial algebra. It can be ob-
tained by adding to the family the model of Eq.
(6) in spatial multiplexing. It means that we
can consider V different and independent states
{ρ(1), · · · , ρ(V )} whose dynamics will be lead by
generators of the form of Eq. (6) with, in general,
different value of the characteristic hyperparam-
eters: {L̄1, · · · , L̄V }. We can write the total up-
dating rule of the total reservoir in the following
way:

ρtot
k+1 = ρ

(1)
k+1 ⊗ · · · ⊗ ρ

(V )
k+1

= eL̄1(sk+1)∆t · · · eL̄V (sk+1)∆tρ
(1)
k ⊗ · · · ⊗ ρ

(V )
k .

Considering the set of the polynomial outputs for
all the single states {P1, · · · ,PV } we achieve the
algebra considering as output for the reservoir a
linear combination of the polynomials:

Ptot = β0 +
V∑

i=1
βi · Pi.

These newly added reservoirs satisfy the fading
memory condition according to [36] (Lemma 5).

The only condition that remains to be proven
in order to assert the Stone-Weierstrass theorem
is the presence of constant functions in the fam-
ily L but it is trivially satisfied due to the fact
that we are working with polynomial inputs. We
can now conclude that L is a universal class for
reservoir computing.

Finally, we notice that this proof does not hold
only for Eq. (6) but for a more general class of
reservoirs working with a master equation. The
conditions required for the generator L are the
following: (i) it admits only one stationary state
for each input sk, (ii) it must be a continuous
function of sk, (iii) given two different generic in-
puts, say sk and uk, the stationary states of L̄(sk)
and L̄(uk) are also different.

C Mixing time scaling
In Sec. B.1, we have defined the mixing time
∆tmix as the minimum interval of time ∆t re-
quired of eL̄(sk)∆t to fulfill the Echo State Prop-
erty. From a computational point of view, we are
interested in estimating how ∆tmix scales with
the system size. We will now show the strategy
used to achieve it through numerical simulations.
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Figure 6: Max average values of τ in γ units as a function
of the number of spins. The purple points indicate the
averages while the purple vertical lines cover one stan-
dard deviation taken as statistical error over the {Ji,j}
realizations. The linear fit result is represented by the
red line.

We, firstly, recall that eL̄(sk)∆t can always be ex-
panded in terms of its dual basis except for a
countable number of points in the hyperparame-
ter space that have zero probability to occur [103].
Let {λi} be the set of eigenvalues of L̄(sk) and
let {|ri⟩⟩} and {|li⟩⟩} be the corresponding set of
orthogonal and normalized right and left eigen-
vectors respect the Hilbert-Schmidt product. As
a consequence of the uniqueness of the stationary
state of L̄(sk) (Theorem 2 of Ref. [101]), when
its action is restricted to the set of traceless Her-
mitian matrices, which we will denote as H0, we
can conclude that the real part of all its eigenval-
ues will be strictly less than zero. For the sake
of definition, we will order the eigenvalues such
that Re{λ0} = 0 > Re{λ1} ≥ · · · ≥ Re

{
λ4N −1

}
arriving at the identity:

eL̄(sk)∆t|H0 =
4N −1∑
i=1

eλi∆t |ri⟩⟩⟨⟨li|
⟨⟨li|ri⟩⟩

=
4N −1∑
i=1

ci · eλi∆t|ri⟩⟩⟨⟨li|

where N is the number of spins of the model
and ci = 1/⟨⟨li|ri⟩⟩. The ESP is ensured when
the operator norm of eL̄(sk)∆t|H0 is strictly less
then one. Considering that it is induced by the

Hilbert-Schmidt norm, we find:

∥∥∥eL̄(sk)∆t|H0

∥∥∥
2−2

=

∥∥∥∥∥∥
4N −1∑
i=1

cie
λi∆t|ri⟩⟩⟨⟨li|

∥∥∥∥∥∥
2−2

≤
4N −1∑
i=1

|ci| · |eλi∆t|

≤ 4N · |cM | · eRe{λ1}∆t (16)

where |cM | = maxi |ci|. From Eq. (16), we
can find the order of magnitude for the upper
bound of the mixing time, calling it as τ , by def-
inition the following relation holds: ∆tmix > τ .
Writing |cM | = eη, we arrive to the expression:
τ = N

| Re{λ1}| + η
| Re{λ1}| . We have numerically

computed a maximal value of τ spanning the sys-
tem dimension from 3 to 6 spins. For each case,
the magnetic field h took the values from the set
{0.01, 0.05, 0.1, 0.5, 1,5, 10}, the damping rate γ
from {0.01, 0.1, 1, 10} while the input has been
fixed to be sk = 0. For all the possible combi-
nations we have simulated 100 realizations of the
Hamiltonian couplings {Ji,j} and we have taken
the average value of τ as a representative. In
our analysis, we have selected the max average
for each N, which computationally corresponds
to the worst case, in order to estimate an upper
bound. As shown in Fig. 6, our numerics sug-
gest that the max order of magnitude of ∆tmix

scales proportionally to N
γ . As a result, we have

numerically observed that the minimum value of
∆t required to reach the ESP, for the map of our
model generated by L̄(sk), scales in an efficient
way with respect to the number of qubits.

D Training details
As explained in Sec. 5, we benchmarked the con-
sidered quantum reservoirs by computing their
performance for different network realizations. In
the case of memory tasks, we also varied the ran-
dom inputs injected. It is important to note that
training a reservoir for a specific task depends
on the reservoir evolution rule. Therefore, we
performed independent training for each different
network coupling sampled.

Going more into details, we indicate with
{⟨Ô⟩k,j}L,M

k=1,j=1 the set of the expectation val-
ues of the reservoir observables involved in the
training phase, where L is the number of training
points and M the number of chosen observables.
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Figure 7: STM task optimal performances of the FN
model and the CD one as a function of the number of
qubits N , fixing a delay τ = 10. The optimal values
have been computed in the same way as in Sec. 4. We
averaged over 100 network realizations and input series
for the cases of N ≤ 5 while we took a statistics of
10 realizations for the complementary ones. The error
bars refer to one standard deviation taken as a statistical
error.

Considering the free weights that determine the
reservoir output at each time {wj}M

j=1, to be de-
termined by the training, and set of targets which
defines the task of interest {yk}L

k=1, the imple-
mented training consisted on minimizing the fol-
lowing euclidean distance:√√√√ L∑

k=1

(
yk −

M∑
j=1

wj⟨Ô⟩k,j

)2
.

We have numerically performed this optimization
by using the LAPACK library [104], whose strat-
egy consists of making use of the singular value
decomposition.

E Performances for different reservoir
sizes
While in the main text we considered five qubit
reservoirs, here we explore the effect of increasing
or decreasing the size of the reservoir. Follow-
ing the same optimization procedure described in
Sec. 4 regarding the choice of optimal hyperpa-
rameters, in Fig. 7 we show the optimal STM
task performances of the FN model and the CD
model and for a delay τ = 10.

The dimension of the output layer changes with

the system size. Thus, as expected, the perfor-
mance of both the FN and CD models improves
with the number of qubits (more degrees of free-
dom are exploited for solving the task). Interest-
ingly, the CD model outperforms the FN model
for all considered values of N . For the task at
hand, it is reasonable to expect that for a suf-
ficiently large reservoir, both QRCs are able to
achieve optimal performance. However, we see
that the CD model requires a smaller number of
qubits to saturate. In fact, N = 6 qubits are al-
ready sufficient to reach a capacity value C ≃ 1,
while the FN would require N > 7, implying the
need for more resources to achieve the same per-
formance.
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