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Challenging combinatorial optimization
problems are ubiquitous in science and
engineering. Several quantum methods
for optimization have recently been devel-
oped, in different settings including both
exact and approximate solvers. Address-
ing this field of research, this manuscript
has three distinct purposes. First, we
present an intuitive method for synthesiz-
ing and analyzing discrete (i.e., integer-
based) optimization problems, wherein
the problem and corresponding algorith-
mic primitives are expressed using a dis-
crete quantum intermediate representa-
tion (DQIR) that is encoding-independent.
This compact representation often allows
for more efficient problem compilation,
automated analyses of different encoding
choices, easier interpretability, more com-
plex runtime procedures, and richer pro-
grammability, as compared to previous ap-
proaches, which we demonstrate with a
number of examples. Second, we per-
form numerical studies comparing several
qubit encodings; the results exhibit a num-
ber of preliminary trends that help guide
the choice of encoding for a particular
set of hardware and a particular problem
and algorithm. Owur study includes prob-
lems related to graph coloring, the travel-
ing salesperson problem, factory/machine
scheduling, financial portfolio rebalancing,
and integer linear programming. Third,
we design low-depth graph-derived partial
mixers (GDPMs) up to 16-level quantum
variables, demonstrating that compact (bi-

nary) encodings are more amenable to
QAOA than previously understood. We
expect this toolkit of programming ab-
stractions and low-level building blocks to
aid in designing quantum algorithms for
discrete combinatorial problems.
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1 Introduction

Combinatorial optimization problems are ubig-
uitous across science, engineering, and opera-
tions research, encompassing diverse problem ar-
eas such as scheduling, routing, and network anal-
ysis, among others [1]. This has led to much in-
terest in the potential for quantum advantage for
hard optimization tasks, in different settings in-
cluding exact, approximate, and heuristic solvers
[2, 3,4, 5, 6, 7, 8]. The past few years in particu-
lar have seen development of novel quantum ap-
proaches for tackling these problems, with much
focus on constraint satisfaction problems over bi-
nary variables, such as the commonly studied
MaxCut problem [4]. However, from the applica-
tion perspective, a wide variety of important op-
timization problems are more naturally expressed
over sets of discrete (typically integer) variables.
This can add an additional layer of complexity
when applying and implementing existing quan-
tum algorithms, partly because there are many
ways to encode a discrete variable into qubits,
qudits, or other hardware, with different resource
and performance tradeoffs.

Indeed, as a practitioner may have many al-
gorithmic choices—regarding for instance the en-
coding, algorithm class, and parameters—it is vi-
tal to develop conceptual tools and software ap-
proaches that help prepare and implement al-
gorithms for discrete optimization problems on
quantum computers. Such tools can be useful
for automating analyses of different approaches
(such as different encodings), but they can also
lead to superior programmability, which in turn
may yield more efficient compilation and runtime
implementations. In particular, seeking cleaner
separations of programming layers is important
towards enabling a broad community of practi-
tioners who may not be experts in quantum me-
chanics or other low-level details |9, 10, 11].

Regarding encoding choice, we note that one
may encode a variable into qubits in many differ-
ent ways, each of which may have favorable prop-
erties for different hardware. For example, one
encoding may be advantageous for a many-qubit
device with lower available circuit depth, while
another may be preferable for a device with more
available depth but fewer qubits (see Figure 1).
Therefore it is useful to have a framework that
can be used to automate the mapping, compila-
tion, and analysis of a given encoding choice.

In the current work we (a) introduce an in-
tuitive and efficient framework (an intermediate
representation) for constructing and implement-
ing quantum algorithms for discrete optimization
problems, including generalizing a number of ex-
isting results from the Boolean cube to more gen-
eral discrete domains; (b) provide a pedagogical
resource including an informal dictionary of use-
ful primitives and relations in this general setting;
(¢) numerically analyze which encodings are ad-
vantageous in which scenarios; and (d) present
what are to our knowledge the first ultra-low-
depth designs of QAOA mixers for standard bi-
nary and Gray encodings of integer variables.
We will demonstrate how our framework provides
a compact and practically useful representation
of these problems. Figure 2 gives a schematic
of the workflow of our discrete quantum inter-
mediate representation (DQIR). DQIR is useful
for preparing, manipulating, and analyzing prob-
lem instances independently of hardware imple-
mentations, while also automating the conversion
to and analysis of encodings for the purpose of
choosing the most advantageous one (e.g., given
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the resource constraints of a fixed real-world de-
vice).

Our work builds off of and extends a number
of previous works. In particular, [12] which stud-
ied encoding procedures and pitfalls as well as
compilation tradeoffs for d-level systems in the
context of quantum simulation, [13] which for-
mally defined basic primitives and Hamiltonian
mappings for the binary optimization case, [7]
that studied the design of quantum approaches
for discrete optimization, including the one-hot
and standard binary mappings for a diverse set
of standard problems. While intermediate repre-
sentations have been introduced for many aspects
of quantum compilation [14, 15, 16, 9, 17, 10],
DQIR is intended for use specifically for problems
defined over a domain of discrete variables. Here
we attempt to unify and extend these viewpoints
into a more general but more user-friendly frame-
work. We then demonstrate how DQIR facilitates
more efficient compilation and analysis over pre-
vious approaches. Some of the constructions and
encodings presented are novel in the context of
quantum optimization. A further contribution is
the comparison of circuit depths for several en-
codings over a range of standard problems and
subroutines for commonly occurring domains. To
our knowledge such a systematic numerical anal-
ysis has not been published previously, and we
anticipate the results to be directly useful to prac-
titioners in the field.

It is useful to note some technical differences
between physics simulation of d-level particles
[12, 18] (phonons [19, 20, 21, 22|, photons [23],
spin-s particles [24], etc.) and discrete combi-
natorial problems. In physics simulations the
Hamiltonian itself usually contains non-diagonal
operators relative to the computational basis, for
example bosonic creation and annihilation oper-
ators. These non-diagonal operators often make
the largest contribution to resource requirements
[12].  On the other hand, for classical combi-
natorial problems the cost function is typically
mapped to a diagonal operator, and there is of-
ten significant flexibility in choosing non-diagonal
operators suitable for realizing a given quantum
algorithm. This flexibility makes it easier to re-
duce the resource requirements in the optimiza-
tion setting. On a related one, the measurement
problem |25, 26, 27, 28] —namely, that many mea-
surements in many different bases are required to
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Figure 1: |lllustration of a hypothetical Pareto front

showing the resource trade-offs inherent in the encoding
choice for a quantum algorithm. The variation between
encodings can be very large with respect to both depth
and space. For example, unary codes require d qubits
while compact (Gray and standard binary) codes use only
log, d qubits, for encoding a discrete variable of cardi-
nality d. However, the unary encoding tends to require
shorter depths. Block unary (BU) encodings attempt to
interpolate between unary and compact. These trade-
offs between space and depth mean that different en-
codings are appropriate for different quantum hardware
instances. As we demonstrate empirically, real problem
instances show many exceptions to the trend of this im-
age; for example, compact codes are sometimes superior
in both qubit count and circuit depth.

determine (¢)|H|¢) in physics simulation—is not
nearly as much of a bottleneck in classical opti-
mization problems for which the cost function is
a diagonal operator

There have been numerous studies on quan-
tum approaches for particular discrete optimiza-
tion problems [29, 7], including for problems re-
lated to graph coloring [30, 31, 32, 33|, planning
[34, 35, 36|, scheduling [37, 38, 39, 40, 41, 42, 43],
routing [44, 45|, integer programming [46], and
option pricing [47, 48]. Though most of these
works employ either a unary-style or more com-
pact binary-style qubit encoding of the problem
variables, some have considered multiple encod-
ings in the same work |7, 32, 44, 49, 50]. Un-
like most previous studies, our representation and
methods are presented at a higher layer that is
encoding-independent; therefore, one can in prin-
ciple reuse mappings and primitives across dif-
ferent quantum hardware where different encod-
ings or algorithms may be most suitable, as well
as in some cases across different problems. In-
deed, a further advantage is that the lower lay-
ers are not restricted to be physical-qubit-based,
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and DQIR can easily envelop qudits (i.e., d-level
quantum system, where d may be not necessarily
match the problem domain size), quantum fault-
tolerance (i.e., encoded logical qubits), as well as
continuous variable quantum computers or other
more exotic proposals.

Critically, despite considerable effort it remains
unclear exactly under which circumstances or for
which problems or to what degree one may pos-
sibly achieve quantum advantage for combinato-
rial optimization, in the near-term and beyond
[51, 52, 7, 53, 54, 55, 56, 57, 58, 59, 60]. We do
not try to tackle the challenging questions related
to performance in this work, and focus instead on
mathematical tools that may be practically useful
toward algorithm design and implementation, es-
pecially as more sophisticated and diverse quan-
tum hardware platforms become available in the
coming years.

This paper is organized as follows. In Sec-
tion 2 we define the primitives of the discrete
quantum intermediate representation, discuss en-
codings and important subroutines, and sum-
marize procedures for mapping the problem to
hardware-specific (especially qubit-based) repre-
sentations. In Section 3 we overview several stan-
dard quantum approaches to optimization and
consider their various required components, in-
cluding mixers, penalties, and choice of initial
state, while discussing best practices in each as-
pect. In Section 4 we introduce the novel con-
cept of graph-derived partial mixers (GDPMs) in
order to design specific resource-friendly mixers
applicable to various problem classes. In Section
5 we express five general classes of discrete op-
timization problem in terms of DQIR, highlight-
ing the compactness and intuitiveness of the re-
sulting expressions. In Section 6 we then present
numerical results for some of these problems for
implementing several common operators derived
in multiple encodings, and discuss the various re-
sulting resource trade-offs. Finally, in section 7
we elaborate on the utility of our approach and
discuss several future directions such as the in-
corporation of noise and hardware topology into
our framework.

2 Discrete quantum intermediate rep-
resentation

Here we formally introduce DQIR for quantum
optimization algorithms, and beyond. There are
several appealing reasons to use a DQIR in a com-
pilation workflow. First, it provides a path to au-
tomated methods for encoding a range of problem
types into any user-defined encoding. Instead of
deriving conversions to qubit operators for each
new encoding, as has been done in most previ-
ous work, one may implement any new encod-
ing simply by defining a new integer-to-bit func-
tion. Second, a hardware-agnostic representation
helps facilitate the interfacing with new devices,
for example hardware with a novel topology or
non-standard devices that use qutrits, ququads,
or higher-order qudits [61, 62]. Third, it can be
more efficient to perform algebraic manipulations
inside DQIR, because often the resulting terms
are simpler and fewer. Finally, several problem
analyses and preparation steps are more concep-
tually natural and can be calculated with fewer
operations in DQIR, as we demonstrate with the
examples considered in Section 5.

2.1 Discrete functions and optimization prob-
lems

We consider real-valued functions

f(X)Ef(ZL‘l,l‘Q,...,.CI}M), (1)
where we sometimes use f(x) to denote the
special taking values in
{0,1,....,k—1} = Zy, over a domain of discrete
variables, z,, € D,,

case of functions

DEDlx---XDM. (2)

Such domains are isomorphic as sets to subsets of
integers
DgZUhXH'XZdM (3)

so for simplicity we will assume integer variable
domains for most of this work. Note that the
domain cardinalities are often (but not always)
independent of the number of problem variables;
the familiar setting of combinatorial optimiza-
tion over binary variables corresponds to the case
do = 2. Similarly, the important special case of
Boolean functions f(x) € {0,1} corresponds to
the case k = 2.

Accepted in {( uantum 2023-07-09, click title to verify. Published under CC-BY 4.0. 4



Integer linear progr.

Graph coloring

Discrete
Quantum
Intermediate
Representation

Encoding 1

Encoding 2
Encoding 3

Scheduling

N\
AN

Mixed encoding

Encoding 4

Portfolio rebalancing

Operations/analyses inside DQIR

1
1
i
» Cancelling/collecting/reordering terms :
 * Use ILP solver for warm-starting H
i * Numerical analysis (e.g. matrix norms) |
i Graph clustering analysis !
1 » Optimize ordering based on connectivity 1
| » Problem size reduction !
|+ Construct controlled operations H
1 1

_________________________________

Figure 2: Schematic of the use of DQIR when preparing discrete combinatorial problems for solving on a quantum
computer. Discrete optimization problems may be mapped to DQIR, where several operations may take place. The
mixed encoding refers to having different encodings for different quantum variables.

Problem cost functions and constrained
optimization. For a combinatorial optimiza-
tion problem, we are typically given some rep-
resentation of a function f we seek to extremize
as part of the problem input. For example, we
may be given a set of clauses, functions {f;} each
acting on a subset of the variables, from which f
is constructed using a suitable operation on the
target space, such as f = fl in a constraint
satisfaction problem, or f = A, fi for (Boolean)
satisfiability. Generally we say a family of func-
tions in a given representation is efficiently repre-
sented (as input) if it uses a number of variables
that is polynomially scaling in the number of bits
required to describe elements of the domain (in
which case the usual notions of algorithmic effi-
ciency apply).

Additionally, f(x1,x2,...) may be subject to
a set of hard constraints, such as equality con-
straints

-) =0} (4)

and /or inequality constraints

{gi(xh z2, ..

{hi(x1,22,...) >0}, (5)
which must be satisfied by any potential solution.
Hard constraints such as (4) and (5) hence induce
a feasible subspace of the original domain (and

corresponding Hilbert space),
Dteas = {Xfeasible} c D7 (6)

which may depend on the particular problem in-
stance. Generally, hard constraints may be given
as part of the problem input, or may addition-
ally arise as various problem encoding choices are
made. Note that while in principle hard con-
straints may be absorbed into a (possibly com-
plicated) redefinition of the underlying domain
of f, it is often advantageous to define simpler
domains that do not depend on the particular in-
stance and treat hard constraints via algorithmic
primitives such as penalty terms or constraint-
preserving mixers, as we discuss in Section 3.
For the optimization setting our goal is to min-
imize f(x) over the feasible subspace, i.e. subject
to the hard constraints. (The maximization case
is similar.) For a variety of important applica-
tions, in particular NP-hard optimization prob-
lems, it is believed that neither classical nor quan-
tum computers can efficiently solve these prob-
lems optimally, for arbitrary problem instances.
In such cases we may employ algorithms with
super-polynomially scaling resources, or settle for
efficiently obtained approximate solutions, where
the goal is to find a configuration with function
value as low as possible. For the latter, we may
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employ approximation algorithms, where a guar-
antee to achieved solution quality is known, or
heuristics, where such a guarantee may not be;
see for example [63] for a more detailed discussion
of quantum heuristics for approximate optimiza-
tion.

We highlight here one important example prob-
lem class. A variety of industrially important
problems are expressible as what we call permu-
tation problems, for which we seek to optimize a
function over possible permutations 7, which we
represent with strings of integers as

Xp = (Te(1), T(2), -+, (M) (7)

We define the space of permutations as

{x}perm = {X7, |7k € Sm} (8)

where Sy is the permutation group on M ob-
jects. In this example, infeasible strings are those
in which any integer appears twice. (For our pur-
poses it is not necessary to consider the many
forms of constraint g that might be used to in-
duce this feasible subspace of permutations.) A
subset of the problems considered in this work are
permutation problems, namely scheduling and
routing problems, which may come with addi-
tional feasibility constraints in practice.

Hamiltonians representing functions. Fol-
lowing [13] we say a Hamiltonian H represents
a real function f() on D if it acts diagonally
Hylx) = f(x)|x) = f(z1,- .., 2m)|21) @ - @|2m)

(9)
for every basis state |x), x € D. Here we have
assumed f is defined over all of D; for cost func-
tions it often suffices to consider (9) enforced over
the feasible subspace.

We next give a number of basic primitives from
which Hamiltonians Hy may be constructed, as
well as more general operators needed for quan-
tum optimization algorithms.

2.2 Primitives and subroutines

Here we develop an intermediate representation
that is particularly useful when mapping classical
discrete optimization problems into quantum al-
gorithms. The representation is based on a small
number of fundamental primitives, to which any
classical function on or transformation of discrete

variables may be mapped. If the user desires,
some analysis of the problem and algorithm may
then be performed at this intermediate level, be-
fore a particular qubit-based (or other) encod-
ing is implemented in an automated way. This
means one does not need to consider the partic-
ular encoding or hardware details until after the
“quantization” of the combinatorial problem, and
constructions may in principle be easily trans-
ferred across different encodings and devices. We
call this construction the Discrete Quantum In-
termediate Representation (DQIR). DQIR then
easily facilitates implementation of a wide vari-
ety of quantum algorithms such as the quantum
approximate optimization algorithm and its gen-
eralization to the quantum alternating operator
ansitze (QAOA) [4, 7], quantum annealing [6],
variational approaches [64], and quantum imagi-
nary time evolution (QITE) [65, 66], as well as the
novel algorithms of tomorrow. For the reader’s
benefit we briefly review some of these approaches
in Sec. 3.1.

We begin by considering a single discrete vari-
able. In our formalism, the d, values of a classi-
cal discrete variable x, are mapped one-to-one to
the d,, levels (labeled with integers {0,--- ,d—1})
of a quantum discrete variable (or quantum vari-
able) that can be abstractly conceptualized as a
qudit [7, 12]. Throughout this paper, we label
discrete variables with a Greek letter and their
values with Latin letters. As an example, in a
graph coloring problem, each node is mapped
to its own quantum variable while the discrete
color value corresponds to a level in the quantum
variable. Though this work focuses on discrete
variables with d > 2, we emphasize that binary
variables and problems are also subsumed by this
framework.

Diagonal primitives. For a single discrete
variable x4, the simple projector onto the discrete
value that corresponds to level k is

P = k) (kla, (10)

which we call the indicator primitive because it
represents the function that is 1 if and only if
variable x,, is assigned k.

For general single-variable functions we then
define the value primitive

d—1
Ao =Y aralk)(kla (11)
k=0
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which diagonally applies an arbitrary scalar value
ap to each level k.

We emphasize that although A is constructed
using P and the set of all P is contained in the set
of all A, it is useful to think of both as primitives.
This is because Pék) is used as a marker to ensure
that a variable is in a particular state, whereas
A may be used as a drop-in replacement for a
classical variable or function.

Often A, simply returns the integer label aj =
k, an important case that we appropriately call
the number operator and denote

d—1
No =Y klk) (Ko, (12)
k=0

which appears in the special case where the labels
denote occupation number as in quantum phys-
ical systems [12]. Other functions are similarly
defined through the coefficients ay, .

The indicator and value primitives over dif-
ferent variables may be combined through linear
combinations to represent any classical Boolean-
valued, discrete-valued, or real-valued function.
Properties of functions on binary variables are
studied in [13]|, many of which immediately gen-
eralize to the case of integer domains; see for in-
stance [67, Ch. 8| for additional details.

Multi-variate functions and examples.
DQIR builds all multivariate logic from single
variable primitives. We introduce Greek sub-
scripts to label each quantum variable. Any mul-
tivariate operator may then be expressed as a sum
of tensor products of local operators,

Z Cj ® Bj@ (13)
j o

where B;, is a single-variable primitive, which
includes both the diagonal case as well as oper-
ators built from the more general primitives we
consider below. Note that the non-diagonal prim-
itives and operators we consider do not in general
satisfy B;’a = Bja-

For the diagonal case, any function may be
expressed as a weighted sum of Boolean-valued
functions, which is a common form of problem
cost functions, and so it is especially useful to be
able to build up Hamiltonians representing com-
plicated functions from simpler Boolean projec-
tors. It is further useful to be able to compose

them through standard logical operators in order
to represent more complication Boolean formu-
las or circuits. The following expressions relating
Boolean logic on binary functions and variables
[7] to their resulting Hamiltonian representations
directly extend to our more general discrete vari-
able setting:

H.;=1-Hy (14)
Hfey=1—H;+ H;H, (15)
Hpng = Hyg = HyH, (16)
Hyyg=Hy+ Hy— HyH,
Hipg=Hy+Hy,—2H;H, (17)

Haf+bg = aHf + ng a,beR

where f,g are arbitrary {0,1}-valued functions
on D and Hy|x) = f(x)|x). A particular useful
property we employ below is that HyH, is iden-
tically zero when f, g are 1 on disjoint sets. Here
functions acting on fewer than all M variables are
trivially extended to all of D. The logical rules
of (14) apply to the diagonal primitives above
and easily generalize to higher-order multivariate
expressions through composition. Cost functions
are often expressed as sums of Boolean clauses,
for example in constraint satisfaction problems,
which can then be directly mapped to a cost
Hamiltonian via the linearity property of (14).
One may similarly consider the case of complex
coeflicients h = >, a;f;, a; € C, though the cor-
responding operator may no longer be Hermitian;
for example, one may decompose a unitary oper-
ator this way.

Next we make use of (14) to write down Hamil-
tonians corresponding to some prototypical mul-
tivariate functions. A first important example is
the equality operator

d—1
BQ(e.8) = /', (P AP) = Y- PPl
a=0

a=0

(18)
which vanishes when the values on variables «
and  are unequal, else returns 1 (i.e. acts as the
identity) when they are the same. The case where
variables z,,x3 take values in different domains
is easily handled by considering only their pair-
wise intersections in (18). The not equal operator
is then defined as NEQ(«, ) = I-EQ(«, 8). An
example of a function with an arbitrary number
of variables is the all equal function over M vari-
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ables,

d_1 M d—1 M
AEQ =\ (/\ pg@) = ZOHPC(“&)' (19)

The all different function (see, e.g. [68]) on M
integer variables can be expressed as

M
AD = [[(I-EQ(a,8).  (20)
a3

A simple example of an integer-valued function is
the count non-zero function

M
CONZ=M - PY. (21)

Another example, given a graph G = (V, E) with
variables as nodes, is the pairwise different func-
tion
PD= Y NEQ(w,p), (22)
(aB)eE
which for a node coloring x counts the number of
cut (differently colored) edges in G.

Clearly a wide variety of cost functions or con-
straints can be represented as quantum operators
in this way; we explore some concrete application
examples in Sec. 5.

Non-diagonal primitives. Naturally, in addi-

tion to classical functions, we also need to repre-

sent non-diagonal operators that facilitate shift-

ing probability amplitude between different com-

putational basis states. Thus we next introduce

two additional classes of single-variable primitive.
We first define the one- and two-way

T = k) {la, (23)
TEHOD = k) (la + 1) (Kl (24)

These operators are useful for instance in design-
ing mixers for QAOA. We deliberately do not
restrict (23) to be Hermitian, in order to allow
DQIR to represent general non-Hermitian opera-
tors that appear for instance in the analysis or im-
plementation of algorithms such as QITE. How-
ever, in the most common use cases transfer prim-
itives will appear as ’B(kHl).

The final single-variable primitive is the general
local operator

d—1 d—1
Go= > gulk)lla= "> guTFV. (25)
k=0,1=0 k,1=0

which generalizes the three previous primitives.
Formula (13) may then be used to express any
multivariate operator in terms of the single-
variable primitives.

The four single-variable primitives are the most
essential concepts of the DQIR workflow and re-
sult in a convenient unified quantum representa-
tion for any classical function on discrete vari-
ables and any transformations between classical
states. Additionally, we emphasize that DQIR
objects may be constructed and manipulated in-
dependently of qubit encoding choice or other
lower-level concerns, and one may perform sym-
bolic algebraic manipulations and analyses within
DQIR. In the remainder of this subsection we
demonstrate explicit constructions of several im-
portant classes of functions and operators.

Single-variable reversible functions. Logi-
cally reversible functions are the essential build-
ing blocks of both classical reversible and quan-
tum computing. For a binary-valued variable the
only non-identity bijective (i.e., one-to-one and
onto) function is {0,1} — {1,0}, which in qubit
space can be implemented with the quantum
gate X, and can be undone reapplying the same
transformation. Here we generalize the quantum
implementation of such single-variable reversible
discrete functions for Zg — Zg with d > 2. A
bijective function on d integers is just a permuta-
tion 7(k) of d elements, k € Z4. Any permutation
7 on d elements is representable as a unitary U..
We write

U, = exp(—igHT) (26)

with Hermitian H., as any unitary matrix may
be expressed as the exponential of a Hermitian.
H. may be represented in DQIR with the help of
transfer primitives.

Note that it may often be useful (for exam-
ple when H, is not known or its exponential
is resource-intensive) to consider a decomposi-
tion into simpler permutations such that 7(a) =
7/(a)7"(a) - - -, where the exact implementation of
each {7/(a),7"(a),---} is known. For example,
considering that any permutation may be con-
structed from pairwise exchanges, one may im-
plement 7(a) via individual transfer primitives:

U, = 7;(k<—>l)7;(k:’<—>l’) e (27)

where Ta(k(_ﬂ) = exp {—z% (7:1(,«_)1) — I)} and I is
the identity operator.
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Controlled instructions. DQIR may be used
to facilitate controlled quantum instructions as
well, where a unitary U = U(¢) is applied condi-
tioned on the variable a being set to value k,

U=PPoUu+T-PP)oI  (28)

This includes the case where U = U(¢) (and
hence U" = U’'(¢)) are parameterized unitaries. If
the target unitary can be expressed as U = e~#*H
then the operation

U'(9) = et e (29)

produces the desired controlled operation, condi-
tional on variable o being in state k.

Using the observation that any Hamiltonian
H j representing a {0, 1}-valued Boolean function

f gives a projector [13], we generalize the control
part of equation (29) from the indicator primi-
tive to any multivariate Boolean-valued function
Hy = f(x)|x) on discrete variables,

Uj = 708N (30)

where H i and H act nontrivially on distinct sets

of qubits, and U} acts as U when the function f

is satisfied by the control register variables, else
as the identity.

For multiqubit operators, the control function
typically considered is the AND operation over
a subset of variables (or their negations), as for
example in multiqubit Toffoli gates [69]. The
generalization to arbitrary functions on Boolean
domains is considered in [13]. Our case of d-
ary domains is much more rich, with a much
larger set of possible single- and multi-variable
Boolean expressions, for example, controlling on
multiple states for each variable. Applying the
rules of (14) it is relatively straightforward to
construct controlled operators for a wide vari-
ety of commonly encountered conditional expres-
sions. Moreover, unitaries corresponding to dif-
ferent controlled functions can be applied in se-
quence to generate multi-case controlled opera-
tors.

Computing functions into registers. Sim-
ilarly, directly computing functions into regis-
ters is possible with operators constructed using
DQIR representations, an important special case

of multi-controlled instructions. For a Boolean-
valued function f(x), we may compute its value
in an additional qubit register as

Glx)la) = x)a® f(x)) (31)
by applying the exponential
Gf _ efifo®(XfI) (32)

where X is the Pauli operator and & denotes ad-
dition modulo 2.

Here we show how to generalize this approach
to computing powers of arbitrary bijective dis-
crete functions 7 : Zg — Zg. We wish to imple-
ment 7(a) conditional on the result of an integer-
valued function f(x) where x € Zg, X -+ X Zq,.
The operator of interest is

e xla) = x) [ (@), (33)

where 7F(a) signifies k repetitions of the bijective
function 7(a). If f(x) is a binary-valued function,
then its output determines whether to perform
the permutation or not. If f(x) is an integer-
valued function then the permutation may be ap-
plied multiple times. Notably, the set of opera-
tions (33) contains the subclass

Wx)la) = [x)|a+pf(x) modd)  (34)

for arbitrary integer p, which we highlight be-
cause of its potential use for integer arithmetic.
We emphasize that permutations are funda-
mental objects in reversible computation [70,
71] and hence (33) facilitates implementation of
broad classes of functions. In particular arbitrary
functions may be extended to reversible versions
through the inclusion of ancillary variables |71].

2.3 Actions within DQIR

A primary advantage of DQIR is that it unifies
the diverse landscapes of discrete problems and
quantum algorithms under one operator represen-
tation, facilitating the design and deployment of
automated tools that can be applied to suitably
prepare arbitrary discrete problems for a quan-
tum computer. Some such automated tools and
actions are listed in Figure 2.

One purpose of an intermediate representation
is to enable subroutines and analyses that are in-
dependent of the broader problem or algorithm
type. At the simplest level, DQIR is useful as
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Base ten SB  Gray Unary DW BUS;ZY
0 0000 0000 000000001 00000000 00 00 00 01
1 0001 0001 000000010 00000001 00 00 00 11
2 0010 0011 000000100 00000011 00 00 00 10
3 0011 0010 000001000 00000111 00 00 01 0O
4 0100 0110 000010000 00001111 00 00 11 0O
9 0101 0111 000100000 00011111 00 OO0 10 0O
6 0110 0101 001000000 00111111 00 01 00 00
7 0111 0100 010000000 01111111 00 11 00 0O
8 1000 1100 100000000 11111111 00 10 00 0O

Table 1: Integers 0 through 8 encoded into bits using standard binary, Gray, unary (one-hot), domain wall, and
BUS&?. The latter encoding refers to block-unary where each block uses the Gray code.

a way to cancel, collect, combine, and reorder
terms in operators before one implements a qubit,
or other, encoding. Because the terms are often
fewer and simpler in DQIR than in subsequent
lower-level representations, this will often reduce
the complexity of the resulting algebra that needs
to be performed (e.g. compared to Pauli expres-
sion manipulation). Working at the DQIR level
can also avoid redundant work when analyzing
across multiple encodings.

Higher-level analyses may be performed in
DQIR as well. For instance, once a Hamilto-
nian is constructed in DQIR one may directly es-
timate its norm or other quantities of interest, as
this may guide the choice of parameters such as
time step size used in a quantum algorithm, or
even guide the choice of algorithm itself. Ana-
lyzing the connectivity of the discrete variables,
1.e. considering the underlying graph properties
of the problem, may be very useful at this level
as well. For a given hardware choice, one may
reorder the quantum variables within DQIR, for
example using a clustering algorithm, as to ensure
that minimal non-native interactions are needed
in the quantum device. In some cases one may
choose to reduce the size of the problem by solv-
ing only highly connected variables on the quan-
tum computer |72, 73|.

2.4 Lowering DQIR into hardware-relevant
representations

While for simplicity we focus here on qubit-based
digital hardware with all-to-all connectivity, it
is straightforward to incorporate alternative or
additional encoding layers into DQIR, including
mappings that account for hardware topology
limitations, as well as noise via the broad field of

quantum fault tolerance. Similarly, one may con-
sider qudit-based hardware, including the general
case where the dit and variable dimension don’t
necessarily match.

Mapping to qudits. Here the general goal is
to convert DQIR to a multi-qudit representation
where variables are encoded with one or more qu-
dits via an embedding

RETLC

Zdlx---deK —_— Zd/l ><~--><Zd/K,. (35)

In general the sizes of the variable domains may
not be equal to the sizes of the encoded multi-
qudit space; indeed the original domain is often
strictly smaller than the embedded space. Such a
dimension mismatch allows for one-to-many map-
pings, or requires that some states in the encod-
ing domain be unused. We call an encoded com-
putational basis state valid if it corresponds to
a state in the original domain. For example
when a variable with d = 5 values is mapped
to qubits using the standard binary encoding,
|011) (+= |k = 3)) is a valid state while |111) is an
invalid state. Valid states may or may not be fea-
sible depending the particular problem at hand.
For instance, consider the traveling salesperson
problem encoded as a permutation problem (see
equation (7)) on three cities using the standard
binary encoding, such that the cities are labeled
as {0,1,2} — {|00),]01),]10)}. We refer to a
six-qubit state such as |00)|10)|00) («+ ]0)|2)|0))
as valid but infeasible, because though it has a
corresponding value in the original space (valid-
ity), it does not represent a permutation. Note
that for unconstrained problems we may use the
terms feasible or valid interchangeably.
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Figure 3: Flow diagram for converting from DQIR to
qubit-based operators. This procedure is automated for
any integer-to-bit mapping, of which four examples are
shown. Values of the bitmask subset are shown in blue.
A similar workflow would apply to compilation to other
platforms such as qudit-based quantum computers.

Mapping to qubits. In the remainder of this
work we focus on the important special case of
independently mapping each single discrete vari-
able to qubits

Zg 255 Ty x - X o, (36)

where for simplicity we will further assume that
the mapping is injective (i.e., not one-to-many,
which would be the case for example if each el-
ement were mapped to a larger subspace). We
note however that a one-to-many mapping is pos-
sible as well and has been proposed in the con-
text of QAOA for Max-k-Cut [33]. We will con-
sider a number of explicit examples of such qubit
mappings, see Table 1. The encoding (36) of
states also induces a mapping of DQIR primitives
and expressions to qubit operators. Operators on
qubits are commonly expressed as sums of prod-
ucts of Pauli operators and critically depend on
the particular encoding scheme selected. Much
of the following procedure has been given in a
pedagogical way in previous work [12| but here
we give an overview, shown schematically in Fig-
ure 3. While here we focus on mapping to logical
(encoded) qubits, DQIR may be easily incorpo-
rated into quantum error correction schemes [74]
to derive operators at the physical qubit (or qu-
dit) level.

We will consider several common qubit encod-
ings drawn from the literature, summarized in
Table 1. While some encodings require signifi-
cantly more space (qubits) than others, on the
other hand, within a given encoding and gate set
a given operator may be much easier to imple-
ment than in another. For a given algorithm the
choice of encoding presents immediate trade-offs
between qubit count and circuit depth, as well
as other measures or circuit complexity, though
it is not clear generally how such resource trade-
offs ultimately relate algorithm to performance,
which is a rich but complicated topic beyond the
scope of this work.

Furthermore, it may sometimes be desirable to
employ different encodings for different variables,
a general strategy we call mized encoding. First,
for heterogeneous problem domains with differing
dy, different encodings may be optimal (in terms
of circuit depth) for different variables, as will be
demonstrated in Section 6. Second, even when
variables have the same value of d,, = d, hardware
constraints such as irregular connectivity or dif-
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ferences in individual qubit quality might lead to
performance advantages from mixed encodings.

Consider again the integer-to-bit encoding
R of Eq. (36) which maps from a discrete value
to an encoding-dependent number N, of bits,
R g — ZS@N‘I. While there exist in princi-
ple exponentially many such encodings, common
encodings may be broadly grouped in terms of
their trade offs between space and depth over-
heads. In this work we consider the standard bi-
nary (SB), Gray, and unary (one-hot) encodings,
as well as a class of encodings that interpolates
between them called block unary [12], as shown
in Table 1. These encodings have been previously
studied in the context of resource advantages for
physics and chemistry simulations [12]|. For each
variable the compact codes (SB and Gray) re-
quire [logy d] qubits, unary requires d qubits, and
block unary interpolates between the two, requir-
ing [ 1[logy(g + 1)] qubits where g is an integer
parameter (assuming a compact code is used for
the local encoding of each block). An alterna-
tive unary approach called the domain wall (DW)
encoding [75] uses one fewer qubit than one-hot;
DW has been shown to yield significantly superior
algorithm performance than one-hot in multiple
contexts |76, 43].

Bitmask subsets. Consider a DQIR single-
variable primitive 7<) = |k)(I]. As described
in previous work [12]|, in order to take advan-
tage of the sparsity of non-compact encodings
one can introduce the concept of a bitmask sub-
set Core(T kDY) = cenc({k, [}), the subset of bit
(qubit) indices for which the resulting encoded
qubit operator acts nontrivially. The bitmask
subset is a useful concept because it facilitates
automated implementation of encodings beyond
just standard binary and Gray, in a way that does
not operate on more qubits than are strictly re-
quired. Qubits not in the bitmask subset may
safely be ignored. Hence the size of C¢({k,[})
determines the qubit locality (number of qubits
on which it operates nontrivially) of the encoded
primitive. Examples of bitmask subsets for var-
ious elements and encodings are shown in Table
2.

When considering diagonal elements P*) =
k) (K|, cCompact( k1 ) for compact codes con-
sists of all bits in the quantum variable, while
cUnary({k}) for integer k is simply the singleton

set {k}. Asymptotically, the size of the bitmask
subset for block unary is in-between the sizes of
those for compact and unary, i.e.

U ({k} ) < [CPY({k})]
<ICE (k) = 1CP({k} )L,

though for smaller d this trend does not always
hold. Performing the integer-to-bit encoding for
each primitive in the computational basis yields

= k)= Q) [bi)(bils (37)

icC({kl})

T(kel)

where b; and b, are the bit values for qubit ¢
resulting from the mapping, with implicit iden-
tity factors on the qubits outside of the bitmask
C({k,1}). The following identities may then be
used to convert the right-hand side primitives to
the Pauli qubit operators X,Y, Z:

(X +4Y); [1)(0] = 5(X —iY);

1 —
2 =
00 = L+ 2); | =31 —-z). >

We note that in the domain wall (DW) en-
coding, a particular integer often corresponds to
many qubits being in the 1 state (see Table 1).
Because of this, the bitmask subset for an off-
diagonal element 7<) for | > k is instead
COW{k, 1Y) = {(k - 1),k k+1,---,1 —1,(D)},
where [ is included only if [ # d and k& — 1 is in-
cluded only if k£ # 0. Thus DW yields a larger
bitmask subset than in the one-hot case and of-
ten larger than in the compact codes.
as long as all transition primitives operate only
on nearest-integers—which is the case with dis-
crete mixers typically considered for QAOA—
DW will lead to at most 3-local operators re-
gardless of d. Notably, DW has been shown to
provide advantages over one-hot in some cases,
including fewer one-qubit operators in the Pauli
basis [75]. Though we do not include resource
analysis for the DW encoding in our numerics of
Sec. 6, we speculate that circuit depths will be
roughly similar to the unary (one-hot) case for
the specific (and somewhat narrow) subroutine
we analyze, i.e. for operator exponentiation. It
is important to point out that one must analyze
a full algorithm end-to-end in order to determine
which encoding performs best for a given appli-
cation. Notably, for some applications DW has
been shown to out-perform one-hot in quantum
annealing [76] and QAOA [77].

However,
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Table 2: Bitmask subsets for various single-variable primitives on a discrete variable a with d = 6 states |0) through
[5). ‘*' and ‘~' denote qubits that are inside and outside the bitmask subset, respectively, where the qubit ordering
is {---,2,1,0}. Note that the first four rows correspond to diagonal elements while the last two rows correspond to
off-diagonal elements. For each primitive DQIR-to-qubit mapping procedure need consider only qubits in the bitmask
subset. Multi-variate operators are built from single-variable primitives as in equation (13).

General remarks. As mentioned, there is of-
ten significant trade-offs between encodings in the
required space (number of qubits) and number of
operations. Although a unary approach requires
more qubits, it often leads to a shorter circuit
depth. Consider a variable with d = 16. While
unary codes require 16 qubits, compact codes re-
quire 4 qubits—but compact encodings usually
yield an operator with more terms that addition-
ally have a higher average Pauli weight.
ever, on the other hand there exist domains and
problems for which a compact encoding is most
efficient both in terms of space and operations
counts, as discussed below.

How-

Some conceptual results relevant for matching
an application with an encoding have been stud-
ied previously [12, 18], where the number of en-
tangling gates (not the circuit depth) was deter-
mined for various physics and chemistry appli-
cations. Here we summarize some of the previ-
ous findings. First, a lower Hamming distance
between two bit strings leads to a Pauli opera-
tor with fewer terms. Omne direct implication of
this is that the Gray code is often more efficient
than SB, especially when implementing tridiag-
onal operators. Second, SB is often the opti-
mal choice (outperforming even unary) for di-
agonal operators that we call diagonal binary-
decomposable (DBD) operators, defined as op-
erators than can be encoded in standard binary
as agZy + a1Z1 + --- where a; is a real scalar.
Third, though it may seem that BU would yield
operations counts in-between unary and compact,
in physics applications it is often (though not al-
ways) inferior to both. This is because the bit-
mask subset is unfavorably large when two inte-
gers are present on different blocks.

After qubit operators have been obtained, the
final compilation steps involve mapping the prob-
lem to a particular hardware. This implementa-
tion will be based on the native gate set, hard-
ware topology, and possibly an error mitigation
or correction procedure (Figure 4). If the goal is
to determine a desired encoding for a given op-
erator and set of hardware, then one may run
through the compilation pipeline for many en-
codings before comparing resource counts such
as gate counts, circuit depth, qubit counts, or ap-
proximate error bounds. In this manner, one may
determine the most resource-efficient encoding for
a given quantum device.

Notably, there may be circumstances under
which one would convert between encodings in
the middle of the quantum algorithm. This has
shown to decrease required quantum resources in
quantum simulation of some physics and chem-
istry Hamiltonians [12] and is worth exploring
toward novel approaches for combinatorial prob-
lems as future work.

3 Algorithm components in DQIR

Here we provide a broad overview of various algo-
rithmic components that are commonly required
for tackling discrete optimization problems with
existing quantum approaches, from the perspec-
tive of DQIR. We introduce several novel sub-
routines while striving to identify best practices
and scenarios under which some algorithmic ap-
proaches are more advantageous than others. The
flow chart in Figure 4 guides the discussion. We
again emphasize that as the ultimate power of
quantum computers for combinatorial optimiza-
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tion remains a deep and active open research area,
we avoid making claims regarding algorithm per-
formance as much as possible and instead focus
on tangible metrics such as comparisons of re-
quired resources for specific approaches and sub-
routines.

3.1 Quantum approaches to combinatorial op-
timization

We first motivate our results by briefly sum-
marizing four prototypical classes of algorithms
applicable to estimating low-energy eigenvalues
and eigenvectors of a problem cost Hamiltonian
He (ie., obtaining approximate classical solu-
tions). These are quantum annealing and adia-
batic quantum optimization (AQO), QAOA (the
quantum approximate optimization algorithm or,
more generally, the quantum alternating operator
ansatz), non-QAOA variational approaches, and

finally approaches related to quantum imaginary
time evolution (QITE). In each approach care
must be taken to deal with any hard constraints,
and we address several methods for doing so in
detail. While a number of other approaches ex-
ist in the literature, and new approaches are fre-
quently proposed in this rapidly developing field,
the primitives required are typically similar to the
ones we consider, so we uses these algorithms to
illustrate the utility of our results for both cur-
rent and future quantum methods. In particular,
DQIR facilitates seamless extension in each ap-
proach to discrete variables of arbitrary d, > 2.

Different quantum algorithms require differ-
ent components and inputs to be produced from
DQIR, as shown in Figure 4. Although each of
the mentioned algorithms may be employed as
exact solvers, we consider them more generally
in the context of approximate optimization, as
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quantum computers are not believed able to ef-
ficiently solve NP-hard problems. Moreover, in
most cases rigorous performance bounds appear
quite difficult to obtain so these algorithms can
be considered as heuristic approaches, especially
in the setting of near-term quantum hardware;
see e.g. |7] for additional discussion.

Again assume we are given a cost function on
a discrete variable domain to minimize, suitably
encoded as a cost Hamiltonian H¢, and possibly
subject to a set of hard constraints, as defined in
Section 2.1. In each of the algorithms considered
below we seek to prepare a quantum state with
at least non-negligible support on low cost states
such that repeated state preparation and com-
putational basis measurement yields such a solu-
tion with high, or at least non-negligible, prob-
ability. Note that this definition subsumes both
the special cases of exact optimization (requiring
the true optimum solution), as well as exact algo-
rithms (that succeed with probability very close
to 1).

Annealing & Adiabatic Quantum Opti-
mization. In AQO as well as (closely related)
quantum annealing protocols [78, 6, 8] one begins
in the ground state of a “driver” Hamiltonian Hy
for which said state is easy to prepare on a quan-
tum computer, before gradually turning on the
cost Hamiltonian Hc:

H(t) = (1—s(t)Ho+s(t)Hc,  (39)

where s(t) is a suitable annealing schedule start-
ing at 0, varying continuously, and terminating
at 1 for some sufficiently large t = T > 1.
The two primary choices in the algorithm de-
sign are the annealing schedule and Hy. There
have been a number of exciting recent inno-
vations to the quantum annealing protocol in
terms of both hardware and theory, in particu-
lar more advanced annealing schedules accommo-
dating so-called pause [79] and reverse [80] fea-
tures, among others, as well as novel hardware
topology [81] and encodings [82, 77]. Also no-
table are non-adiabatic annealing methods that
may for example make use of environmental noise
[83, 84, 85, 86, 87]. Though this is a natu-
ral procedure for analog quantum devices (i.e.
quantum annealers), one may use Hamiltonian
simulation algorithms such as Trotterized prod-
uct formulas to approximately perform AQO on

gate-based quantum computers, in terms of al-
ternating “bang-bang” evolutions under Hy and
Hgo. If we further relax the requirement that
the sequence of discretized evolution must closely
match the adiabatic one we naturally arrive at the
QAOA family of parameterized quantum circuits,
as we discuss next. We note that compilation of
problems to actual quantum annealing hardware
is a rich topic with quite distinct concerns from
the gate model setting |88, 89].

Quantum alternating operator ansatz. In
QAOA [3, 4, 7] one constructs a quantum circuit
that alternates between applications of the so-
called phase and mixing operators, applied to a
suitable, efficiently preparable initial state:

Umm(ﬁp)e_””Hc o Upnin(B1)eHE [4hg) - (40)

Each layer j uses parameters v; and 3;, j =
1,...,p. The phase operator e *7H¢ corresponds
to time evolution under Hg for a time . The
mixing subroutine may be similarly implemented
as the exponential of a mixing Hamiltonian H,,;,
or more generally as some suitable parameterized
unitary operator Uy, (f) that meets certain de-
sign criteria discussed below. The algorithm pa-
rameters may be predetermined by analytic, em-
pirical, or other means [51, 90, 57, 91, 92, 93,
94, 95, 96, 97, 98], or determined variationally
using a hybrid quantum-classical search proce-
dure [27]. QAOA is inspired by but distinct from
adiabatic algorithms, in that while in certain lim-
its the QAOA state (40) can closely approximate
the adiabatic evolution of (39) [4], for different
parameters the resulting evolution can be signif-
icantly different, especially at a small or mod-
erate number of layers p. Moreover, in general
QAOA is not restricted to start in the ground
state of the mixer. Even more so than the case
of quantum annealing, a number of variants to
QAOA have recently been proposed, see for in-
stance [99, 54, 100, 101, 102].

Variational quantum circuits beyond
QAOA. Here we consider, broadly, more gen-
eral classes of parameterized quantum circuits
than those of QAOA. We use the term “non-
QAOA ansatz” to refer to any such circuits that
don’t strictly fit the definition of QAOA given
above. Parameters may again be determined in
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general through variational optimization, or set
through analysis or other means in specific cases.
Here the quantum state ansatz may not depend
on the cost function, or may but in a different
way than in (40). Relaxing the ansatz design
gives greater flexibility and may help in fitting a
quantum algorithm into the limited achievable
circuit depths of early generation hardware,
which may include hardware-tailored ansatz [64].
In principle one may use a short depth circuit
with many more parameters than QAOA, at the
expense of a much more challenging parameter
setting task [103, 27|, or include more complex
circuit features [104, 102].  Similarly to the
QAOA case, where one has freedom in the design
of the mixing operator, one may typically trade-
off between quantum resources, and classical pre-
and post-processing requirements in designing
an effective variational ansatz for a given class of
problems.

Imaginary time evolution. Quantum imagi-
nary time evolution (QITE) algorithms [66, 65]
determine and implement an approximation of
the real operator exp(—FH¢) to create the state

[¥(B)) o exp(—BHc)|tho) = (exp(—LHe)) o),

(41)
up to normalization, on a quantum computer.
If such a state could be prepared for sufficiently
large 8 and with sufficient fidelity then we would
be guaranteed to find a ground state of Hg
(assuming the initial state |¢9) has support on
such states). However, as the QITE operator
is far from unitary for non-negligible (3, it can-
not be simultaneously implemented efficiently,
exactly, and deterministically in general on quan-
tum hardware. (Otherwise, for instance, quan-
tum computers could efficiently solve NP-hard
problems which is widely believe to not be the
case; this is easy seen considering the initial state
corresponding to a uniform superposition of bit
(dit) strings.) Hence, after decomposing into
Trotter steps each of small duration 8/k < (8
as indicated in (41), QITE algorithms iteratively
employ a hybrid quantum-classical procedure to
determine a suitable local unitary approximation
for each subsequent step. The procedure is ex-
pensive partly because as originally proposed [66]
each time step requires many iterations of quan-
tum state tomography on a subset of the qubits
that grows with each step. Understanding both

the performance and limitations of QITE and
related approaches remains an open and active
research direction, in particular for the specific
setting of combinatorial optimization, and espe-
cially what is achievable with near-term devices
or polynomially-scaling resources more generally.

We next turn to methods for adapting these
approaches to problems with hard constraints,
which we extend to our discrete variable setting.
Two primary strategies in the literature for deal-
ing with hard constraints are penalty terms and
constraint-preserving mixers, which we consider
in turn. We further propose a hybrid approach
that combines these two methods in Section 3.3.4.

3.2 Penalties

Here we consider penalties, which are additional
terms (diagonal operators) directly added to an
existing cost Hamiltonian to produce an effective
cost function that penalizes with added cost any
violations of the hard constraints,

Heg = Ho + x1F1 + x2Fo -+ -, (42)

such that the low-energy states of Heg correspond
to the low-energy feasible states of Ho. Each
penalty term F} represents a suitable (usually
non-negative) classical function, and comes with
a sufficiently large penalty weight x; > Onote
that choosing optimal penalty weights is nontriv-
ial and depends on the context and particular
problem [79]. Because finite-weight penalties do
not strictly preserve the feasible subspace (i.e.,
transitions between feasible and infeasible or in-
valid states are possible, as opposed to the mixer-
based approach of Sec. 3.3), it is generally nec-
essary to introduce a simple post-processing step
of discarding invalid or infeasible bit strings re-
turned, or else attempting to ‘correct’ them with
a suitable classical procedure—for example a sim-
ple approach would be to correct an infeasible or
invalid output state by finding the closest feasible
string. In general there may be different possible
ways to construct suitable penalty terms, and dif-
ferent choices come with different resource trade-
offs.

In terms of the algorithms of Section 3.1,
penalty terms are the standard approach in AQO
for dealing with hard constraints. For QAOA,
penalty terms may in principle be employed sim-
ilarly, however, they may be much less effective
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[7, 31] because, as mentioned, in various param-
eter regimes QAOA may not resemble an adia-
batic evolution such that penalty terms may not
have the desired effect on the quantum state evo-
lution. This observation hints at the alternative
constraint-preserving mixer approach we consider
in Section 3.3. Penalty terms may be similarly
utilized in more general variational algorithms be-
yond QAOA, where similar consideration apply.
Finally, for QITE, penalties (or another suitable
approach) are necessary as without them the al-
gorithm may converge to a wrong (i.e., infeasible
or even invalid) state. For each approach, we note
the distinction between including penalty terms
within the quantum circuit or protocol directly,
versus including it indirectly via the objective
function to be optimized (typically the expecta-
tion of a cost Hamiltonian) in determining the
algorithm parameters; the former can be seen as
modifying the algorithm, where the latter is ef-
fectively a post-processing step.

We distinguish the two most important types of
penalty terms into two categories: discrete-space
(DQIR-level) penalties and encoding-dependent
(qubit-level) penalties.

3.2.1 DQIR-level penalties

DQIR-level penalties are used to penalize viola-
tions of any of the unencoded classical problem’s
constraints of equations (4) and (5), i.e. they are
used to enforce feasibility as specified by the prob-
lem input of the algorithm dynamics and out-
put. Here we provide several penalty construc-
tions for a number of commonly occurring exam-
ples of hard constraints. For simplicity of presen-
tation we will assume uniform variable domains
D, = Dg of equal cardinality d := d, = dg for
each variable throughout; in most cases the gener-
alization to arbitrary variable domains D, # Dg
is straightforward. Similarly, each primitive is
easily restricted, as desired, to the case of act-
ing on only a particular subset of the problem
variables.

First, recalling equations (7) and (8) we define
the pair permutation penalty as

d—1
k
Fperm = § E Pék)Pé )7 (43)
a#p k=0

which is non-zero on states for which a dis-
crete value occurs more than once, and so pe-

nalizes integer strings that don’t encode permuta-
tions. Here we have employed the indicator prim-
itives P.

Next, a commonly encountered linear con-
straint is that all variables in a given set must
sum to some constant D (i.e. when some such
quantity must be preserved), for which one may
use the squared-sum penalty

2
Faum (x) = (Z S a Pt - D)
a Kk
2
= (Z Ao — D) :

Here squaring is used to ensure that any states
violating the constraint are assigned higher en-
ergy by the penalty than those that do and is a
common technique in penalty term design. We
employ Flym in Sec. 5 below for the portfolio re-
balancing problem.

General linear constraints are a further impor-
tant constraint class that come in the form of
inequalities such as 3z, + 2zg < b, where the
left-hand side is a weighted sum of a discrete vari-
ables and b is a constant. In general these con-
straints yield a rectangular matrix A such that
Y ia AiaTa < b;. These linear constraints lead us
to define penalty operators

(44)

$a<da,mﬁ<d5,-~

Ry = >

A1Q$Q+A15$B+>bl

rpéma)fpéxﬁ) o, (45)

where the number of indicator primitives P in
the product is equal to the sparsity of row i. We
further define

Fin =Y F (46)

where the b; are constants. We stress that a vari-
able is included in the product of equation (45)
only if A;, is non-zero. The number of terms
in the final encoded operator for penalty (45) is
heavily dependent on the sparsity of row i of A;
for many encodings the number of terms in the
qubit-encoded operator scales exponentially with
the number of nonzero elements in row 7. Hence
if even one row of A is not sparse, using Fy;,
will usually not be an efficient approach. In such
cases, the introduction of a slack variable may be
a preferable route |7, 105]. See Section 5 for more
discussion of Fj;, in the context of integer linear
programming (ILP) problems.
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A wide variety of other useful constraints and
penalties are possible and may be implemented at
the DQIR level, in particular by directly applying
the techniques of Section 2.2; we do not attempt
an exhaustive enumeration here. We next turn to
constraints and penalties that arise only after a
lower-level encoding choice has been made.

3.2.2 Encoding-dependent penalties

Unlike DQIR-level penalties, encoding-dependent
constraints and penalties are those used when the
target encoded space of the mapping (35) also in-
cludes invalid variable assignments, i.e. some en-
coded states that do not correspond to a state in
the original domain D. Given such a fixed encod-
ing, in some cases we can define suitable penalty
terms at the DQIR level, then further compile
these terms by applying the encoding to them; in
other cases contextual lower-level knowledge can
be utilized to derive suitable penalty terms.

As this work primarily considers encodings for
which each variable is mapped to its own set of
qubits, here we define only single-variable validity
penalties which for a given variable z, € D, takes
the form

Fsg =Y P® (47)
k¢S

where § 1= Rene(Do) are the encoded assign-
ments of z, such that the sum is taken over any
invalid states [44]. This penalty is intended for
use primarily with compact codes, because for
non-compact codes (e.g. unary) equation (47)
requires a very large number of terms. For ex-
ample, if one is using SB to encode a d = 3
variable into two qubits, then one may impose
a penalty cost on the qubit state |11), which is
not a valid configuration as it is not contained in
{100, [01), [10)} (= {0,1,2}).

The approach presented here may be extended
to more general multi-variable encodings and er-
ror correcting codes, which is often relatively
straightforward on a case-by-case basis. Hence
working at the DQIR level provides greater flex-
ibility if the underlying hardware or encoding is
later changed.

3.2.3 Leakage

Here we propose a simple measure that quanti-
fies deviation from the desired feasible subspace,
and as applicable both DQIR-level and encoded

quantum states. Given such a quantum state |1},
we define its feasible outcome component as the
probability of a measurement in the computa-
tional basis returning a feasible solution

7:(’1/1» = <¢‘Pfeasible‘w>7 (48)

where Preasiple 1= ZXGXfeasible ‘X) <X|

Hence, at the end of a quantum algorithm (for
example, one that employs penalty terms such as
AQO) the final quantum state produces a feasible
outcome with probability F(|¢f)) = F(Ulo)).

Similarly, given a unitary operator U and a fea-
sible state [¢g) (i-e., Preasible|?0) = [%0)), we de-
fine leakage due to U with respect to |ig) as the
probability of a transition to a state that is either
infeasible (valid but violates some constraints gi)
or even invalid (does not correspond to a state in
the domain D),

LU, o)) =1 = F(Ulv))
=1- <1/}0’UT(6)PfeasibleU(/B)|¢0>‘

Leakage is a critical consideration when one de-
sires to construct operators that shift probability
amplitude between feasible states only, such as
driver operators in AQO and similarly, mixers in
QAOA. We note here two contrasting examples.
First, problems on an unconstrained domain D
without any input hard constraints g correspond
t0 Proasible = H%(Zz;(l) Pék)), i.e., the only possi-
ble leakage is to invalid states that may arise from
encoding choice; if no such invalid states exist
then pfeasjb]e gives the identity operator. Second,
under our cogventions permutations problem cor-
respond to Preasible = Y, 5y, [Xmy,) (Xm, |, where
in general leakage to both infeasible or invalid
states may occur.

Finally, we emphasize that we may apply (49)
in either case of evaluating individual operators,
or an overall quantum algorithm. For the lat-
ter case, increased leakage typically relates to in-
creased classical resources in terms of additional
circuit repetitions required to compensate for di-
minished success probability. Moreover, while
for simplicity we do not distinguish here between
leakage to invalid versus valid but infeasible sub-
spaces, this distinction may be useful in applica-
tion.

3.3  Mixers

When mapping a problem to quantum hardware,
the inclusion of penalty terms can dramatically
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increase the resources required to implement a
given algorithm, in terms of both the weights and
density relative to the cost function of the penalty
operator terms.

Additionally, in practice penalty-based meth-
ods do not prevent a finite or possibly significant
probability of invalid and/or infeasible states,
which as mentioned may dramatically increase
the number of algorithm repetitions and hence
overall time required to obtain a satisfactory
problem solution.

An alternative approach is to design quantum
operations and initial states so as to automati-
cally restrict algorithm dynamics to the subspace
of feasible states, such that the need for penalty
terms is avoided altogether. Such an approach
has been developed for generalizations of AQO
[106, 107] and QAOA [63, 7, 108, 99, 31, 33, 105].
In the context of QAOA, whether such an ap-
proach leads to fewer quantum resources than a
penalty-based approach, for comparable levels of
algorithm performance, should be analyzed on a
case-by-case basis |7, 31|, and so we leave this
question for future work. In this section we ad-
dress the design of mixers that strictly preserve
hard constraints, as well as novel approrimate
mizer variants that tolerate some manageable
degree of leakage. The approximate mixers we
construct require fewer quantum resources than
their exact counterparts in some cases and ap-
pear particularly suitable for applications where
we are willing to trade reduced circuit depth
for increased classical repetitions, for example
small-scale near-term experiments, though this
behaviour is not generic.

For QAOA and related quantum gate model
approaches it is often desirable to define mixers
in terms of simpler, reusable components. Fol-
lowing [7], a full mizer Uy; = Un(B) may be con-
structed as an ordered product of a set of partial
mizers Upry = Upr(B) such that

UM = H UM,’Ua (50)

where ideally each Uy, is a local operator and
can be implemented easily or at least efficiently.
Importantly, the partial mixers do not mutually
commute in general such that different orderings
of the product (50) can produce different full mix-
ers. Here by local we mean that each Uy, acts
nontrivially on a bounded set of qudits, such that
in particular partial mixers acting on disjoint sets

of qudits can be implemented in parallel. Clearly,
if each partial mixer preserves feasibility, then so
does Ups. Hence if such a mixer is utilized in
QAOA along with a feasible initial state, the al-
gorithm is guaranteed to output feasible approx-
imate solutions only.

Partial mixers may be expressed as quantum
circuits, as exponentials of Hermitian generators
built using DQIR primitive, or as DQIR local
primitives themselves (e.g., G,). In some cases
it is useful to further decompose into lower levels
of partial mixers or other basic operators Ujs,, =
[1., Unww and so on, as desired. To this end it
is useful to have a template of partial mixer de-
signs applicable to different problem classes (i.e.,
domains) and types of hard constraints, with dif-
ferent suitability for different hardware architec-
tures. We consider the construction of basic par-
tial mixing designs below and in Section 4.

We categorize full or partial mixers based on
two primary characteristics. First, as mentioned,
mixers may be either strict or approximate, de-
pending on whether they allow any leakage or
not; we elaborate on the approximate case be-
low. designed with respect to the feasible sub-
space, or hardware-logical-level mixers that may
be designed to preserve validity; the first type can
be defined independently of the encoding choice,
while the latter cannot.

Given a set of hard constraints, a strict mixer
should always take feasible quantum states to
other feasible quantum states, as well as explore
(in some sense) a sufficiently large portion of the
feasible subspace. As previously identified in |7,
Sec. 3.1], this motivates the following general de-
sign criteria for construction suitable mixing op-
erators, in particular as products of partial mix-
ers.

Design criteria 1. Desired criteria for full mix-
ers Upnr(B).

a. (Feasibility) For all values of 3 the mizer
should preserve the feasible subspace, i.e.,
not result in any leakage when acting on a
feasible quantum state. (This criteria may
be relazed if penalties or post-selection are
introduced. )

b. (Reachability) For all pairs of basis states
x # y in the feasible subspace there must
be non-zero transition amplitude overlap
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(x|(Up(B))"|y) for some B and positive in-
teger r.

Criteria 1(a) ensures that when such a mixer is
used in QAOA, only feasible (approximate) solu-
tions will be returned. Given a set of partial mix-
ers satisfying 1(a), any mixer formed from taking
products will also preserve feasibility. Criteria
1(b) allows flexibility in terms of trading off the
circuit depth per mixing layer (and hence overall
number of QAOA layers given fixed resources)
with the degree of mixing. In Section 4 we in-
troduce techniques for the automated design of
mixers satisfying Design Criteria 1 using graph-
theoretic approaches. The design criteria is eas-
ily extended to accommodate more general cases
such as multi-parameter mixers Ups(f).

3.3.1 Approximate mixers

Here we consider generalized mixing operators
which may allow some degree of leakage.

We call a mixer strict if it preserves the fea-
sible subspace as in design criteria 1(a), i.e. if
L(Unm(B),|z)) = 0 for all |X) € |X)feasible and all
B; otherwise we use the term approximate mixer.
If they can be implemented with low or moder-
ate cost, strict mixers are preferred because they
search only the valid and feasible problem space.
However, there may be cases where a strict mixer
is relatively expensive, or even when an efficient
strict mixer construction is not known. In such
cases an approximate mixer may be used, for
which there may be a finite leakage L > 0 per
mixing stage, as well as leakage at the end of
the algorithm. We elaborate on some additional
motivating example applications for approximate
mixers in Section 3.3.4, in particular that in some
cases they may be further combined with penalty
terms to reduce or eliminate leakage.

A naive implementation of an approximate
mixer Uy is to first define a Hermitian generator
G whose ezact exponential Ups would satisfy
Design Criteria 1 and produce zero leakage, but
which cannot be easily implemented on a given
quantum computer. If G ;s is decomposed as

Gy :ZGM,U (51)

such that each G, may be exponentiated ex-
actly, then a full approximate mixer may for
example be constructed as a product formula.

When using qubits, an appropriate choice is for
each G, to be a Pauli string, as quantum cir-
cuits for their exact exponentials are easily im-
plemented with basic quantum gates [109]. For
some parameter values, or on some initial states,
the leakage may be relatively small or manage-
able. For example, a first-order Trotter step cor-
responds to

Uy = [[e M ~ Uns. (52)
v

which implies that Trotter error and hence
leakage can be bounded as a function of 6.
Within the same or between different mixing lay-
ers feasibility-violating transitions can cancel to
some degree to have a less detrimental effect than
worst-case bounds would indicate. If one wishes
to reduce or control the leakage they can replace
Unr(0) with (Ups(6,/7))" for roughly r times the
circuit cost. Similar considerations apply to prod-
ucts of partial mixers derived from higher-order
Suzuki-Trotter approximations [110]. More gen-
eral quantum Hamiltonian simulation algorithms
may also be applied to implement Ujys, however
these approaches often appear to be beyond near-
term capabilities and don’t typically result in a
products of partial mixers in the same way. A
general takeaway is that one can often trade-off
increased circuit depth with tighter leakage guar-
antees, when desired. Importantly, we show in
Section 6 that when constructing single-variable
mixers, the naive Trotter approach (52) for ap-
proximate mixers can nevertheless lead to larger
circuit depths than the strict mixers designed in
Section 4.1 of this work.

Finally, we remark that approximate mixers
may be especially appropriate in the near-term
setting, where circuit depths are limited and
problem sizes not too large such that one may
potentially tolerate a more significant decrease to
the probability of success due to leakage than in
the asymptotically large setting.

3.3.2 Single-variable mixers

Single-variable mixers (i.e., single-qudit mixers
[7]) operate on one variable, mixing only the
d = d, valid values of the space. We define
a DQIR-level generator for such a mixer called
a shift partial mizer Hamiltonian (also called a
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fully-connected mixer [7]),

Gshift _ di:l Tkerk-1)
- )
=D (k) {k = 1o + [k — 1)(k|a)
k=1

leading to a full mixer generator over all vari-
ables Gyy = S, GShift . If the term 707" Y is
added to equation (53), the operator is called the
single-qudit ring mixer Hamiltonian [7]. As dis-
cussed in the previous section, a single-variable
approrimate mixer may be implemented for en-
coded variables after further decomposing Ghi/t
into Pauli strings which can be exponentiated ex-
actly.

We now turn to special cases of strict mixers
for specific qubit encodings. The more general
design of mixers for arbitrary d and arbitrary en-
codings are considered in Section 4. For the unary
(one-hot) encoding, we require that for pairs of
qubits the two encoded states |k) — [0)|1) and
|1} — |1)|0) be mixed, while |0)|0) (which corre-
sponds to the other encoded values) is invariant,
and no leakage to |0)|0) or |1)|1) can occur, mean-
ing that the two-qubit unary partial mixer may
have pattern

* % O

5 = (54)

O O O ¥
S % * O
*» O O O

0

A possible full mixer in the unary encoding may
thus be defined as [T ( Z;%)Agl’k, Notably,
these gates can be applied in parallel on qubits
{(0,1),(2,3),-- -}, followed by {(1,2),(3,4),---},
meaning that the depth of this single-variable
unary mixer is independent of both the number
of discrete variables and the problem size.

When using compact codes (Gray and SB),
in the special case for which d is a power of 2,
all available encoded quantum states are valid.
Therefore a minimal depth choice is the simple
binary mizer 7| (sometimes called the transverse-
field mixer before an encoding is specified),

Ng
O™ = @ Ry (6)) (55)
J

where R}X = exp(—10Xj) is the Pauli X rotation
gate on qubit j and 6; are mixing parameters.

This circuit, with a depth of only 1, is signifi-
cantly shorter than in the unary (one-hot) case,
where it is not possible to construct a circuit of
single-qubit rotations that always preserves fea-
sibility. We emphasize that the simple binary
mixer is strict (produces no leakage) only in the
special case of d being a power of 2; other cases
are considered in Section 4.2.

Recalling (13), multi-d-variate mixers may be
constructed by combining single-variable DQIR
primitives in a similar manner as the single vari-
able mixer case described here.

3.3.3 Permutation mixers

We next consider partial permutation mixers
(PPMs), used for permutation problems like
scheduling and routing. A DQIR basis state is
valid if each object (for example, each city) ap-
pears exactly once; hence for permutations we use
variable to refer to the integer values (i) as in
Eq. (7). For exploring the space of all permu-
tations it suffices to consider PPMs that operate
on two variables, from which full mixers satisfy-
ing Design Criteria 1 may be built, and so we
focus on this case.

We introduce the following design criteria spe-
cific to problems over permutations. Criteria 2(a)
and 2(b) are directly related to Criteria 1(a) while
2(c) is directly related to 1(b).

Design criteria 2. Criteria for designing a
DQIR two-variable partial permutation mixer

UPPM(ﬁ).

a. For any pair of variables in an M -object per-
mutation, the possible two-variable configu-
rations |k,l) are those for which k,l € Zyy
and k # 1. No elements in UPYM(B) between
such states and mecessarily infeasible states
(those for which k =1, k & Znr, orl & Zar)
are allowed. (This criterion may be relazed
if some leakage is allowed.)

b. The only allowable non-zero off-diagonal el-
ements involving feasible states are those
for DQIR-level operators T (ke k) ¢
terms such as T(@D<GR) gpg T(@b)oLk)
are not allowed for {a,b,k,l} all-unequal.
(This criterion may be relaxed if some leak-
age is allowed.)

c. The set of non-zero off-diagonal UPTM(3)
DQIR-level primitives T (kD OR) that obey
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Criteria 2(a) and (b) must include all DQIR
single-variable values {0,--- ,d — 1} at least
(Note that this criterion is used to-
ward ensuring Criterion 1(a) is satisfied in
the case where we construct a full mizer us-
ing the same PPM across different variable
pairs; more generally, this condition may be
relaxed.)

once.

Full mixers may be constructed by combining
two-variable PPMs in simple patterns, with the
PPMs designed in accordance with Criteria 2 in
order to ensure that Criteria 1 is satisfied. For
example, one may again use a UPPM(3) to oper-
ate on DQIR variable pairs ((0,1),(2,3),---) fol-
lowed by ((1,2),(3,4),---), and repeating. Crite-
ria for designing PPMs are further discussed from
a graph-theoretic perspective in Section 4.3.

We first consider a two-variable mixer Hamil-
tonian whose exact exponential meets Criteria 2.
We define the two-variable standard partial per-
mutation mixer (SPPM) Hamiltonian as

d—1
SPPM _ k—k-1) -(k-1F)
HEEM = 37 (T80T

k=1

+7—(l~c<—k-1)7—ﬂ(k-1<—k‘))

d-1 (56)
=D [}k = 1]a @ [k — 1)(kls

k=1

d—1
+ D [k = 1) {kla ® k) (k= 15

k=1

The exact exponential of this operator would en-
sure that two of the same integers would never
appear more than once, which in turn ensures
that the state remains in the feasible space for
permutation problems. As discussed, an approxi-
mate SPPM mixer can be derived from a Suzuki-
Trotter product formula, which will (depending
on the encoding) lead to some degree of leakage.

In the unary encoding, it is straight-forward
to define a strict partial permutation mixer to
mix state k on variable o with state [ on variable
f. One may use a gate of the form Ay of equa-
tion (54), where the two target qubits correspond
to states |k)o and |l[)3. (These have been called
ordering swap partial mixers [7].) Implementing
these gates for sufficiently many different pairs
states will lead to a PPM that meets criterion
2(b).

Strict partial permutation mixers for standard
binary, Gray, and block unary encodings are

much less straight-forward to design, even when
d is a power of 2. Unlike the single-variable mixer
case, there is no two-variable PPM equivalent of
the simple binary mixer of equation (55), because
such a mixer would lead to infeasible states such
as |k, k). Novel graph-theoretic strategies for de-
signing PPMs are discussed in Section 4.3.

3.3.4 Combining mixers with penalties

Here we explain how in some cases it may be
advantageous for algorithms such as QAOA to
combine the mixers and penalty term approaches,
which we refer to generally as penalty exchang-
ing. In this approach, we select a mixer that pre-
serves some superset D’ O Dy, of the feasible
subspace, and as needed add penalty terms to
the cost function (cost Hamiltonian) to suppress
transitions to strings y € D'\ Dyeag. If [D’] is not
too much larger than |Dge,s| it may be possible
to avoid penalty terms altogether. Here, a strict
mixer on D’ may be approximate with respect to
the target subspace Dyeas. In particular this ap-
proach may be applied at the level of individual
variables and domains D,. Furthermore, in some
cases it may be possible to select an exact mixer
with respect to D’ such that all or some measure-
ment outcomes x’ € D'\ Dye,s can be classically
‘corrected’ to a feasible string x € Dyeag, €.g. the
approach of [111].

We describe some scenarios where this ap-
proach may be useful. For some problems it may
be possible to reduce required mixer resources
such as circuit depth by relaxing the individual
variable domains (i.e., increasing d), at the ex-
pense of tolerating some degree of leakage.

For example, imagine a single-variable mixer
for a d = 14 variable that requires much deeper
circuits than that for d = 16 in a given compact
encoding. It may be the case that depth can be
lowered by extending the cost function to d = 16
while adding a variable domain penalty Fgg for
d = 14. We consider such an example in Sec.
6.2. Another example is that for some hard con-
straints it may by hard or inefficient to construct
a mixer that exactly preserves the feasible sub-
space. In this case we may relax the domain to
one for which a suitable mixer can be efficiently
implemented, and augment the cost Hamiltonian
with appropriate penalties. A third example is
that, generically, a mixer which is exact at the
DQIR level may, after encoding, be compiled in
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an approximate way (i.e., may allow some leakage
to invalid states).

For a given problem and domain, different com-
binations of mixers and penalty terms may be
possible. In order obtain decreased circuit depth,
these must be selected such that the gains for the
mixing stage are not outweighed by the added
cost of implementing the penalty terms. More-
over, any gains should lead to manageable degree
of leakage with respect to the reduction of proba-
bility of success. A further critical consideration
beyond the scope of this article is the effect on
overall performance.

For specific realizations, penalty exchange
ought to be analyzed or numerically tested within
a full quantum algorithm. Exploring suitable
circuits using penalty exchanging (based for ex-
ample on memoized template circuits of fixed
depths) is a task appropriate for DQIR.

3.4 Initial states

There are many options for the input quantum
state. In practice, it is difficult to know a priori
which combination of initial state and algorithm
is most favorable for a given problem instance and
quantum device. There is a complex interplay be-
tween choice of initial state, encoding, penalties,
mixers, and algorithm. For instance, if one allows
for use of penalties then one is less restricted in
the choice of initial state, but one may pay a sub-
stantial price in obtaining feasible outcomes [31].

Here we categorize the selection of initial state
Algorithms
such as QAOA or other variational approaches in
principle can accomodate arbitrary initial states
when the link to adiabatic evolution is relaxed.
However, in general a given target solution may
be more difficult or even impossible to access from
one initial state than from another [112], and fur-
ther research is needed to better understand the
performance and resource tradeoffs.

One may begin with either a well-defined state
for which a quantum circuit is known or a quan-
tum state that was outputted from a previous
quantum algorithm (for instance, output from
QAOA may be used as input for an ITE algo-
rithm). Here we focus on the former case, where
the initial state should be easy-to-prepare rela-
tive to the cost of the circuit to follow [7].

An important general class of states consists
of tensor products of single-variable states, which

in terms of several characteristics.

may be expressed as [¢g) = @M |p,) for arbitrary
single-variable states |¢,). The primary advan-
tage of tensor product states is that they can be
prepared in short depth. If there are no feasibility
constraints, one may choose to prepare an equal
superposition of all valid states

o) = FH <Z k) ) (57)

by operating on each (encoded) variable in paral-
lel. This encapsulates the trivial-to-prepare qubit
initial state 1) = [+)®"4 as originally proposed
for QAOA. In addition to being easy to prepare,
equal superposition states are also the ground
state of a mixer Hamiltonian that is a sum of
single-variable terms.

For permutation problems such as scheduling
and routing, whose solution is in {X}perm, it may
be advantageous to begin in a superposition of
valid permutations

ch|77k nlmR(2))2 - (M) (58)

where {7} is the set of all valid permutations
and ¢, are complex coefficients.
has shown how to prepare an equal superposition
of permutations in the unary (one-hot) encoding
[99], with a cost scaling as O(M?3) in the gate
count and O(M?) in the depth. This highlights
that although more clever initial states may lead
to more robust numerical behavior, one may pay
a higher cost in the initial state preparation. We
observe that, using known conversions [12] from
unary to standard binary, Gray, and block unary
encodings, this unary superposition state may be
converted to any of the latter encodings.
Importantly, single-variable tensor product
states subsume the special case of initializing a
quantum algorithm with a classical string, that
may selected randomly, or be obtained with some
amount of instance-dependent classical prepro-
cessing, for example using the output of a clas-
sical algorithm or heuristic. Such initial state
subroutines may range from simple greedy algo-
rithms to much more sophisticated approaches.
One may integrate such classical solvers at the
DQIR layer in the software pipeline. Given such
a classical state |y), we may always transform to a
quantum superposition, if desired, by applying a
single mixing stage [7], or other suitable operator.

Previous work
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Other useful variations on the above initial
states are possible. One may introduce classi-
cal or quantum randomness into an ensemble of
initial states as a way to explore more of the
solution landscape, and mitigate the possibility
of a poor choice. For example one may imple-
ment a “warm-starting” procedure [100]|, where
output from a classical relaxation (whereby dis-
crete variables are replaced with continuous ones)
of a combinatorial problem is used to derive an
input quantum state and appropriate mixer in a
different way than described above.
other initial state variations are possible includ-
ing adaptive approaches. Generally, an initial
state design should be evaluated and selected in
tandem with the intended algorithm (e.g., mixer)
toward achieving the best possible performance.

Numerous

4 Graph-derived mixers

In this section we show a novel approach to de-
signing suitable mixing operators using a search
algorithm based on graph-theoretic design crite-
ria. We provide numerics supporting the resource
advantages of our approach in Section 6.

The purpose of this section is to introduce a
general method for creating mixers that strictly
preserve the valid and feasible subspace. There
have been several works that introduced their
own class of such constraint-preserving mixers
[99, 31, 33]. Grover mixers [99] use a con-
struction based on Grover’s algorithm that yields
constraint-preserving circuits that include multi-
Toffoli gates; our approach provides additional
flexibility and may lead to shorter gate depths,
and one may choose to construct mixers from at
most 2-qubit gates, which do not need to be de-
composed. Another notable work [33] constructs
constraint mixers on compact (e.g. binary) en-
codings; our current work produces considerably
shallower mixer circuits. Finally, constructs such
as XY mixers |31, 113] are efficient mixers that
apply only to one-hot encodings; in contrast, our
general graph based approach may in principle be
applied to any encoding and any constraint. De-
spite our graph approach offering more flexibility
in gate choice as well as shorter circuit depths,
there are some potential drawbacks. First, the
search algorithm in our graph-derived mixers may
lead to longer compile times than previous ap-
proaches. Second, there is no guarantee that an

appropriate mixer is found, if the choice of gate
library is not sufficiently powerful (however, were
were able to design mixers for all use cases con-
sidered in this work). Hence, determining which
constraint-preserving approach to take must be
studied on a case-by-case basis.

4.1 Graph representations for strict mixers

Here we introduce a novel approach in which we
represent partial mixers as graphs derived from
their action on computational basis states. We
will show how such a construct facilitates the au-
tomated design of strict partial and full mixers
that meet Design Criteria 1. These partial mix-
ers are encoding-dependent and must be designed
separately for each encoding. In general the size
of the mixer graph grows exponentially with the
number of problem variables M, in the worst-
case. However, there are many problems (in-
cluding permutation problems and coloring prob-
lems considered later in this work) for which a
full mixer across all variables may be generated
from applying the same one- or two-variable par-
tial mixers across different variables, for which
the size of the corresponding graph grows with d
(which is often a constant) rather than M.

Consider a partial mixer unitary Upys operat-
ing on L < M quantum discrete variables (i.e.,
Upys is designed in terms of its action on a Hilbert
space of size Dpys < dy X - -+ X dy, where d,, is the
cardinality of variable o). We define the partial
mixer graph (PMG) as

QUpm) = (V. {uv|Uppm[u,v] #0})  (59)

where the set of vertices V corresponds to
the Dpy quantum basis states and UM [u, v)]
corresponds to the coefficient of |u)(v|, i.e.
UPM [y, v] o trace(UPM |u)(v|). The graph Q is
undirected, as for simplicity in this work we re-
strict ourselves to the class of unitaries for which
UPM [y, v] # 0 if and only if UPM[v,u] # 0. Our
approach similarly extends to the more general
directed case.

Consider for example a controlled- Ry operator
with the first and second qubit as target and off-
control, respectively, in the context of its action
on some (encoded) 3-qubit state (i.e., the middle
green box in the bottom left of Figure 5). This
gate has the following sparsity pattern and the
resulting partial mixer graph contains two edges:
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= QU) = {(0,4); (1,5)},

where here we have used {]|000), |001), |010),
|011),---} — {0,1,2,3,---}. This construct is
useful because we may now redefine mixer design
as a graph-theoretic problem, which will often be
both conceptually and computationally simpler
than using the usual operator matrix representa-
tions.

For a fixed set of problem hard constraints, we
define Sg and Sp, respectively, as the induced
sets (subspaces) of locally good (feasible) and bad
(infeasible or invalid) states, defined with respect
to the L variables under consideration. This ap-
proach facilitates easy reuse of the resulting local
partial mixers independently of the global prob-
lem structure. It is vital to emphasize that a lo-
cally good state in S may or may not correspond
to a feasible global state. Consider for example
a problem over permutations {Z}perm Where we
wish to design mixers with L = 2. For any two
variables, Sg contains all states for which the two
variables are assigned different integers. However,
if in the global variable space a different variable
is assigned the same integer as one of these two
local states, then the global basis is not a feasible
state (even though the two-variable local state is
feasible).

Using Sg and Sp we restate our mixer design
criteria in graph-theoretic terms below. In par-
ticular, the following condition must be met for
any mixer design: Fdges between nodes in Sg and
nodes in Sp are not allowed. Additional design
criteria are often necessary in considering specific
domains or problem classes.

This graph-based perspective can be particu-
larly useful, via the following approach, for con-
structing low-depth mixers satisfying the relevant
design criteria. Observe that in order to design
local partial mixers (i.e. local unitaries) that pre-
serve the valid subspace, one may first construct

a library of short quantum circuits, for which it
suffices to store only the graph Q(U) for each cir-
cuit. Then, given a set of hard constraints (on M
variables), an automated search over this library
of (local) graphs, along with a set of graph theo-
retic design criteria implementable in a compiler,
allows one to design circuits for, in principle, ar-
bitrary sets of constraints (see Figure 5). This
search may be done during compilation, or be-
fore. We call these graph-derived partial mixers
(GDPM). As mentioned, in a number of settings,
such as when partial mixers acting on bounded
sets of qubits suffice, this process is guaranteed
to be efficient. Moreover, these partial mixers
can be easily reused across different problems or
instances.

We remark that a future possibility for deal-
ing with more sophisticated hard constraints is
to use ancilla-based mixer designs, which have
been proposed previously [7]. For example, one
may compute arithmetic information to store in
ancilla qubits, before using this register as control
qubits to perform a subsequent mixing operation
only if it is guaranteed to preserve the feasible
space. Such procedures are relatively straight-
forward to design and implement in DQIR, in
an encoding-independent way. For example, this
may be a workable approach for dealing with
hard constraints in integer linear programming,
though we do not explore this direction in de-
tail here. Generally, there exist a variety of open
questions related to the design of more effective
mixers |7]; we remark on several important direc-
tions here in Section 7.

4.2 Single-variable GDPMs

The simple mixer USPM of equation (55) is a

single-variable mixer for compact codes that may
be used especially when log, d is an integer. But
designing strict mixers for compact codes is more
difficult when d is not a power of 2, and it is with
this case in mind that we develop novel classes of
Here we introduce a general approach
for designing strict mixers satisfying our crite-
ria, based on the graph-theoretic approach intro-
duced in the previous section. We first define
two specialized criteria 3 for designing a compact
single-variable mixer. Criteria 3(a) and (b) are
related to Criteria 1(a) and (b), respectively.

mixers.

Design criteria 3. Criteria for designing a
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Library of partial mixers
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Figure 5: A schematic of the mixer design procedure for
hard constraints. First one compiles a library of partial
mixers. Each partial mixer yields a graph correspond-
ing to which states are connected by off-diagonal terms.
The example in the image is for single-variable GDPMs,
which may be used for example in coloring problems. De-
sign Criteria 3 dictates that the union of the partial mix-
ers' graphs must yield a graph for which all valid states
form a connected graph, and there must be no edges
between valid and invalid states. The example shown
is a single-variable mixer design for the SB encoding of
d = 6. Nodes |0) = |000) through |5) = |101) form a
connected graph, from which invalid nodes |6) = |110)
and |7) = |111) are disconnected.

single-variable GDPM from simpler partial mix-
ers for a given d and encoding choice.

a. Edges between sets Sg and Sp are not al-
lowed.

b. The union of the PMG subgraphs restricted
to S must yield a connected graph (e.g.
there must be some path between any two ar-
bitrary feasible states).

These criteria lead to the following algorithm
for designing strict single-variable mixers for ar-
bitrary d and encoding choice. A library of ba-
sic (parameterized) unitaries must be input, from
which the algorithm finds an ordered product of
library elements that meet Criteria 3. The library
must be expressive enough to meet the design cri-
teria, and may consist, for instance, of previously
determined partial mixer designs or particular fa-
vorable operations on a given hardware device.
The design of a single-variable GDPM is shown
schematically in Figure 5, where three primitive
circuit elements are combined to produce a mixer
for d = 6 in the SB encoding. The following algo-
rithm sketch shows how a GDPM may be found

via converting a library of parametric circuit uni-
taries into graph representations. While here we
consider the problem of merely finding a suit-
able mixer, it is straightforward to extend this
approach to one where some designs are favored
over others, for example, if each library element
came with an associated implementation cost.

Algorithm Sketch 1. Algorithm for the design
of single-variable GDPMs.

1. Input or construct a suitable library of pa-
rameterized unitaries {U. ]P M1 for which each
member is efficient to implement. The li-
brary may be expanded to include additional
operators if the algorithm fails to produce a
mizer that meets the design constraints.

2. For each parameterized unitary determine
Q]PM = Q(UJPM), the partial mizer graph
(PMG). Call this library of graphs £. For
the remainder of the algorithm we use a sub-
set of this library of graphs, as opposed to the
original library of circuit unitaries.

3. For each graph in £, discard any QEM that
contains edges between Sg and Sg. The re-
maining members of £ cannot cause leakage.

4. Replace each remaining member of £ with its
induced subgraph QXM[Sg] (i.e. the graph
for which Sp mnodes are removed). This
step improves algorithm efficiency because
the bad states in Sp meed mot be stored or
processed.

5. Initialize set M and add all members of £
to M. (In the subsequent steps, the goal is
to find a union of graphs that forms a con-
nected graph. This is equivalent to finding
a union of graphs that yields a single graph
component. For example, the union of the
three graphs in Figure 5 yields a single graph
component over Sg.)

6. For each graph in 9 find the number of
graph components. Remowve all members of
M that do not have exactly the minimum
number of graph components. (This step just
“pares down” the number of candidate graph
sets, in order to reduce the cost later on. The
step is not overly stringent, as the members
of £ are used again in the next step, i.e. the
unitaries of the original library are continu-
ously being recycled.)
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Gray Encoding

d=14

Standard Binary Encoding

Figure 6: Computationally designed graph-derived partial mixers (GDPMs) for single-variable mixers that meet Design
Criteria 3, for SB and Gray encodings. Note that these encodings require [log, d] qubits. This is just one possible set
of GDPMs, determined by our heuristic algorithm outlined in Algorithm Sketch 1 and an arbitrary choice of unitary
library. The low-depth USEM of equation (55) may be used when d = 2, 4,8, 16, etc.

7. For every pair of graphs (QES),QEM)) with
QEE) € £ and ng) € M, add the graph
union €;; = QES) U Q§m) to the set M.

(Stated differently, this step combines each

graph in M with each graph in the original

library £.)

8. Repeat steps 6 and 7 until some graph in
M yields a single graph component. A sin-
gle graph component signifies that there is
some path connecting all nodes in Sg. Hence
the unitaries that were implicitly used to
compose the single-component graph may be
combined in product to form a proper single-
particle GDPM, as in Figure 5. (These uni-
taries may be implemented in any order; for
instance the shortest-depth ordering may be
chosen.)

Additional steps may be taken to improve algo-
rithm efficiency, for example by removing from S
the PMGs that correspond to circuits with larger
depths. In this work, for the design of single-
variable GDPMs, we chose to use multi-controlled
Pauli Y rotations where the rotation qubit may
be on any qubit and control qubits may be on
or off. This is just a small subset of the possible
unitaries one could consider using in a library.

The results of our computationally designed
GDPMs are shown in Figure 6, for Gray and
SB encodings up to d = 15. Similar construc-
tions follow for arbitrary d, as desired. These
mixer circuits are a primary contribution of this
paper, as practitioners may directly use them in

QAOA, particularly in cases of limited quantum
resources. Decompositions of the circuit library
into one- and two-qubit gates is discussed further
in Section 4.4. In Section 6 we will demonstrate
that the decomposed circuit depths of these strict
mixers are substantially shorter even than the ap-
proximate mixers that result from standard ap-
proximations to the exponential of equation (53).

GDPMs for the block unary (BU) encodings
may be designed by using a compact GDPM
within each g-qubit block, and then connecting
blocks with separate unitaries. We observe briefly
that for the BU?igy encoding, two blocks of two
qubits each may be connected using a four-qubit
gate, the doubly controlled A, gate. Decomposed

depths of BUS’Zgy GDPM circuits are also given

in Section 6 as well.

4.3 Permutation GDPMs

We next introduce two-variable GDPMs for per-
mutation problems like scheduling and routing.
Considering again two permutation variables as
in (7), we define the set of good states Sg as all
pairs |k,[) for which k # [ and k,l < d; all other
states belong in Sp. The graph-theoretic condi-
tions for designing partial permutation mixers are
then quite distinct from the previous case:

Design criteria 4. Criteria for the design of
two-variable GDPMs for permutation problems.
(These are equivalent to Criteria 2, reformulated
for the graph perspective.)
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Figure 7: Design of partial permutation mixers. The
graph theoretic conditions for a PPM design are consid-
erably different from those for single-variable mixer de-
sign. The three conditions for a PPM are that (a) the set
of good (white) and bad (gray) states must be disjoint,
(b) the only edges allowed between the good states are
those between |7, j) and |j,¢) (horizontal edges), and (c)
Q defined in Criteria 4(c) must be a connected graph.
Left: A schematic of a valid hypothetical set of partial
mixers, for d = 5. Right: a set of four unitaries that
form a valid PPM for the Gray code and d = 5.
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Figure 8: Two-variable partial permutation mixers for
the Gray code, designed based on the criteria of section
4.3. These may be easily modified for the SB encod-
ing by using Gray-to-SB conversion circuits [114, 12] for
each of the two variables.

a. Fdges between sets Sg and Sp are not al-
lowed.

b. Within Sq, edges may exist only between
DQIR-space two-variable pairs |k,l) and
|1, k).

c. Define a graph Q with d nodes labeled
{0,--- ,d— 1}, where an edge between nodes
k and | exists iff there is an edge between
|k, 1) and |l,k). Q must be a connected
graph.

These criteria are shown schematically on the
left of Figure 7. The left-hand figure is for illus-
trative purposes and does not correspond to an
actual mixer we construct; the right-hand figure

corresponds to a strict mixer for the Gray code
that is discussed below.

Observe that the edge placement rules are
more stringent for permutation GDPMs than for
single-variable GDPMs. This is because for per-
mutations it is possible to preserve the “local fea-
sibibility” condition (Criteria 4(b)) of the two-
variable space while violating the feasibility of
the full quantum state. Explicitly, as alluded to
in Section 3.3.3, while a transformation such as
la, k)(k,l|®I®I®I—which does not violate Cri-
teria 4(a) but does violate Criteria 4(b)—leads to
a two-variable state on the first two variables that
is in Sg, it still leads to an infeasible global state,
for instance |k,l,a,b,c) — |a,l,a,b,c).

One may define an algorithm for finding the
PPMs that is structurally similar to Algorithm
Sketch 1, where the number of covered local states
1 is maximized in lieu of minimizing the graph
components. In preliminary numerical experi-
ments, our elementary library of multi-controlled-
Ry gates was not able to meet Criteria 4, as an-
ticipated, meaning that a different library of uni-
taries would be needed in practice. However, we
were able to rationally design a set of PPMs that
meet the correct graph-theoretic criteria, as we
describe presently.

The right side of Figure 7 shows an example of
our novel mixers for the Gray code with d = 5.
The gate A, is a rotation gate in the class of equa-
tion (54). The key insight behind our use of these
multi-controlled Ay is that, in the Gray code,
the Hamming distance between encoded states
|k,k+1) and |k+1, k) is always exactly 2. Hence
we ensure that the two-qubit gate A, mixes only
the two differing bits, controlling on the bits of
constant value.

The resulting GDPM circuits shown in Figure
8 may be combined for use with the Gray code,
for any value of d (equivalently, M) up to 16. For
instance, for d = 10 the first 9 gates of the bottom
row of Figure 8 will together form a valid PPM.

For compact codes generally, Gray code mixers
may be easily converted to mixers for SB, and
vice versa. One approach simply uses a circuit
to convert SB to Gray [114, 12|, implements the
Gray code mixer shown on the right side of Figure
7, and then converts back to SB. This adds a
depth of just 2[log, d] CNOT gates to the overall
partial mixer.
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4.4 Comments on decomposing multi-qubit
gates

Because the GDPMs presented here operate in
the qubit space, it is worthwhile to elaborate on
a few known qubit-based quantum gate decom-
positions that lead to shorter-depth implementa-
tions than the most commonly used decomposi-
tion might naively yield. Here we consider decom-
positions of the two-qubit controlled- Ry gate, the
multi-controlled-Ry gate, the Ay class of gates,
and alternatives to the multi-controlled-X gates
like Toffoli gates. In this section, we assume a
gate set consisting of CNOTs and arbitrary one-
qubit rotations.

Though a general two-qubit controlled-unitary
requires two CNOTs and a depth of 5, a more con-
strained controlled-R gate may be implemented
with one CNOT and two single-qubit gates for a
depth of 3 [69]. Such a depth-3 circuit appears
to be the optimal choice for the two-qubit gates
in the above-mentioned unitary library (Figure
5). Regarding gates on more than two qubits,
decompositions for multi-controlled-Ry circuits
have been shown to be implementable in a depth
of 2Na ~ 2d, which is often shorter depth than

general multi-controlled-U unitaries [115].

As previously mentioned, a gate A, with the
sparsity pattern of equation (54) can be imple-
mented in a depth of just 5 [116], a reduction from
the depth-9 gate resulting from a more naive ap-
proach of exponentiation of XX + Y'Y with the
standard staircase circuit construction [109].

Some comments are merited regarding decom-
positions of higher-order gates as well. Depend-
ing on the methods used, the iterative process
of decomposing a multi-controlled unitary often
leads to intermediate multi-controlled-X gates.
If ancilla qubits are available, such a multi-
controlled-X gate can be decomposed into O(N)
Toffoli gates [69]. This linear scaling in the num-
ber of qubits corresponds to a logarithmic scaling
O(logy d) in the size of a variable’s domain. De-
spite this seemingly favorable scaling, decompos-
ing one Toffoli gate yields a circuit depth of 12
[70], leading to a considerable overall cost.

However, here we briefly introduce an alterna-
tive strategy to effectively reduce the depth. If
one relaxes the condition that all phases in the
Toffoli be +1, then one may implement unitaries
that are “congruent modulo phase shift” to the

Toffoli gate, such as

o O O O

(61)
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where we note the phase on state [100). This uni-
tary can be implemented in a depth of just 7 [69],
a notable reduction. Still, such a “pseudo-Toffoli”
must be used with caution [69, 117]. Though
a mixer unitary built from such pseudo-Toffolis
may yield the same sparsity pattern, the phases of
some computational basis states would be flipped
for every mixing step of QAOA. This would make
the connection between QAOA and AQO quite
tenuous, as phases would be significantly modi-
fied outside the subroutine that exponentiates the
cost function. Further analytical and numerical
investigations would be required to understand
the effect of replacing Toffoli gates by Ut or sim-
ilar unitaries.

5 Combinatorial problems

Here we consider five prototypical classes of
discrete combinatorial problems as concrete ex-
amples of applying DQIR: graph coloring, the
traveling salesperson problem, factory/machine
scheduling, financial portfolio rebalancing, and
integer linear programming. For each problem
we show how its domain, feasible subspace, and
cost Hamiltonian may be naturally represented
with DQIR, directly enabling the application of
various quantum algorithms including but not
limited to those listed in Sec. 3.1. Numerical
results concerning the resource requirements for
each problem are presented in Section 6. There
are of course numerous further important classes
of discrete optimization problem that we do not
address explicitly here, but may be straightfor-
wardly implemented in DQIR, including, for ex-
ample, other problems related to graphs such as
graph partitioning or edge coloring 7], and lattice
problems such as the closest or shortest vector
problems [118]. We refer the interested reader to
[7, App. A] for a compendium of relevant prob-
lems and example mappings.
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The purpose of this section is to two-fold.
First, these examples are pedagogically useful
when designing quantum approaches to broader
real-world industrial problems. For instance, the
concepts used for our simple factory schedul-
ing problem are applicable to much more com-
plex scheduling problems. Our second aim is to
demonstrate through examples that DQIR pro-
vides a representation for discrete problems that
is more compact, interpretable, and portable than
previous direct-to-qubit approaches. We remark
that while qudit generalizations of the Pauli ma-
trices exist for arbitrary d (see e.g. [7, App. C]),
mixers derived from them may be significantly
more expensive in given encoding than the ap-
proach of Sec. 3.3.

5.1 Graph coloring problems

A variety of computationally challenging opti-
mization problems can be related to colorings of
graphs. Here we consider the problem of assign-
ing colors to vertices such that the number of
edges with differently colored ends is maximized.

When considering d colors, and reformulating
the problem as a minimization, count the number
of adjacent vertices with equal values. In DQIR
this gives the cost Hamiltonian

Y. EQ(za,xp) (62)
(a,B)EE

where z., denotes the color on node v, EQ is de-
fined in equation (18), and the sum is taken over
the graph edges.

When some of the state space is invalid (for ex-
ample if there are 3 colors and an SB encoding is
used), one may use either single-variable mixers
and/or add a variable domain penalty Fgg. Al-
ternatively, when one-hot encoding is employed,
we note that the condition that each node is
singly colored translates to constraints on the al-
lowed Hamming weights such that many of the
single-qubit Pauli-Z terms can be excluded from
the cost Hamiltonian as they simply yield an over-
all constant [7].

Cost Hamiltonians for a variety of related prob-
lems may be similarly constructed [7]. This in-
cludes both other problems over vertex colorings
of a graphs but with different cost functions and
hard constraints, for example problems related
to proper colorings such as approximating the
graph’s chromatic number or size of the largest

properly colorable induced subgraphs, as well as
problems over different domains such as edge col-
orings. In general graph coloring problems have a
close connection to scheduling, routing, and plan-
ning problems as we elaborate on below.

5.2 Traveling salesperson problem

The well-known traveling salesman /salesperson
problem (TSP) is to minimize the total distance
travelled on a round trip visiting each of M cities
exactly once. In the formulation we adopt here,
a valid state is a permutation 7 of the M cities.
The distances between cities is given by a distance
matrix d(«, 3) of size M x M. The problem may
be expressed as minimization over permutations
7 € S of the cost function

Zd

which for each permutation 7 gives the corre-
sponding total distance traveled, and where M =
(M mod M) = 0 in order to include the final
distance d(7(M — 1),7(0)). At the DQIR level,
the problem is encoded as a list of M integers.
The cost Hamiltonian in DQIR is

rla+1)), (63)

M—-1M-1

He= Y>> dk)P

a=0 k=0 I<k

PP (64)

Note that equation (64) consists of at most two-
variable terms in DQIR. To ensure that one stays
on the feasible space of permutations, one may
use PPMs after preparating an initial state in a
superposition of permutations [99], or introduce
the penalty Fperm.

5.3 Machine scheduling

Machine scheduling (or job sequencing) [119, 38|
is another problem class with a domain that can
be defined as a permutation of integers, though its
cost function is substantially different from TSP.

Here we consider a simple single machine
scheduling (SMS) problem. We are given a set of
M jobs with three properties: processing times
{pr}, deadlines {dj}, and weights {wy}. For job
k, the start time is s;. Our goal is to deter-
mine start times that minimize total weighted
lateness >, wi T}, where the lateness of each job
is Ty = (sx + pr — di). Note that one may also
express the scheduling configurations as a list of
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start times (instead of a permutation of job IDs)
[7], or otherwise, though we do not consider such
representations here. Importantly, a number of
more sophisticated but closely related scheduling
problem variants are studied in the literature, in-
cluding ones with additional hard problem con-
straints and multiple machines [119].

We choose to use lateness [120, 119, 121, 122]
in our problem definition here in order to con-
sider as simple a cost function as possible. How-
ever, many other cost functions may be of in-
terest in real-world scheduling problems, for in-
stance tardiness or earliness, defined respectively
as max{0, sx + pr — d. } and max{0,dy — sx — pr.}
[119]. Note that because lateness is simply tardi-
ness minus earliness, it may be viewed a special
case of the latter quantities. Though we do not
explicitly consider tardiness and earliness in this
work, we note here that the quantum phase oper-
ator may be extended to the max{0, f(x)} oper-
ation using ancilla qubits. First one would com-
pute f(z) into the ancilla register using subrou-
tines of Section 2.2, which may include standard
arithmetic operations, before performing opera-
tors controlled on the ancilla register value being
positive to implement phase kickback, and finally
uncomputing the first step to disentangle the an-
cilla register. Alternatively, one may consider dis-
tinct representations of the problem domain [7].

For SMS problem it is useful to introduce value
primitives for the processing times

M—1
Arroe = N PP (65)
k=0
and the deadlines
M—1
Adeed = 3 P, (66)
k=0

In DQIR, a precursor for the start time op-
erator can be written as an expression of value
primitives and an indicator primitive,

oa=P > A (67)

B<a

where this operator’s support on a classical state
is non-zero only when the kth job is in the ath po-
sition. This is a prototypical example of a value
primitive being useful in mapping classical prob-
lems to the quantum representation of DQIR.

A full start time operator for job k may be
expressed as

M M
se=3 ska= PFY" AR (68)

B<a

Combining the above formulas, one way to com-
pactly describe the cost function of total weighted
tardiness is

HC — Z Sk + f: (Agroc . Aiead)
k «

M
=3 (PPN Apee (69)
k o

B<a
M
+ Z (A]gérac _ Aiead) .
o

We highlight again the compactness of this ex-
pression, that it is encoding-independent, and
that it written entirely in terms of the primitives
of DQIR. Because SMS is a permutation prob-
lem, mixers, penalties, and/or initial states need
to be introduced as appropriate, analogously to
the case of TSP.

Note that when Gray or SB is used, >, ék)
in equation (69) is equal to the identity in qubit
space if [logy d] = logy d. Hence when a compact
code is d is a power of 2, this will lead to very
favorable cancellations only in these compact en-
codings, as we will see in the numerical results.

5.4 Financial portfolio rebalancing

In computational finance, the task of portfolio
rebalancing is an optimization problem. Here
we use a simple model previously proposed in
the context of QAOA [47|. For a set of finan-
cial stocks separated into “lots” of discrete quan-
tities, and given the previous portfolio position
and a set of parameters, the goal is to determine
whether to have a long, short, or no-hold posi-
tion for each lot. The relevant parameters are
the solution vector z € {—1,0,+1}*  the nor-
malized risk-return function Crr(z), the normal-
ized trading cost function Crc(2z), the number of
lots M, the number of lots one may invest in D,
a risk parameter 0 < A < 1, the normalized asset
returns covariance matrix o, the normalized aver-
age asset returns vector pu, the previous portfolio
position y € {—1,0,4+1}¥, and the normalized
cost T of trading.
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The optimization function is

Heo = Crgr(2) + Cre(2) (70)
where
M M M
CRR( ) = Azzaaﬂza'zﬁ - (1 - )‘) Zuaza
« 5 [e
(71)
and

where §() is the Dirac delta function. We now
write down DQIR expressions for the classical
Cgrr and Cpre. An arbitrary choice for labeling
the three possible states is to use {long, no-hold,
short} — {|0),[1),]2)}, which can be expressed
via the value primitive

A = i) ila
= (=1)[0)0] + (O)[1){1] + (+1)[2)(2
= [2)(2] - [0)(0

(73)

In DQIR the neat expressions are

CRR = )\ZZO’ag.Aa.Ag — (1 — )\) ZMQAO[
a p «

(74)
and
M
Cre=Y (1-PY)T (75)

where we note that any delta function between a
constant and a variable may be replaced by 4 (jo—

(Jo)

2)a +— Pa’. Finally, we have the constraint

Y z2q=D (76)

which may be treated as a hard constraint by
choosing appropriate initial state and mixers, or
as a soft constraint by introducing a Fj,,, penalty
(equation (44)).

5.5 Integer programming

Because many industrially relevant problems
tend to be cast as integer programming and re-
lated problems [123, 124], here we outline the
canonical form of ILP and briefly summarize its
implementation in DQIR. Given a rectangular

matrix A and constant vectors b and c, the prob-
lem is to mazimize c-x under the two constraints

Ax <b (77)

and x > 0. The cost function for canonical ILP
is simply represented as

He =) coAy" (78)

where the value primitive is the previously de-
fined number operator N = S ¢kP®).  Con-
sidering that this cost function is “one-local” in
DQIR space, most of the algorithmic complexity
appears via the problem’s constraints, e.g. via in-
troduction of constructs such as Fj;, in equation
(45).

We note that it may be computationally hard
in general to even produce an initial state that
contains the full feasibly subspace while exclud-
ing the infeasible subspace. Therefore, it appears
likely that penalties (Section 3.2) will be neces-
sary in NISQ implementations of ILP that use
the approach of this subsection, else other ap-
proaches may be applicable only in limited cases.
While we do not expect quantum computers to
efficiently solve NP-hard problems such as ILP it
may prove worthwhile to explore problem vari-
ants or restricted settings where quantum ap-
proaches may become viable.

6 Numerical Study of Encoding Choice

The purpose of this section is to perform a pre-
liminary but extensive numerical investigation of
the differences in behavior between the different
encodings in terms of quantum resources (specifi-
cally circuit depths), with a focus on the subrou-
tines in Sections 3 and 4, and applied instances
of problems considered in Section 5. The obser-
vations and results of this section may help guide
practitioners in deciding which encoding to use
when designing suitable algorithm implementa-
tions for particular quantum devices. We em-
phasize that, as illustrated in Figure 1, different
encodings require significantly different quanti-
ties of qubits—hence the shortest-depth encoding
may not always be the encoding of choice for a
given set of hardware. Note that we assume all-
to-all connectivity in the results presented here.
With the exception of the strict GDPM mixers,
this preliminary resource analysis involves com-
piling the matrix exponential exp(—ifH) for a

Accepted in {( uantum 2023-07-09, click title to verify. Published under CC-BY 4.0. 32



Hermitian operator H and real constant 8. The
general connection to quantum algorithms is that
the standard formulations of AQO and QAOA
are directly implemented in terms of such oper-
ator exponentials; hence these numerical results
may aid in making preliminary encodings choices
when implementing AQO or QAOA. For QAOA,
as discussed a variety of different mixers are possi-
ble with different resource tradeoffs beyond those
we consider here. The connections to QITE and
non-QAOA ansatzes are less obvious and thus our
results are less applicable to those two classes of
algorithm.

The operators for which we calculate circuit
depths should be placed into three distinct cate-
gories: (a) exact exponentials of diagonal func-
tions, (b) approximate mixers as implemented
in equation 52, and (c) strict mixers. The for-
mer two operator categories use the same com-
pilation procedure, which is described in Section
6.1: after a Hermitian operator is converted to
the Pauli representation generated by a given en-
coding, each Pauli term is exponentiated as the
simple first-order product formula of equation 52
with an ordering choice described below. This
product formula leads to exact exponentials only
in category (a) because all the terms are diago-
nal and thus commute. On the other hand, the
calculated depths for the strict mixers of cate-
gory (c) are determined as described in Section
4.4. Results in Sections 6.2 and 6.3 belong to
category (a), while those in Section 6.4 belong to
categories (b) and (c). We consider DQIR vari-
able sizes 2 < d < 16, from which some prelimi-
nary trends emerge. We plot the resulting circuit
depths for the different encodings and discuss the
observed relative advantages.

We note that there are many Hamiltonian sim-
ulation algorithms for implementing the exponen-
tial of a Hermitian operator, each with various
resource and accuracy trade-offs [125, 126, 127,
128, 129, 130, 131, 132, 133]. In this work, in
an attempt to provide some preliminary guid-
ance specifically for nearer-term quantum opti-
mization, we chose a recently proposed Hamilto-
nian simulation technique [134] that is designed
to produce short-depth circuits for early genera-
tions of quantum hardware. The trends observed
in our numerical results may differ when using
other Hamiltonian simulation algorithms, includ-
ing methods that require advanced fault-tolerant

quantum hardware.

6.1 Compiling product formulas from DQIR

We implemented a prototype of DQIR in Python,
which we used to produce our numerical results.
The code is built on three object classes: one
to represent a discrete variable, one for defin-
ing the multivariate space, and one for describ-
ing and manipulating an arbitrary operator as
a sum of products of local primitives. The lat-
ter class is based on the use of a Python dictio-
nary, where keys are operator strings and values
are coefficients which may be numeric or sym-
bolic. High-level functions return a DQIR object
for each combinatorial problem type and aux-
iliary operators such as mixer generators. Al-
gebra routines are built into the classes, allow-
ing for multiplication and addition of any op-
erators as well as replacing symbolic coefficients
with numerical values. We use subroutines from
mat2qubit [135], Scipy [136], OpenFermion [137],
and SymPy [138]. The examples included in the
mat2qubit package give explicit code for produc-
ing these Hamiltonians, and we also include the
qubit-encoded Hamiltonians and raw quantum
circuits in the Supplemental Materials. Terms are
cancelled and combined inside DQIR, which re-
duces the amount of computational algebra that
need be performed in the final Pauli representa-
tion; this is especially important when one’s goal
is to compare many encodings. We implemented
functionality for returning a complex operator’s
full matrix representation, allowing for the study
of matrix properties.

For qubits, converting to the Pauli represen-
tation is automated with the help of the Intel
Quantum SDK [139]. After each discrete vari-
able is assigned an encoding, the DQIR-to-qubit
encoding procedure of Section 2.4 is used. This
yields a weighted sum of terms > , G, as in
equation (51), where each G, is a Pauli string
with a real coefficient. Our task is to compile
a circuit that performs either an exact (for cost
functions) or approximate (for mixers) simula-
tion of the exponential exp(>_, —i8G ). The
circuit depths that we report are for the simple
product formula [], e~ #BGmv for arbitrary real 3,
where the ordering of terms is determined using
an algorithm that attempts to minimize circuit
depth (discussed below). For all diagonal opera-
tors (cost functions, penalties, and diagonal prim-
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itives), this procedure provides ezact exponen-
tials, because all G, commute with each other.
For non-diagonal mixer Hamiltonians this proce-
dure leads to an approximate mixer that may pro-
duce leakage as described in Section 3.3.1. We do
not necessarily recommend the use of these in-
stances of approximate mixer, but perform this
analysis in order to have a point of comparison
against our novel GDPMs). The circuit depths we
present are independent of the scalar § in the ex-
ponential. Note that circuit depths for the strict
mixers are based on Section 4.4, not based on the
compilation procedure of this section.

From the Pauli representation we produce
first-order product formulas using an algorithm
[134]based on Pauli Frame Graphs (PFG). In this
approach, one does not “uncompute” the change
of basis for each Pauli term, but instead moves
directly to another Pauli frame in order to ex-
ponentiate the next term. Optimizing the cir-
cuit depth can then be recast in terms of a graph
search problem. This PFG-based approach has
been shown to produce significantly shorter cir-
cuits for a variety of physics and chemistry Hamil-
tonian classes, as compared to more standard cir-
cuit construction methods.

It is worth noting that the use of a gate set that
natively performs the continuous two-gate opera-
tion exp(—i0ZZ) |140] may lead to shorter depths
as well as circuit times that are more directly
dependent on the magnitude of the coefficients.
However, in our view such a gate set is unlikely
to be the one that is used in most commercialized
quantum hardware [141, 142]. While some plat-
forms are capable of arbitrary-angle multi-qubit
entangling gates, and such operations can vary
in time of operation, “continuous” control is an-
tagonistic to arbitrary operation time due to the
difficulties of system-wide clock synchronization.
Thus, in practice, operations ought to be fixed to
integer multiples of the system clock, where idle
time is typically inserted to make up the differ-
ence. Thus at best, small angles will still likely
be limited to the time of a single clock cycle.

When reporting results below, our calculated
circuit depths result from the PFG decomposi-
tions, where our code uses a gate set of arbi-
trary one-qubit rotations and the 9 entangling
gates defined in reference [134], which includes
the CNOT gate. (Converting these entangling
gates to CNOT can be done using only one-qubit

gates; because such one-qubit gates may be fused
with existing adjacent one-qubit gates, the re-
ported circuit depths are similar to using the gate
set of CNOT and arbitrary one-qubit rotations.)
Single-variable strict mixers were designed by Al-
gorithm 1, and the resulting unitaries were de-
composed based either on the PFG algorithm or
on the circuit decompositions summarized in Sec-
tion 4.4, whichever yielded shorter depth.

6.2 Primitives and penalties

Here we present numerical results for diagonal op-
erators that are used as building blocks in the
construction of cost functions, i.e. we study
primitives from Section 2.2 and penalties from
Section 3.2. Figure 9 shows circuit depth plot-
ted against variable size, for diagonal operator
building blocks EQ, A, A2, Fyerm, Fsum, and
Fgg of Section 2. We remind the reader that
unary requires d qubits, compact codes require
[log, d| qubits, and block unary interpolates be-
tween them (see Figure 1). Thus the shortest-
depth circuit is not necessarily the most appro-
priate choice if a given quantum device is space-
limited. Results here assume all-to-all connectiv-
ity; circuit depths will be different when consid-
ering a different hardware topology [18], an im-
portant aspect beyond the scope of this work.

For most diagonal operators considered here,
unary provides the shortest-depth circuits. How-
ever, there are many important exceptions ap-
parent for A,, and Fy,n, These exceptions are no-
table for the following reason. When the circuit
depths for the compact codes are equal to or less
than the depths for unary, this means a com-
pact code is likely to be superior on most hard-
ware, as it would require both shorter depth and
fewer qubits. However, the circuit depth of the
full quantum algorithm (not just one of its sub-
routines) must be analyzed to determine whether
this is the case—we do not perform such an anal-
ysis of full quantum algorithms in this work, but
we note that in the context of Hamiltonian simu-
lation there are some problem instances for which
compact codes out-performed unary in terms of
both depth and space [12].

Because of favorable term cancellation in qubit
space, compact codes tend to be most useful when
d is a power of 2, as discussed in previous work
[12]. This trend is exhibited in the examples of
Figure 9, where compact codes are more likely to
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Figure 9: Circuit depths for exponentiating various diagonal primitives and penalties with varying d. As all terms
commute in the diagonal cost functions, these depths correspond to exact exponentials.

be competitive with other encodings when log, d
is an integer.

Though the Gray and SB encodings often yield
the same circuit depth, in some cases they have
different depths, for example in N and Fj,,. This
highlights the fact that in some instances it may
be worth considering multiple compact encod-
ings. A practitioner may choose to explore more
of the (exponentially many) compact encodings
before choosing the shortest-depth one.

The reason for BU’s intermediate depth is that
the locality of the diagonal operators is smaller
than the compact code but larger than unary.
For a given quantum device, block unary is an
optimal choice only when two necessary condi-
tions are met. First, the depth for BU must be
less than that of the compact codes. This is true
for most d values in the simple diagonal func-
tions considered here. Second, the hypothetical
device must be qubit-limited, such that there are
not enough qubits available to use a unary code.
Because our results show that (often) BU is inter-
mediate in both depth and in qubit count as com-
pared with the other encodings, there is a strong
chance that BU will be the optimal choice for

some near-term hardware parameters (those with
moderate depth and moderate qubit counts).

The three types of penalties considered show
similar behavior; namely, unary is usually
shortest-depth and it is common for BU to have
shorter depth than compact codes. Note that the
single-variable validity penalty Fgg is the null op-
erator in the following cases: in compact codes
when d is a power of 2, in block unary when d is
divisible by g, and always for the unary encoding
because we are assuming that validity-preserving
operators are used for unary algorithms. Both the
permutation and summation penalties involve a
quadratic number of two-variable terms, which is
the reason for their larger circuit depths. Note
that the depth of the permutation penalty is
strongly dependent on the number of discrete
variables M (e.g. number of cities). This sug-
gests that problems for which M is not a power
of 2 ought to be reformulated—this could be ac-
complished in the TSP by adding cities with very
small distance to an existing city, and in schedul-
ing this could be accomplished by adding extra
tasks with very small py.

Finally, we highlight one clear example where
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penalty exchanging (Section 3.3.4) would reduce
overall circuit depth. When d = 7 with com-
pact codes, the E Q) operator yields a depth of 70
while single-variable validity penalty Fgg yields
depth 12. Hence one can reduce depth by im-
plementing the d = 8 version of EQ (depth 15)
while introducing a validity penalty for d = 7,
which results in a net overall depth reduction. As
mentioned, shorter depth does not always lead to
improved algorithms—any modification of a sub-
routine ought to be tested for performance in a
real algorithm.

6.3 Full cost functions

Here we consider circuit depths for implementing
the exponential of a cost function, a subroutine
that is necessary for executing AQO and QAOA
(summarized in Section 3.1). Figure 10 shows
circuit depths for exponentiating four classes of
cost functions defined in Section 5: graph color-
ing, scheduling, routing, and portfolio rebalanc-
ing. The problem parameters used are defined in
the text below. Though these problem instances
should be considered as toy models, the numeri-
cal results are useful for understanding trends in
d and in encoding choice that may also be appli-
cable to more realistic real-world problems.

Our graph coloring problem instances use com-
plete (i.e. fully connected) graphs for which the
number of nodes equals the number of colors d,
i.e. d scales linearly with the number of variables
M. We use this class of graphs as a worst-case
example of scaling behavior. Resource require-
ments will be substantially different for example
when d is constant and independent of M. In
real-world problems, the circuit depth would be
heavily dependent on both the class of graph (e.g.
complete, regular, multipartite, etc.) and how
the number of colors d scales with M. Graph col-
oring is “two-local” in the sense that all terms are
products of at most two DQIR variables, and in
the case of complete graphs the number of terms
scales quadratically. The results, which follow the
trends of the EQ operator, show that while unary
and BU encodings follow clean monotoic trends,
in compact codes the depth shows a much less
consistent trend. For example, for SB and Gray
there is a large drop in depth from d = 7 to
d = 8. Expanding the domain and using penalty
exchanging may be appropriate in such cases.

Machine scheduling (or factory scheduling) is

one of two problems we present where the so-
lution must be a permutation of integers. The
substantial depths observed here result from the
quadratic number of two-variable terms in the
cost Hamiltonian. At d = 4,8, 16, the depths for
compact (SB and Gray) encodings are over an
order of magnitude lower than the unary depths.
This is because, when d is a power of 2 and a
compact encoding is used, the ), Pék)
equation (69) in qubit space is equal to the iden-
tity, which leads to massive simplifications and
term cancellations in the Hamiltonian. We has-
ten to note that this does not necessarily imply
that the compact codes are superior to unary for
machine scheduling. An algorithm implementa-
tion requires not just the cost function but also
either a Fjery, penalty or PPMs, the versions of
which have presented are much higher depth for
compact than for unary (see Figures 8 and 9).

term of

However, we have not extensively explored the
design of PPMs in this work. We are hopeful
that a future design of PPMs that operate on
fewer qubits (see the hypothetical case on the left
of Figure 7) may lead to PPMs that are much
shorter-depth when decomposed. Though their
existence is only speculated, if such shorter-depth
PPMs are possible, it may result in the com-
pact code being both the lowest-space and lowest-
depth choice in QAOA for machine scheduling.

TSP (routing) is also a permutation problem
composed of two-variable terms and all-to-all con-
nectivity. As in the case of machine schedul-
ing, higher-depth penalties and/or mixers are un-
avoidable when solving the problem, because one
must stay in the permutation space. The numeri-
cal trend matches what was expected, with circuit
depths highest for compact and lowest for unary.
This is another case where the results appear to
suggest that BU has a strong chance of being vi-
able, in cases where there are not enough qubits
available for the unary encoding.

In the financial portfolio rebalancing problem,
d = 3 regardless of the number of variables.
Therefore BUgG:;,y gives identical results to the
Gray code, as they both use 2 qubits per vari-
able. The circuit depths for all encodings are
very similar, which leads us to conclude that the
more space-efficient compact codes are preferred
for this Hamiltonian class, especially considering
the short-depth d = 3 compact mixers that we
present. Note that the Gray code is similar to
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Figure 10: Circuit depths for implementing the exponential of four cost Hamiltonians. As all terms commute in the
cost functions, these depths correspond to exact exponentials. The graph coloring Hamiltonians use complete graphs
with d nodes. All portfolio rebalancing problem instances have d = 3.

the encoding used in the original study of QAOA
for portfolio rebalancing [47].

Notably, as observed in the last section, these
full cost functions (excluding portfolio rebalanc-
ing) show that that there is a potential role for
block unary—-certainly more so than previous
studies of physics Hamiltonians would have sug-
gested [12]. This is because when the depth of
BU lies in between compact and unary, there ex-
ists some set of hardware parameters for which
block unary is the optimal choice. As previ-
ously stated, BU is the optimal choice when there
are not enough qubits to use unary, but there
are enough qubits to implement BU or compact
codes.

6.4 Mixers

Figure 11 shows circuit depths for implement-
ing approximate (i.e. leaky) shift mixers (left)
and strict (leakage-free) single-variable GDPMs
(right) designed by Algorithm 1. The approxi-
mate shift mixers are simply the first-order prod-
uct formula that implements decomposition of
the exponential of equation (53), with the term
ordering and depths determined using the previ-
ously mentioned PFG approach [134]. In the ex-
act mixers, depths are determined by whichever
decompositions outlined in Section 4.4 produce
the lowest depths.

In nearly all cases, the naive approach of ap-
proximating the exponential of a mixer Hamilto-
nian yields larger depths than our designed ex-
act mixers. This means that the single-variable
GDPM designs are superior both in terms of
depth and in terms of not producing leakage.
This suggests that our algorithmically designed
single-variable mixers will find utility in real al-
gorithms, though we leave numerical analysis of
these mixers’ performance in a QAOA simulation
to future work.

BU mixers were designed by using two-qubit
mixers within each block, and connecting each
two-qubit block with doubly-controlled A, gates.
The latter four-qubit gates connect two blocks by
mixing adjacent cross-block integers. For exam-
ple, states |2) +— ]0010) and |3) — [0100) are
mixed using such a four-qubit gate. The depths
for this four-qubit gate were calculated using the
PFG method. The resulting depths are largest
for BU in all cases d > 3, but the discrepancy is
not large enough to overwhelm the differences in
cost function depths shown in the previous two
sections. These are not necessarily the optimal
mixer designs for BU.

In compact codes, the figure shows the mixer
depth is equal to one when d is a power of 2
(d = 4,8,16). This is because the simple mixer
of equation (55) is used. This short depth, along
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Figure 11: Left: Circuit depths for approximate single-variable mixers (which cause some leakage) defined as the
exponential of equation (53). Right: Strict GDPM single-variable mixers designed using Algorithm 1, decomposed

into one- and two-qubit gates.

with the fact that circuits for cost function ex-
ponentials also tend to be shorter depth at these
same d values (Figure 10), shows that SB and
Gray may sometimes be more competitive with
unary than expected, while requiring far fewer
qubits. Finally, we highlight that the GDPM
compact (Gray and SB) mixers are even shorter
depth than unary mixers for the majority of d
values.

7 Conclusions

In this work we have constructed and analyzed a
large set of quantum subroutines relevant to solv-
ing optimization problems defined on domains of
discrete (e.g. integer) variables. We introduced
an intermediate representation (DQIR) which fa-
cilitates the synthesis of a variety of algorithm
components into qubit-based hardware, though
these procedures may be used for qudit-based
hardware as well. Previous work had analytically
derived operators for each encoding, whereas our
method automates the implementation of any ar-
bitrary integer-to-bit mapping by building on pre-
vious techniques |7, 12].

The first advantage of our approach is that it
provides a compact, flexible and readily inter-
pretable representation of discrete optimization
problems; one may fully define discrete problems
and algorithmic components before considering
any hardware implementation. Second, one may
automate the process of “screening” any number
of potential hardware mappings, comparing cir-
cuit depths or other measures of resource effi-
ciency for different encodings. In addition, we

have provided numerical and conceptual guidance
for which operator components are most useful
for which algorithmic approaches to a given prob-
We suggested several best practices
regarding the interplay between initial states,
preservation of feasibility and validity, and en-
coding choice.

lem class.

Our numerical results yielded several rules of
thumb regarding encoding choice. First, though
the unary (one-hot) encoding is often the lowest-
depth and highest-space choice, there are some
subroutines for which the compact codes (e.g.
Gray and standard binary) are advantageous
both in terms of qubit counts and circuit depth.
Second, the block unary code, because its depth
usually lies between the depths of compact and
unary encodings, indeed often sits on the space-
depth Pareto front (Figure 1). This means that
BU would in fact be the optimal choice for com-
binatorial problems for some hypothetical hard-
ware parameters; this was somewhat surprising,
as BU appears less likely to be useful in physics
simulation [12]. Third, the choice of bitstring for
labeling each discrete value in compact codes can
affect circuit depths—this is shown by the differ-
ences in depth sometimes observed between Gray
and standard binary. Fourth, compact codes are
much shorter depth when the variable domain d
is a power of 2. Finally, our numeric results high-
lighted that penalty exchanging, in which the the
variable domain size is modified in exchange for
introducing a penalty, may be an important strat-
egy in algorithm design.

Separately, we have introduced criteria and
approaches for designing a new class of QAOA
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mixers, which we call graph-derived partial mix-
ers (GDPMs). Our computationally designed
single-variable GDPM mixers provide systematic
low-depth construction of exact mixers that pre-
serve a desired feasible subspace. The very short
depths of GDPMs for compact codes, even when
d is not a power of 2, lead us to be optimistic
about the use of compact codes for quantum op-
timization.

There are several important open directions for
future study. While we have implicitly assumed
all-to-all connectivity throughout, the construc-
tions of this work may be further tailored to a
given hardware topology. Similarly, the gener-
alization to quantum error correcting codes may
be straightforward in some cases. In either case,
the specific details may affect which encoding is
preferable. In particular, the type of basic quan-
tum gate which is considered "expensive" may be
quite different between the near-term and fault-
tolerant settings. Using DQIR, automated com-
pilation of many encodings, and the low-level
quantum subroutines introduced in this work,
some of these questions can begin to be addressed
systematically.

In terms of algorithms, performance is ulti-
mately the most tantalizing question, which has
so far proven challenging to analyze. Asimproved
quantum hardware becomes available better, em-
pirical evidence should help further guide algo-
rithm design and choice. For QAOA, many ques-
tions remain as to how to select the best mixer for
a given problem with fixed quantum resources.
For example, while alternative mixers requiring
deeper circuits than the ones considered in Sec. 4
may in some sense provide more efficient mixing,
their cost may limit the number of implementable
QAOA layers; for comparable circuit depths it is
not clear which approach will ultimately result in
better performance.
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