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A proof of quantumness is a type of challenge-response protocol in which a classical
verifier can efficiently certify the quantum advantage of an untrusted prover. That
is, a quantum prover can correctly answer the verifier’s challenges and be accepted,
while any polynomial-time classical prover will be rejected with high probability, based
on plausible computational assumptions. To answer the verifier’s challenges, existing
proofs of quantumness typically require the quantum prover to perform a combination
of polynomial-size quantum circuits and measurements.

In this paper, we give two proof of quantumness constructions in which the prover
need only perform constant-depth quantum circuits (and measurements) together with
log-depth classical computation. Our first construction is a generic compiler that allows
us to translate existing proofs of quantumness into constant quantum depth versions.
Our second construction is based around the learning with rounding problem, and yields
circuits with shorter depth and requiring fewer qubits than the generic construction.
In addition, the second construction also has some robustness against noise.
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1 Introduction
Quantum computation is currently in the era of noisy intermediate-scale (NISQ) devices [Pre18].
This means that existing devices have a relatively small number of qubits (on the order of 100),
perform operations that are subject to noise and are not able to operate fault-tolerantly. As
a result, they are limited to running quantum circuits of small depth in order to obtain high
fidelity outputs. Despite these limitations, there have been a number of demonstrations of quantum
computational advantage [AAB+19, ZWD+20, WBC+21, ZCC+22], i.e. performing a task on a
quantum device that cannot be efficiently reproduced by classical computers, based on plausible
complexity-theoretic assumptions [AA11, HM17, BFNV19]. Indeed, with the best known classical
algorithms it takes several days of supercomputing power to match the results of the quantum
devices, which required only a few minutes to produce [HZN+20].

These milestone results illustrate the impressive capabilities of existing quantum devices and
highlight the potential of quantum computation in the near future. Yet, one major challenge still
remains: how do we know whether the results from the quantum devices are indeed correct? For
the existing demonstrations of quantum advantage, verification is achieved using various statistical
tests on the output samples from the quantum devices [AAB+19, BIS+18, ZWD+20]. However,
performing these tests either involves an exponential-time classical computation or there is no
formal guarantee that an efficient classical adversary cannot spoof the results of the test [AC17,
AG20, PR22].

One conceptually simple way to demonstrate quantum advantage, that’s also efficiently ver-
ifiable, is to ask the quantum computer to factor large composite integers using Shor’s algo-
rithm [Sho94]. Assuming factoring is classically intractable, this task yields a quantum advantage
and is tractable to verify (simply multiply the output factors and check if they produce the num-
ber to be factored). However, Shor’s algorithm requires fault-tolerant quantum computation to
perform and so is not suitable for near-term devices [GE21].

An alternative way of performing efficient tests of quantum advantage was initiated by the work
of Brakerski et al. in [BCM+18]. There, the authors proposed an interactive protocol between a
polynomial-time classical verifier and a self-claimed polynomial-time quantum prover. The verifier
issues a number of challenges to the prover and checks the prover’s responses, accepting only when
the prover answers the challenges correctly. The defining property of such a protocol is that no
polynomial-time classical prover can make the verifier accept with high probability, but there exists
a quantum polynomial-time strategy that makes the verifier always accept. This is referred to as
a proof of quantumness protocol. The protocol of Brakerski et al. is based around a family of
collision-resistant hash functions known as trapdoor claw-free functions (TCFs)1. In essence, for
the quantum prover to correctly answer the verifier’s challenges, one of the things it is required
to do is evaluate these functions in superposition. With the trapdoor, the verifier is able to check
whether the prover performed this evaluation correctly. It can also be shown that for any classical
prover to succeed in the protocol, it would effectively have to find collisions for the TCFs. Brakerski
et al. showed that TCFs can be constructed assuming the intractability of the learning with errors
(LWE) problem [Reg09]. In effect, this shows that efficient classical provers cannot succeed in the
proof of quantumness, unless LWE is classically tractable. Subsequent works have also shown that
TCFs can be based on other problems assumed to be classically intractable, such as factoring, the
discrete logarithm problem or ring learning with errors [KMCVY22]. Additionally, TCF-based
proofs of quantumness can also be made non-interactive in the random oracle model [BKVV20].
In all of these cases, however, to succeed in the protocol the ideal quantum prover must evaluate
the TCFs coherently and this requires, at best, logarithmic quantum depth [GH20].

It is thus the case that, on the one hand, we have statistical tests of quantum advantage that
are suitable for NISQ computations but which either require exponential runtime or do not provide
formal guarantees of verifiability. On the other hand, we have proofs of quantumness based on
plausible computational assumptions, but that are not suitable for NISQ devices, as they require
running deep quantum circuits. Is it possible to bridge the gap between the two approaches?
One step towards that goal would be to construct proofs of quantumness where the prover is

1Concurrently, Mahadev showed how TCFs can be used to perform classical verification of polynomial-time
quantum computations [Mah18].
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only required to perform constant-depth quantum circuits (together with short-depth classical
circuits). This would also answer an important theoretical question: can one achieve quantum
advantage with constant-depth quantum circuits while also being able to classically verify the
results in polynomial time? This is the main result of our work: we give two proof of quantumness
constructions in which the prover’s evaluation can be performed in constant quantum depth and
logarithmic classical depth. For the purposes of certifying quantum advantage, this leads to highly
depth-efficient proofs of quantumness. Both constructions also yield depth-efficient protocols for
certifiable randomness generation, based on the scheme from [BCM+18]. The first construction
is a generic compiler that can take existing proof of quantumness protocols, based on TCFs, and
convert them into constant-depth versions. The second construction uses a specific TCF based on
the learning with rounding (LWR) problem [BPR12] and achieves circuits of smaller width and
with some amount of noise robustness compared to the generic construction.

1.1 Proofs of quantumness
To explain our approach, we first need to give a more detailed overview of TCF-based proof of
quantumness protocols. As the name suggests, the starting point is trapdoor claw-free functions.
A TCF, denoted as f , is a type of 2-to-1 one-way function—a function that can be evaluated
efficiently (in polynomial time) but which is intractable to invert. The fact that the function is
2-to-1 means that there are exactly two preimages for each image of the function. The function
also has an associated trapdoor which, when known, allows for efficiently inverting f(x), for any
x. Finally, “claw-free” means that, without knowledge of the trapdoor, it should be intractable to
find a pair of preimages, x0, x1, such that f(x0) = f(x1). Such a pair is known as a claw.

For many of the protocols developed so far, an additional property is required known as the
adaptive hardcore bit property, first introduced in [BCM+18]. Intuitively, this says that for any x0
it should be computationally intractable to find even a single bit of x1, whenever f(x0) = f(x1). As
was shown in [KMCVY22], this property is not required in order to construct proof of quantumness
protocols, provided one adds an additional round of interaction in the protocol, as will become
clear later. We will refer to TCFs having the adaptive hardcore bit property as strong TCFs. More
formally, there exists λ0 > 0, such that for any λ > λ0, known as the security parameter, a strong
TCF, f , is a 2-to-1 function which satisfies the following properties:

1. Efficient generation. There is a poly(λ)-time algorithm that can generate a description of f
as well as a trapdoor, t ∈ {0, 1}poly(λ).

2. Efficient evaluation. There is a poly(λ)-time algorithm for computing f(x), for any x ∈
{0, 1}λ.

3. Hard to invert. Any poly(λ)-time algorithm has negligible2 probability to invert y = f(x),
for x chosen uniformly at random from {0, 1}λ.

4. Trapdoor. There is a poly(λ)-time algorithm that, given the trapdoor t, can invert y = f(x),
for any x ∈ {0, 1}λ.

5. Claw-free. Any poly(λ)-time algorithm has negligible probability to find (y, x0, x1), such that
y = f(x0) = f(x1), x0 6= x1.

6. Adaptive hardcore bit. Any poly(λ)-time algorithm succeeds with probability negligibly close
to 1/2 in producing a tuple (y, xb, d), with b ∈ {0, 1}, such that

y = f(x0) = f(x1), d · (x0 ⊕ x1) = 0.

It should be noted that the properties, as stated here, are not independent of each other. For
instance, property 6 implies properties 3 and 5 (and 5 also implies 3). We chose to present the
properties this way for the sake of clarity. Without the requirement of an adaptive hardcore bit,
we recover the definition of an ordinary or regular TCF. Note that all poly(λ)-time algorithms
mentioned above can be assumed to be classical algorithms.

2We say that a function µ(λ) is negligible if for any polynomial p(λ), it is the case that limλ→∞ p(λ)µ(λ) = 0.
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We now outline the proof of quantumness protocol introduced in [BCM+18]. The classical
verifier fixes a security parameter λ > 0 and generates a strong TCF, f , together with a trapdoor
t. It then sends f to the prover. The prover is instructed to create the state

1
2λ/2

∑
(b,x)∈{0,1}×{0,1}λ−1

|b, x〉 |f(b, x)〉 (1)

and measure the second register, obtaining the result y. Note here that the input to the function
was partitioned into the bit b and the string x, of length λ− 1. The string y is sent to the verifier,
while the prover keeps the state in the first register,

1√
2

(|0, x0〉+ |1, x1〉)

with f(0, x0) = f(1, x1) = y. The string y essentially commits the prover to its leftover quantum
state.

The verifier will now instruct the prover to measure this state in either the computational basis,
referred to as the preimage test or the Hadamard basis, referred to as the equation test, and report
the result. For the preimage test, the verifier simply checks whether the reported (b, xb) of the
prover satisfies f(b, xb) = y. For the equation test, the prover will report (b′, d) ∈ {0, 1}×{0, 1}λ−1

and the verifier checks whether
d · (x0 ⊕ x1) = b′. (2)

In this case, the verifier has to use the trapdoor to recover both x0 and x1 from y in order to
compute Equation 2.

It is clear that a quantum device can always succeed in this protocol by following the steps
outlined above. However, the properties of the strong TCF make it so that no polynomial-time
classical algorithm can succeed with high probability. At a high level, the reason for this is the
following. Suppose a classical polynomial-time algorithm, A, always succeeds in both the preimage
test and the equation test. First, run A in order to produce the string y. Then, perform the
preimage test with A, resulting in (b, xb), such that f(b, xb) = y. Since A is a classical algorithm,
it can be rewound to the point immediately after reporting y and now instructed to perform the
equation test. This will result in the tuple (b′, d) such that d · (x0 ⊕ x1) = b′. Importantly,
f(0, x0) = f(1, x1) = y. We therefore have an efficient classical algorithm that yields both a
hardcore bit for a claw as well as one of the preimages in the claw. As this contradicts the adaptive
hardcore bit property, no such algorithm can exist.

As explained in [KMCVY22, BKVV20, ZKML+21], the above argument can be made robust
so that the success probabilities of any polynomial-time classical strategy in the two tests satisfy
the relation

ppre + 2peq − 2 ≤ negl(λ) (3)
where ppre denotes the success probability in the preimage test, peq is the success probability in
the equation test and negl(λ) is a negligible function in the security parameter λ.

The protocol described above crucially relies on the adaptive hardcore bit property to achieve
soundness against classical polynomial-time algorithms. Thus far, this property has only been
shown for TCFs constructed from LWE [BCM+18]. It should also be noted that the above protocol
is also a scheme for certifiable randomness generation: the bit b obtained in the preimage test can
be used as statistical randomness.

Is it possible to construct proof of quantumness protocols based on other computational as-
sumptions than the classical intractability of LWE? Yes, in fact it is not difficult to see that simple
proofs of quantumness can be based on the classical intractability of factoring or the discrete log-
arithm problem (DLP): ask the prover to solve multiple instances of these problems using Shor’s
algorithm [Sho94]. Since their solutions can be classically verified efficiently and since the prob-
lems are assumed to be classically intractable, this immediately yields a proof of quantumness.
The issue with doing this is that the prover has to run large instances of Shor’s algorithm, which
would require a fault-tolerant quantum computer [GE21]. Instead, as was shown in [KMCVY22],
one can construct proofs of quantumness based on factoring or DLP, in which the prover can im-
plement smaller circuits than those required for Shor’s algorithm. Such protocols would then be
more amenable to experimental implementation on near-term devices.
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Let us briefly outline the approach in [KMCVY22]. The idea is to consider TCFs that need not
satisfy the adaptive hardcore bit property. Such TCFs can be constructed from more varied com-
putational assumptions than LWE, including factoring, DLP or the ring-LWE problem [LPR10].
All of these are generally considered to be standard computational assumptions. Having such a
TCF, the protocol then proceeds in the same way as the one outlined above: the verifier requests
that the prover prepare the state in 1, measure the function register obtaining the string y and
then send it to the verifier. The prover will be left with the state from 1. As before, the verifier
will then instruct the prover to perform either a preimage test or an equation test. The preimage
test is unchanged: the prover is asked to measure the state from 1 in the computational basis and
report back the result.

For the equation test, however, the verifier will first sample a random string v ∈ {0, 1}λ and
send it to the prover. The prover must then prepare the state

1√
2

(|v · x0〉 |x0〉+ |v · x1〉 |x1〉)

The x register is measured in the Hadamard basis, resulting in the string d ∈ {0, 1}λ−1 which is
sent to the verifier. Upon receiving d, the verifier chooses a random φ ∈ {π/4,−π/4} and asks the
prover to measure its remaining qubit in the rotated basis cos

(
φ
2

)
|0〉+ sin

(
φ
2

)
|1〉

cos
(
φ
2

)
|1〉− sin

(
φ
2

)
|0〉


Denoting as b ∈ {0, 1} the prover’s response, the verifier uses d and the trapdoor to determine
which b is the likely outcome of the measurement and accepts if that matches the prover’s response.

The last step in the protocol is reminiscent of the honest quantum strategy in the CHSH
game for violating Bell’s inequality [CHSH69]. In fact, much like in the CHSH game, the success
probability of any classical prover in this protocol is upper bounded by 0.75 + negl(λ), whereas
a quantum prover can succeed with probability cos2(π/8) ≈ 0.85. For this reason, the authors
of [KMCVY22] refer to the protocol as a computational Bell test.

The soundness against classical polynomial-time algorithms follows from a similar rewinding
argument to the one outlined for the previous protocol, which used a strong TCF. The main
difference is that in this case the verifier introduces an additional challenge for the prover, in the
form of the string v and the bit m, from the modified equation test. This equation test is still
checking for a hardcore bit of a claw, but unlike the previous protocol, the hardcore bit is no longer
adaptive. Intuitively, this is because the verifier chooses which hardcore bit to request; a choice
encapsulated by v and m. For more details, we refer the reader to [KMCVY22].

1.2 Our results
In the proofs of quantumness outlined above, the honest quantum prover needs to coherently
evaluate a TCF in order to pass the verifier’s tests. A first step towards making the protocol
depth-efficient would be to make it so that the prover can evaluate the TCF in constant quantum
depth. In fact, all that is required is for the prover to prepare the state from 1 in constant depth,
since the remaining operations can also be performed in constant depth. To that end, we first
give a generic construction allowing the prover to prepare the state in 1, in constant depth, for
all existing TCFs. We then consider a second construction with a TCF based on the learning
with rounding (LWR) problem [BPR12] (a problem that is, for all intents, equivalent to LWE in
terms of computational intractability) in which the prover will prepare a state that is essentially
equivalent to that in 1. The advantage of this second construction is that the resulting circuits have
smaller depth, smaller width (requiring fewer qubits) and have a certain degree of noise robustness,
compared to the generic construction. The first construction is presented in detail in Section 3,
while the second is in Section 4.

1.2.1 First construction - A generic compiler

We start with the observation from [GH20] that the strong TCFs based on LWE can be evaluated
in classical logarithmic depth. In fact this also holds for the TCFs based on factoring, DLP and

Accepted in Quantum 2022-08-24, click title to verify. Published under CC-BY 4.0. 6



ring-LWE from [KMCVY22]. As in [GH20], one can then construct randomized encodings for
these TCFs, which can be evaluated by constant depth classical circuits. A randomized encoding
of some function, f , is another function, denoted f̂ , which is information-theoretically equivalent
to f . In other words, f(x) can be uniquely and efficiently decoded from f̂(x, r), for any x and for a

uniformly random r. In addition, there is an efficient procedure for outputting f̂(x, r), given only

f(x). That is to say that f̂(x, r) contains no more information about f(x) than f(x) itself. The
formal definition of randomized encodings is given in Subsection 2.4. It was shown in [AIK04] that
all functions computable by log-depth circuits admit randomized encodings that can be evaluated
in constant depth. However, this doesn’t immediately imply that a quantum prover can coherently
evaluate these encodings in constant depth. The reason is that these circuits will typically use gates
of unbounded fan-out. These are gates that can create arbitrarily-many copies of their output. But
the gate set one typically considers for quantum computation has only gates of bounded fan-out
(single-qubit rotations and the two-qubit CNOT , for instance). How then can the prover evaluate
the randomized encoding in constant depth with gates of bounded fan-out?

The key observation is that we do not require the prover to be able to evaluate f̂ coherently
on an arbitrary input, merely on a uniform superposition over classical inputs. One of our main
results is then the following:

Theorem 1.1 (informal). There is a strategy consisting of alternating constant depth quantum
circuits and logarithmic-depth classical circuits for preparing the state:∑

x

|x〉 |f̂(x)〉 , (4)

up to an isometry, for any f̂ that can be evaluated by a constant-depth classical circuit, potentially
including unbounded fan-out gates.

To prove this result, we use an idea from the theory of quantum error-correction. It is known
that cat states (also known as GHZ states) cannot be prepared by a fixed constant-depth quantum
circuit [WKST19]. However, if we can interleave short-depth quantum circuits (and measurements)
with classical computation, it is possible to prepare cat states in constant quantum-depth. This
is akin to performing corrections in quantum error correction, based on the results of syndrome
measurements.

In our case, this works as follows. First, prepare a poor man’s cat state in constant depth, as
described in [WKST19]. This is a state of the form

X(w) |0〉
⊗n + |1〉⊗n√

2

where w is a string in {0, 1}n and

X(w) = Xw1 ⊗Xw2 ⊗ ...⊗Xwn ,

with X denoting the Pauli-X qubit flip operation. As explained in [WKST19], the constant-depth
preparation of the poor man’s cat state involves a measurement of the parities of neighboring
qubits. In other words, the measurement yields the string z ∈ {0, 1}n−1, with zi = wi ⊕ wi+1, for
i ∈ [n − 1]. Using a log-depth classical circuit, this parity information can be used to determine
either w or its binary complement. One then applies the correction operation X(w) to the poor
man’s cat state, thus yielding the desired cat state

|0〉⊗n + |1〉⊗n√
2

.

Having multiple copies of cat states, it is possible to replicate the effect of unbounded fan-out
classical gates on a uniform input3. To see why, consider the following example. Suppose we have
a classical AND gate, having fan-out n. On inputs a, b ∈ {0, 1}, it produces the output c ∈ {0, 1}n,
with ci = a ∧ b, for all i ∈ [n]. To perform the same operation with bounded fan-out gates, it
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c1 = a ∧ b

c2 = a ∧ b
...

ci = a ∧ b
...

cn = a ∧ b

ANDa
b

ā1
b̄1

AND c1 = ā1 ∧ b̄1

ā2
b̄2

AND c2 = ā2 ∧ b̄2
...
āi
b̄i...

AND ci = āi ∧ b̄i

ān
b̄n

AND cn = ān ∧ b̄n

Figure 1: The left-hand side shows an AND gate with fan-out n. The right-hand side is its bounded fan-out
equivalent. Here āi = a and b̄i = b. Gates of unbounded fan-out can be implemented with bounded fan-out as
long as sufficient copies of the inputs are provided.

suffices to have n copies of a and b. That is, given ā, b̄ ∈ {0, 1}n, with āi = a, b̄i = b, for all i ∈ [n],
one can compute ci = āi ∧ b̄i using n parallel AND gates. This is illustrated in Figure 1.

In our case, each input qubit to the classical function is of the form 1√
2 (|0〉+ |1〉). Replacing it

with n copies is equivalent to using a cat state 1√
2 (|0̄〉 + |1̄〉), where |0̄〉 = |0〉⊗n, |1̄〉 = |1〉⊗n. As

mentioned, the prover can prepare cat states in constant depth using the “measure-and-correct”
trick. It then follows that the prover can also prepare the state∑

x

|x̄〉 |f(x)〉 (5)

where each bit of x is encoded as a cat state having the same number of qubits as the number of
input copies required to evaluate f with bounded fan-out gates.

With the ability to prepare the state from 1 (or one equivalent to it, such as the one from 5) in
constant quantum depth, the honest prover can then proceed to perform the rest of the steps in the
proof of quantumness protocols outlined above. It will measure the image register and report the
result to the verifier. The remaining operations can also be performed in constant depth. For the
preimage test, the prover simply measures the x register in the computational basis and reports
the result. For the equation test, the prover needs to first apply a layer of Hadamard gates to the
x register before measuring it in the computational basis. Lastly, for the Bell-type measurement
required in the protocol of [KMCVY22], a slightly more involved procedure is used to perform the
measurement in constant depth. All of these steps are described in detail in Subsection 3.1.

While we have outlined a procedure for the prover to perform its operations in constant quantum
depth, using a randomized encoding of a TCF, it is not immediately clear if we need to also
modify the verifier’s operations. Indeed, one question that is raised by this approach is whether a
randomized encoding of a TCF preserves all the properties of a TCF. If, for instance, the trapdoor
property is not preserved, the verifier would be unable to check the prover’s responses in the
equation test. Our second result resolves this issue:

Theorem 1.2 (informal). A randomized encoding of a (strong) TCF is a (strong) TCF.

This theorem implies that substituting the TCFs used in proofs of quantumness with ran-
domized encodings will not affect the soundness of those protocols. The proof can be found in
Subsection 3.2. A similar result was derived in [AIK04], where the authors show that randomized
encodings of cryptographic hash functions are also cryptographic hash functions. A (strong) TCF
is different, however4. To prove this result, first note that most of the TCF properties follow almost

3We attribute this idea, of replicating unbounded fan-out with constant-depth quantum circuits and classical
measurements, to folklore.

4A TCF has exactly two collisions for each image, it has a trapdoor and strong TCFs additionally have the
adaptive hardcore bit property. None of these properties are satisfied by generic cryptographic hash functions.
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immediately from the definition of a randomized encoding. The more challenging parts concern
the existence of a trapdoor and the adaptive hardcore bit property. To show these, we require
that the randomized encoding satisfies a property known as randomness reconstruction [AIK04].
This states that whenever there is an efficient procedure to invert the original function, f , there
should also be an efficient procedure for inverting f̂ . In particular, this means that given f̂(x, r) it
is possible to recover both the input x and the randomness r. In [AIK04], it’s mentioned that the
randomized encodings used to “compress” functions to constant depth do satisfy the randomness
reconstruction property, but no proof is given. We provide a proof in Appendix B.

With the two results of Theorems 1.1 and 1.2, we have that any proof of quantumness using
a log-depth computable TCF can be compiled to constant quantum depth for the prover. All of
the results for this construction are presented in Section 3, and in Subection 3.3 we give a detailed
account of the resources required for the prover to perform this evaluation.

1.2.2 Second construction - Phase encoding and learning with rounding

The second solution to the problem comes from an attempt to directly parallelize the coherent
evaluation of the TCF based on LWE, hence to implement the protocol in [BCM+18] in constant
quantum depth. We start with the observation that the TCF based on LWE contains only mod-q
matrix multiplication and mod-q vector addition operations, where q ∈ N is the field size. Since
the phases of quantum states have the same periodicity property as the “mod-q” operation, it is
natural to consider implementing the mod-q arithmetic with phase Z-rotations (Rz and Controlled-
Rz gates). In the standard basis, the Rz operation is expressed as

Rz(θ) =
(
e−i

θ
2 0

0 ei
θ
2

)

Note that, for a given cat state, |ψ〉 = 1√
2 (|0̄〉 + |1̄〉), applying two Rz phase rotations on distinct

qubits results in the phases being added into the relative phase of the state. Specifically, if we were
to rotate qubit i by θi and qubit j by θj we would obtain

Rz(θi)Rz(θj) |ψ〉 = 1√
2

(|0̄〉+ ei(θi+θj) |1̄〉)

By taking θi = 2πa
q and θj = 2πb

q , with a, b ∈ Zq, we can see that the net effect is a state with a

relative phase proportional to (a+ b) mod q,

1√
2

(|0̄〉+ e
2πi(a+b)

q |1̄〉) (6)

The key idea is that because these operations commute, they can be implemented in parallel by
acting on distinct qubits, yielding a constant depth circuit for performing mod-q arithmetic in
phase. We denote the state in Equation 6 as |φ(a+ b)〉5 and refer to it as a phase encoding of
a+ b. Encoding the values of the LWE-based TCF in phase seems to introduce a problem for the
protocol. Recall that in the standard proof of quantumness protocol (outlined in Subsection 1.1)
the prover encodes evaluations of the function f in the computational basis. If these values were
instead encoded in phase, how would the prover be able to obtain an evaluation, y, of the function?

To overcome this obstacle, we consider a different TCF based on a problem known as learning
with rounding (LWR) [BPR12, AKPW13]. This problem is equivalent to LWE (for most parameter
choices) and was already suggested as a candidate for building TCFs in [BCM+18]. Specifically,
denoting now as f an LWR-based TCF, we take

f(b, x) : {0, 1} × Znq → Zmp = bAx+ b · (As+ e)cp (7)

5Strictly speaking the notation will refer to states with a relative phase of 2πi(a+b)
q

− π
2 , for reasons that will

become clear later. Additionally, when using this notation we will always assume the phases are multiples of the
q’th roots of unity as in the example outlined above.
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where A ∈ Zm×nq , b ∈ {0, 1}, x, s ∈ Znq and e ∈ Zmp are vectors and b·cp denotes rounding over p.
By rounding we mean taking the most significant log2 p bits of the result6. In this case, the result is
a vector and the rounding is performed component-wise, so that the output is a vector with entries
in Zp. Note that all matrix multiplications and additions are performed modulo q with q � p.
Intuitively, for small values of e, a typical claw of the function should be (0, x) and (1, x− s). This
is due to the fact that the rounding operation takes the most significant bits of the output, which
are unlikely to be changed when adding a vector e with small entries, component-wise. We refer
the reader to the preliminaries in Section 2 for a more detailed explanation of the function and its
parameters.

Returning to the idea of the phase encoding, we can now begin to see the reason for choosing
this LWR-based function. Consider for the moment the function before rounding,

g(b, x) = Ax+ b · (As+ e).

Suppose we were to perform a phase encoding of the entries of this function, which we denote as
|φ(b, x)〉. Now take the i’th entry of that encoding, |φi(b, x)〉 which encodes the i’th component
of g(b, x), denoted gi(b, x). It is not difficult to see that if we were to measure |φi(b, x)〉 in the
Hadamard basis (or in this case, measure the operator XX...X, as we have a rotated cat state),
the outcome is most likely to be the most significant bit of gi(b, x). Similarly, if in the phase
encoding we used the q/2 roots of unity, instead of the q roots of unity, a Hadamard measurement
of the encoding would likely yield the second most significant bit. Repeating this log2 p times we
have a way of probabilistically recovering the output fi(b, x) = bgi(b, x)cp. Of course, due to the
probabilistic nature of the measurement, the chance that all bits are recovered correctly will be
small. To remedy this issue, we use a classical repetition code. In other words, we view each
component of g(b, x) as being repeated several times. When the prover eventually performs its
measurements to recover f(b, x) it will take a majority vote for each component. We find that
by choosing a suitably large number of repetitions we can make it so that the prover succeeds in
evaluating f(b, x) in this way with overwhelming probability.

Our main result is then the following:

Theorem 1.3 (informal). A proof of quantumness protocol, with constant quantum depth and
logarithmic depth classical computation, can be constructed based on LWR.

To prove this result, we first need to show that the function f indeed satisfies the properties of
a strong TCF. The formal proof of this fact can be found in Subsection 4.1, which is mainly about
showing the adaptive hardcore bit property, as all other properties are fairly straightforward.

We next discuss the protocol itself, which is essentially unchanged from that of [BCM+18],
except that it uses the LWR-based TCF. Additionally, what changes will be the prover’s honest
strategy for coherently evaluating this TCF. As mentioned, for this rounding-based function it is
possible to coherently evaluate the function in phase, leading to a state that is equivalent (up to
an isometry) to ∑

b,x

|b〉B |x〉X |φ(b, x)〉Z .

To ensure that all mod-q operations, required to prepare this state, can be performed in parallel,
the cat states that serve as the basis for the phase encoding must have Ω(n log q) qubits. Here, n
represents the n rows of the matrix A and since each component is modulo q, this also contributes
a multiplicative log q factor. As mentioned, we also need to repeat each component in order
to guarantee that measurements of the phase-encoded Z register yield a valid image with high
probability. We find that the number of repetitions must be Ω(n4 log2 n) to have a small probability
of incorrectly decoding from measurement.

Lastly, we show that the state in the preimage registers, BX, has high overlap with a superpo-
sition of preimages, as in the standard version of the protocol. The proof of this fact is based on
the observation that while the states |φ(b, x)〉 and |φ(b′, x′)〉 are not exactly orthogonal whenever
((b, x), (b′, x′)) does not constitute a claw, they are sufficiently close to orthogonal for most choices

6In fact this is only true when q = 2n. In our case q will be prime and so the rounding operation, for some value
α ∈ Zq , is defined as b p

q
· αc.
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of the matrix A. More specifically, we can show that if A is uniformly sampled7 from Zm×nq ,
the overlap between distinct |φ(b, x)〉 states decays exponentially in m. On the other hand, if
((b, x), (b′, x′)) does form a claw, we can show that the overlap of |φ(b, x)〉 and |φ(b′, x′)〉 is neg-
ligibly close to 1. From these facts and the trace-preserving nature of the operations involved,
it follows that the state in the preimage register will have high overlap with a superposition of
preimages, upon the prover measuring the image register, Z.

An important observation about this construction is that it requires one to perform phase
rotations in increments of 2π

q . While such rotation operations are already native to most existing
quantum computing architectures, it is also possible to use a constant-size gate set at the expense
of making the circuit polynomially wider. This is achieved by approximating the rotation gates to
within inverse-polynomial error through the repetition of a fixed set of rotations (see Remark 3.5
in [HŠ05]).

Our second construction is thus an instantiation of the protocol in [BCM+18] with an LWR-
based TCF and having the prover perform a phase-encoded evaluation of that function. The main
appeal of this construction is that it is much simpler than the generic construction from the previous
section and achieves circuits with fewer qubits. Specifically, as computed in Subsections 3.3 and 4.4,
for a security parameter λ > 0, the generic construction uses O(λ33) qubits, whereas the LWR-
based one uses O(λ8 log3 λ). Additionally, the use of the repetition code and the error-correcting
properties of LWR offer the scheme some level of robustness against noise. For the full details and
proofs related to this construction, see Section 4.

1.3 Related work
One of the first efficient computational tests of quantum advantage was proposed in [SB09], for
certifying that a quantum prover can perform instantaneous quantum polynomial-time computa-
tions (IQP). However, that test was based on a non-standard hardness assumption and it was later
shown that there is an efficient classical algorithm which passes the test [KM19].

The first proof of quantumness based on LWE originated with the work of Brakerski et
al. [BCM+18]. This is the proof of quantumness based on a strong TCF outlined in the intro-
duction. As explained there, the protocol also serves as a certifiable random number generator. A
subsequent work achieved a non-interactive version of this protocol in the quantum random-oracle
model [BKVV20]. Notably, in that protocol the adaptive hardcore bit property is not required,
however the protocol does make use of a hash function (in addition to the TCF) modeled as a
random oracle.

The second proof of quantumness we outlined, based on regular TCFs, was introduced
in [KMCVY22]. There the authors achieve more efficient proofs of quantumness by removing
the requirement of the adaptive hardcore bit and using TCFs having a lower circuit complexity
compared to the ones based on LWE. However, as mentioned, the cost of doing this is introducing
additional rounds of interaction between the verifier and the prover (in the form of the Bell-like
measurement of the equation test).

In terms of constant quantum depth constructions, it is interesting to contrast our work to that
of [CSV21]. There, the authors proposed a protocol for certifiable random-number generation with
constant depth quantum circuits. The first difference with respect to our work is that [CSV21]
do not base the soundness of their protocol on the classical intractability of some computational
problem, such as LWE. Instead, the protocol assumes that the “prover” generating the randomness
is a circuit of sub-logarithmic depth (showing that sub-logarithmic classical circuits would not
succeed in this task). The second difference is that our protocols require interleaving constant depth
quantum circuits with logarithmic depth classical computation, whereas the protocol in [CSV21]
only requires the application of a constant depth quantum circuit. Finally, our protocols are
interactive, whereas [CSV21] is not.

We also mention the independent work of Hirahara and Le Gall that appeared before ours
and which also gives a constant-depth proof of quantumness [HG21]. Similar to our work, they
also considered one of the existing proofs of quantumness and made it so that the prover could

7Strictly speaking, A will not be uniform as one needs to sample a matrix A for which a trapdoor is known, in
order to construct an STCF. However, as explained in [BCM+18], the matrix is sampled from a distribution that is
statistically close to uniform.
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perform its operations in constant quantum depth and using log-depth classical computations. In
their case, they use a technique inspired from measurement-based quantum computing to have the
prover perform the coherent evaluation of the strong TCF based on LWE. Notably, their prover
evaluates that function in the computational basis, unlike our LWR-based scheme which performs
the evaluation in phase.

Lastly, we also point out the work of Høyer and Špalek showing that a large class of quantum
algorithms can be implemented in constant depth with quantum gates of unbounded fan-out [HŠ05].
In particular, the quantum subroutine of Shor’s algorithm can be performed this way. It should then
be possible to use the same trick of reproducing unbounded fan-out with bounded fan-out gates,
through measurements and classical corrections, as we did for both our constructions. This would
then yield a factoring algorithm that uses only constant depth quantum circuits. There are however
two downsides to doing this, compared to our approach. First, the resulting algorithm would use
classical circuits of supra-logarithmic depth (see also [CW00] for a discussion of this point), in
contrast to the logarithmic depth circuits that we obtain [Gal22]. Second, the resulting circuits for
factoring would be significantly larger compared to the circuits obtained in our constructions.

1.4 Discussion and open problems
We’ve shown how existing proof of quantumness protocols can be made to work with a prover that
performs constant-depth quantum computations and log-depth classical computations. Thus, all
protocols based on TCFs can be compiled to constant-depth versions using randomized encodings
and preparations of cat states.

One potential objection to our result is the practicality of this construction. The prover must
not only run constant-depth quantum circuits, but it must do so based on the outcomes of previous
measurements or based on instructions from the verifier. This is similar to syndrome measurements
and corrections in quantum error-correcting codes and so it might seem as if the prover must have
the capability of doing fault-tolerant quantum computations. In fact this is not the case. For
the protocols based on strong TCFs the number of quantum-classical interleavings — that is, the
number of alternations between performing a constant depth quantum circuit followed by a log-
depth classical circuit — is exactly three. The first is required for the preparation of cat states. In
this case, the prover simply needs to apply X corrections conditioned on the outcomes of certain
parity measurements. The prover then evaluates the randomized-encoded TCF and measures one
of its registers, sending that result to the verifier. Conditioned on its response it either measures
the remaining state in the computational basis or in the Hadamard basis. Similar operations
are performed for the LWR-based construction. The prover, therefore, needs to do only a very
restricted type of conditional operations and is only required to do this three times. Furthermore,
the protocol is robust and some degree of noise is acceptable, provided Inequality 3 is violated.
When using regular TCFs, in the generic compilation scheme, the protocol requires two additional
quantum-classical interleavings, for a total of five. This is due to the Bell-like measurement of that
protocol. In both cases, only a small number of quantum-classical interleavings are required, unlike
in a fully fault-tolerant computation where many such interleavings would be required [FMMC12].

It would, of course, be desirable to have a single-round proof of quantumness with a constant-
depth prover and no quantum-classical interleavings. In other words, a protocol in which the prover
has to run a single constant-depth quantum circuit and the verifier is able to efficiently certify that
the prover is indeed quantum. Such a result would yield a weak separation between polynomial-time
classical computation and constant-depth quantum computation. Basing such a separation on just
the classical hardness of LWE seems unlikely8. Basing it on the classical intractability of factoring
or DLP seems more realistic, as those assumptions already yield a separation between polynomial-
time classical computation and logarithmic-depth quantum computation [CW00]. However, it is
unclear how to adapt the existing protocols which rely on this commit-and-test approach that
requires at least two rounds of interaction. We leave answering this question as an interesting open
problem.

Finally, the computational resources required to implement our constant-depth proofs of quan-
tumness are still too high for existing quantum devices. In particular, the resulting quantum

8See the first paragraph of the “Our results” subsection in [BKVV20].
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circuits can be prohibitively wide to be implemented on existing NISQ devices. However, as we’ve
seen, different implementations can lead to very different qubit requirements. Rough estimates
show that our generic construction requires O(λ33) qubits, while the LWR-based one requires
O(λ8 log3 λ). These substantially different estimates give us some hope that further reducing the
qubit requirements is possible. Additional optimizations are likely also possible when considering
specific values for the security parameter and the choice of TCF. We therefore also leave as an
open problem to reduce the width of these constructions so as to make the protocols better suited
for use on near-term devices.
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2 Preliminaries
2.1 Notation and basic concepts
We let N denote the set of natural numbers, Z the set of integers, Zq the set of integers modulo
q, and R the set of real numbers. The set {0, 1}n denotes all binary strings of length n. For some
binary string v ∈ {0, 1}n, the i’th bit of v is denoted vi (with 1 ≤ i ≤ n). We denote as |v| the
Hamming weight of v, which is defined as the number of 1’s in v, or

|v| =
n∑
i=1

vi.

The xor of two bits a, b is a⊕ b = a+ b mod 2. This extends to strings so that for v, w ∈ {0, 1}n,
v ⊕ w is their bitwise xor. The Hamming distance of the strings v and w is then defined as:

dH(v, w) = |v ⊕ w|

We will also make use of the bitwise inner product of two strings, defined as:

v · w =
n∑
i=1

vi · wi mod 2.

For a bit b ∈ {0, 1}, we will use b̄ to denote a binary string consisting of copies of b. That is,
b̄ = bbb...b. The number of copies will generally be clear from the context and will otherwise be
specified. We also extend this notation to binary strings. For some string v ∈ {0, 1}n, v̄ will denote
a string in which each bit of v has been repeated. That is, v̄ = v1v1...v1v2...v2v3...vn−1vn...vn.

For any finite set X, we let x ←r X denote an element drawn uniformly at random from X.
The total variation distance between two density functions f1, f2 : X → [0, 1] is

TVD(f1, f2) = 1
2
∑
x∈X
|f1(x)− f2(x)|.

For an element r ∈ Zq, its unique representative will be [r]q ∈ (−q/2, q/2) ∩ Z. Follow-
ing [BCM+18], we use the notation |r| = |[r]q|. For any vector v of n components, its l2-norm is
defined as

||v||2 =

√√√√ n∑
i=1
|vi|2,

and its l∞ norm is
||v||∞ = max

i
(|vi|).
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The Hellinger distance between f1 and f2 is

H2(f1, f2) = 1−
∑
x∈X

√
f1(x)f2(x).

For any discrete probability distribution p(x), its support is defined as the set of points where
the distribution is positive, Supp(p(x)) = {x : p(x) > 0}.

For a positive B ∈ R and positive integer q, the truncated discrete Gaussian distribution over
Zq with parameter B is supported on {x ∈ Zq : ‖x‖ ≤ B} and has density

DZq,B(x) = e
−π‖x‖2

B2∑
x∈Zq, ‖x‖≤B

e
−π‖x‖2
B2

. (8)

We let negl(x) denote a negligible function. A function µ : N → R is negligible if for any
positive polynomial p(x) there exists an integer N > 0 such that for all x > N it’s the case that

|µ(x)| < 1
p(x) .

We sometimes abbreviate polynomial functions as poly. Throughout the paper, λ will denote
the security parameter. This will be polynomially-related to the input size of all functions we
consider. Consequently, all polynomial and negligible functions will scale in λ.

Let {Dλ}λ∈N and {Eλ}λ∈N be two families of probability distributions defined on {0, 1}λ. They
are computationally indistinguishable if for every polynomial-time algorithm A : {0, 1}λ → {0, 1},
it is the case that

| Pr
x←Dλ

(A(x) = 0)− Pr
x←Eλ

(A(x) = 0)| = negl(λ).

Letting gi ∈ Zq with q ≥ 2, the (mod-q) phase encoding of gi is defined as

|φi〉 = 1√
2

(|0〉+ eiφi |1〉) (9)

where

φi = 2πgi
q
− π

2 . (10)

In terms of quantum information, we follow the usual formalism as outlined, for instance,
in [NC02]. All Hilbert spaces are finite dimensional. We use sans-serif font to label spaces that
correspond to certain quantum registers. For instance, X will correspond to an n-qubit Hilbert
space of inputs to a function. We also extend the bar notation from strings to quantum states. So,
for instance |0̄〉 = |00...0〉. The multi-qubit cat state can then be written as |ψ〉 = 1√

2 (|0̄〉+ |1̄〉).
We now recall some standard notions of classical and quantum computation. For more details,

we refer the reader to [AB09, NC02].

• The notion of computational efficiency will refer to algorithms or circuits that run in poly-
nomial time.

• We say that an algorithm (or Turing machine) is PPT if it uses randomness and runs in
polynomial time. We say it is QPT if it is a quantum algorithm running in polynomial time.

• All Boolean circuits we consider are comprised of AND, OR, XOR and NOT gates.

• We say that a classical gate has bounded fan-out if the number of output wires is constant
(independent of the length of the input to the circuit). Otherwise, we say it has unbounded
fan-out.

• For quantum computation we assume the standard circuit formalism with the gate set
{RX , RY , RZ , H,CZ,CNOT,CCNOT} and computational basis measurements. Here, RX ,
RY , RZ denote rotations along the X, Y and Z axes of the Bloch sphere. More precisely,
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RW (θ) = exp(−iθW/2), with W ∈ {X,Y, Z}, the set of Pauli matrices. The allowed rotation
angles can be assumed to be multiples of π/4. In addition, H is the Hadamard operation, CZ
is a controlled application of a Pauli-Z gate, CNOT is a controlled application of a Pauli-X
gate and CCNOT is a doubly-controlled Pauli-X operation, also known as a Toffoli gate. It
should be noted that, apart from CCNOT , a number of the existing quantum devices can
indeed perform all of these gates natively [AAB+19, AAMA+21, WBD+19].

We say that a computational problem is intractable if there is no polynomial-time algorithm
solving that problem. Throughout this paper we are only concerned with computational intractabil-
ity for PPT algorithms. We give a simplified description of some candidate intractable problems
of interest:

• Factoring. Given a composite integer N , find its prime-factor decomposition. For the specific
case of semiprime N = p · q, the task is to find primes p and q.

• Discrete logarithm problem (DLP). For some abelian group G, given g ∈ G and gk, with
k > 0, find k.

• Learning with errors (LWE). Letting Zq be the ring of integers modulo q ≥ 2, given the
matrix A ∈ Zm×nq and the vector y = As + e, with s ∈ Znq and e sampled from a discrete
Gaussian distribution over Zmq , find s.

• Ring learning with errors (Ring-LWE). Letting Rq be a quotient ring Rq = R/qR, for some
(cyclotomic) ringR over the integers, givenm > 0 pairs (ai, yi) with ai ∈ Rq and yi = ai·s+ei,
i ≤ m, s ∈ Rq and each ei sampled independently from a discrete Gaussian distribution over
Rq, find s.

LWE and Ring-LWE are also conjectured to be QPT-intractable [Reg09, LPR10].

2.2 Learning with rounding (LWR)
As learning with rounding is the basis for our second proof of quantumness construction, in this
subsection we define the problem and state some of its essential properties, taken from [AKPW13].

Definition 2.1 (Rounding function). For integers q ≥ p ≥ 2, the p-rounding function of an integer
α satisfying 0 ≤ α < q is defined as

bαcp : Zq → Zp =
⌊
p

q
· α
⌋
. (11)

As mentioned in Subsection 1.2.2, this rounding operation is equivalent to taking the most
significant log2 p bits of α.

Definition 2.2 (The learning with rounding (LWR) assumption [AKPW13]). Suppose A ∈ Zm×nq ,
x←r Znq and u←r Zmq , then (A, bAxcp) and (A, bucp) are computationally indistinguishable.

Note that this is the decision version of LWR. There is also a search version, in analogy to LWE.
The search version is: given (A, bAxcp), as above, to find x. Whenever we refer to the “learning
with rounding problem” we can use the decision version or the search version interchangeably, as
they are equivalent for the parameter choices we use here.

Definition 2.3. (Trapdoor one-way functions from LWR [AKPW13])

1. Gen(n,m, q): an efficient algorithm that receives positive integers n,m, q and samples a
matrix A ∈ Zm×nq and trapdoor T with A being statistically close to uniform.

2. Inv(T,A, c): an efficient algorithm that receives T,A in the support of Gen(n,m, q) and

c = Ax+ e ∈ Zmq for some x ∈ Znq and some error ‖e‖∞ ≤ O
(

q√
n log2 q

)
and outputs x.

3. LWRInv(T,A, c): for (A, T ) in the support of Gen(n,m, q) and some c ∈ Zmp such that
c = bAxcp, the function outputs x efficiently.
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Lemma 2.1 (Trapdoors for LWR [AKPW13]). There exist efficient Gen and LWRInv functions
for any n ≥ 1, q ≥ 2, m ≥ O(n log q) and p ≥ O(

√
mn log q). In particular, LWRInv is defined as

LWRInv(T,A, c) := Inv(T,A,Transformq,p(c)) (12)

where
Transformq,p(c) :=

⌈
q

p
· c
⌉
. (13)

We also note that for the parameter choices we consider throughout this paper, which are essen-
tially the same as the ones in [BCM+18] (that is, m, n, q, ‖e‖∞ as functions of the security parame-
ter), LWE and LWR are computationally equivalent. In other words, there exists a polynomial-time
reduction from LWE to LWR and vice-versa. We refer the reader to [BPR12, AKPW13] for the
details.

2.3 Proof of quantumness protocols
2.3.1 Trapdoor claw-free functions

Most proof of quantumness protocols are based on trapdoor claw-free (TCF) functions or noisy
trapdoor claw-free functions (NTCF). We start with definition of a TCF, taken from [KMCVY22].

Definition 2.4 (TCF family [KMCVY22]). Let λ be a security parameter, K a set of keys, and
Xk and Yk finite sets for each k ∈ K. A family of functions

F = {fk : Xk → Yk}k∈K

is called a trapdoor claw free (TCF) family if the following conditions hold:

1. Efficient Function Generation. There exists a PPT algorithm Gen which generates a
key k ∈ K and the associated trapdoor data tk:

(k, tk)← Gen(1λ)

2. Trapdoor Injective Pair. For all keys k ∈ K, the following conditions hold:

(a) Injective pair: Consider the set Rk of all tuples (x0, x1) such that fk(x0) = fk(x1). Let
X ′k ⊆ Xk be the set of values x which appear in the elements of Rk. For all x ∈ X ′k, x
appears in exactly one element of Rk; furthermore, limλ→∞ |X ′k|/|Xk| = 1.

(b) Trapdoor: There exists a polynomial-time deterministic algorithm INVF such that for
all y ∈ Yk and (x0, x1) such that fk(x0) = fk(x1) = y, INVF (tk, b, y) = xb, with
b ∈ {0, 1}.

3. Claw-free. For any non-uniform probabilistic polynomial time (nu-PPT) classical algorithm
A, there exists a negligible function µ(·) such that

Pr [fk(x0) = fk(x1) ∧ x0 6= x1|(x0, x1)← A(k)] < µ(λ)

where the probability is over both the choice of k and the random coins of A.

4. Efficient Superposition. There exists a polynomial-size quantum circuit that on input a
key k prepares the state

1√
|Xk|

∑
x∈Xk

|x〉 |fk(x)〉

Next, we define the notion of a noisy TCF, first introduced in [Mah18, BCM+18]. These are
TCFs for which the efficient superposition is allowed to be approximate, rather than exact. The
outputs of these functions are additionally assumed to be distributions over binary strings, rather
than just binary strings. NTCFs, as defined in [BCM+18], also satisfy a property known as the
adaptive hardcore bit which is independent of the “noisy” aspect of the TCF. As we want to
distinguish between TCFs which satisfy this property and those that do not satisfy it, we shall
refer to the former as strong TCFs and the latter as ordinary TCFs, as per Definition 2.4. Thus,
the NTCFs we consider will be referred to as strong NTCFs:
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Definition 2.5 (Strong NTCF Family [BCM+18]). Let λ be a security parameter. Let X and Y
be finite sets and DY a collection of distributions over Y. Let KF be a finite set of keys. A family
of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

is called a strong noisy trapdoor claw-free (strong NTCF) family if the following conditions
hold:

1. Efficient Function Generation. Same as in Definition 2.4.

2. Trapdoor Injective Pair. Same as in Definition 2.4.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a function
f ′k,b : X 7→ DY such that

(a) For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), INVF (tk, b, y) = xb and INVF (tk, b ⊕
1, y) = xb⊕1.

(b) There exists an efficient deterministic procedure CHKF that, on input k, b ∈ {0, 1},
x ∈ X and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note that CHKF is
not provided the trapdoor tk.

(c) For every k and b ∈ {0, 1},

Ex←UX
[
H2(fk,b(x), f ′k,b(x))

]
≤ µ(λ) ,

for some negligible function µ(·). Here H2 is the Hellinger distance. Moreover, there
exists an efficient procedure SAMPF that on input k and b ∈ {0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x〉 |y〉 .

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for some
integer w that is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that
Prd←U{0,1}w [d /∈ Gk,b,x] is negligible, and moreover there exists an efficient algorithm
that checks for membership in Gk,b,x given k, b, x and the trapdoor tk.

(b) If

Hk =
{

(b, xb, d, d · (x0 ⊕ x1)) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1

}
,(14)

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
, (15)

then for any quantum polynomial-time procedure A there exists a negligible function
µ(·) such that∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣ ≤ µ(λ) . (16)

As a point of clarification, note that a noisy TCF (NTCF) is a TCF with a modified efficient
range superposition property. A strong NTCF is a NTCF with the adaptive hardcore bit property.
As mentioned, in [Mah18, BCM+18] NTCFs are not distinguished from strong NTCFs. As an
abuse of notation, we will use NTCF and strong NTCF interchangeably.

2.3.2 The BCMVV protocol

The first protocol we mention is the one from [BCM+18], which relies on the adaptive hardcore bit
property and so the function family used is NTCF. We outlined the protocol in the introduction,
while here we give a step-by-step description of its workings, in Figure 2.
The protocol is complete, in the following sense:
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BCMVV protocol

Let F be an NTCF family of functions. Let λ be a security parameter and N ≥ 1 a number of rounds.
The parties taking part in the protocol are a PPT machine, known as the verifier and a QPT machine,
known as the prover. They will repeat the following steps N times:

1. The verifier generates (k, tk)← Gen(1λ). It sends k to the prover.
2. The prover uses k to run SAMPF and prepare the state:

1√
|X |

∑
b∈{0,1},x∈X ,y∈Y

√
(f ′k,b(x))(y) |b〉B |x〉X |y〉Y .

It then measures the Y register, resulting in the string y ∈ {0, 1}poly(λ) which it sends to the verifier.
3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.
4. (a) (Preimage test:) When c = 0, the prover is expected to measure in the standard basis the BX

registers of the state leftover in step 2. It obtains the outcomes b ∈ {0, 1} and x ∈ {0, 1}n,
with n(λ) = poly(λ), which it sends to the verifier. If ChkF (k, b, x, y) = 0 the verifier aborts,
otherwise it continues.

(b) (Equation test:) When c = 1, the prover is expected to apply Hadamard gates to each qubit
in the BX registers and measure them in the standard basis (equivalently, measure all qubits
in the Hadamard basis). It obtains the outcomes b′ ∈ {0, 1} and d ∈ {0, 1}n which it sends to
the verifier. The verifier computes (x0, x1) = InvF (tk, y) and rejects if d · (x0 ⊕ x1) 6= b′.

At the end of the N rounds, if the verifier has not aborted it accepts.

Figure 2: The BCMVV proof of quantumness protocol based on NTCFs [BCM+18].

Theorem 2.1 ([BCM+18]). A QPT prover, P, following the honest strategy in the BCMVV
protocol is accepted with probability 1− negl(λ).

The soundness of the protocol against classical provers follows from the following theorem:

Theorem 2.2 ([BCM+18, ZKML+21]). For any PPT prover, P, in the BCMVV protocol, it is
the case that

ppre + 2peq − 2 ≤ negl(λ) (17)

where ppre is P’s success probability in the preimage test and peq is P’s success probability in the
equation test.

Thus, in any run of the protocol, as long as Inequality 17 is violated, we conclude that the
prover is quantum.

One known instantiation of the BCMVV protocol, as is described by [BCM+18], is based on
the LWE problem. The LWE-based construction is currently the only known instance of a strong
NTCF family of functions.

2.3.3 The KMCVY protocol

The BCMVV protocol relies on the adaptive hardcore bit property of NTCFs in order to be
sound. However, this property is only known to be true for NTCFs based on LWE. The authors
of [KMCVY22] addressed this fact by introducing a proof of quantumness protocol that can use
any TCF. As mentioned in the introduction, their protocol is a sort of computational Bell test.
We outline it in Figure 3.
The protocol is complete, in the following sense:

Theorem 2.3 ([KMCVY22]). A QPT prover, P, following the honest strategy in the KMCVY
protocol is accepted with probability 1− negl(λ).

The soundness of the protocol against classical provers follows from the following theorem:
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KMCVY protocol

Let F be a TCF family of functions. Let λ be a security parameter, N ≥ 1 a number of rounds and
T = 1/poly(λ) a threshold parameter. The parties taking part in the protocol are a PPT machine, known
as the verifier and a QPT machine, known as the prover. Before interacting with the prover, the verifier
initializes two counters Ns = 0, Nt = 0. The two will then repeat the following steps N times:

1. The verifier generates (k, tk)← Gen(1λ). It sends k to the prover.
2. The prover uses k to prepare the state:

1√
|Xk|

∑
x∈Xk

|x〉X |fk(x)〉Y

It then measures the Y register, resulting in the string y ∈ {0, 1}poly(λ) which it sends to the verifier.
3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.
4. (a) (Preimage test:) When c = 0, the prover is expected to measure in the standard basis the X

register of the state leftover in step 2. It obtains the outcome x ∈ {0, 1}n, with n(λ) = poly(λ),
which it sends to the verifier. If fk(x) 6= y the verifier aborts, otherwise it continues.

(b) (Computational Bell test:) When c = 1,
i. The verifier sends a random bitstring v ←R {0, 1}n to the prover.

ii. The prover creates the state

1√
2
(
|v · x0〉A |x0〉X + |v · x1〉A |x1〉X

)
with fk(x0) = fk(x1) = y.

iii. The prover applies Hadamard gates to all qubits in the X register and measures them in
the standard basis. The measurement outcome is denoted d ∈ {0, 1}n and is sent to the
verifier.

iv. The verifier computes (x0, x1) = InvF (tk, y). Together with d, the verifier can determine
the current state |γ〉A ∈ {|0〉 , |1〉 , |+〉 , |−〉} in the prover’s A register. It then chooses a
random φ ∈ {π/4,−π/4} and sends it to the prover.

v. The prover is expected to measure the qubit in the A register in the basis:{
cos
(
φ
2

)
|0〉+ sin

(
φ
2

)
|1〉

cos
(
φ
2

)
|1〉− sin

(
φ
2

)
|0〉

}
.

vi. The verifier sets Ns ← Ns + 1 if the measurement outcome was the likely one.
If the verifier has not aborted, it will accept if Ns

Nt
− 0.75 ≥ T .

Figure 3: The KMCVY proof of quantumness protocol based on TCFs [KMCVY22].

Theorem 2.4 ([KMCVY22]). For any PPT prover, P, in the KMCVY protocol, it is the case
that

ppre + 4pBell − 2 ≤ negl(λ) (18)

where ppre is P’s success probability in the preimage test and pBell is P’s success probability in the
computational Bell test.

Thus, in any run of the protocol, as long as Inequality 18 is violated, we conclude that the
prover is quantum.

In [KMCVY22], the authors provide the following candidate TCFs:

• Rabin’s function, or x2 mod n. The TCF properties are based on the computational in-
tractability of factoring.

• A Diffie-Hellman-based function. The TCF properties are based on the computational in-
tractability of DLP.
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• A ring-LWE-based function. The TCF properties are based on the computational intractabil-
ity of ring-LWE.

Of course, the NTCF family based on LWE can also be used.

2.4 Randomized encodings
Randomized encodings (also known as garbled circuits [Yao86]) are probabilistic encodings of func-
tions that are information-theoretically equivalent to the functions they encode. The idea of con-
structing randomized encodings which can be evaluated in constant depth originated with [AIK04].
We restate here the essential definitions and results from that paper.

Definition 2.6 (Randomized encoding [AIK04]). Let f : {0, 1}n → {0, 1}l be a function and
r ←R {0, 1}m be m bits sampled uniformly at random from {0, 1}m. We say that a function
f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private randomized encoding of f if it satisfies the
following properties.

• Efficient generation. There exists a deterministic polynomial-time algorithm that, given a
description of the circuit implementing f , outputs a description of a circuit for implementing
f̂ .

• δ-correctness. There exists a deterministic polynomial-time algorithm Dec, called a decoder
such that for every input x ∈ {0, 1}n, Pr

r←R{0,1}m
[Dec(f̂(x, r)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a PPT algorithm S, called a simulator, such that for every x ∈ {0, 1}n,
TVD(S(f(x)), f̂(x, r)) ≤ ε.

A perfect randomized encoding is one for which δ = 0 (perfect correctness) and ε = 0 (perfect

privacy). Note that for perfect encodings f(x) can always be reconstructed from f̂(x, r). Addi-

tionally, perfect privacy means that f̂(x, r) encodes as much information about x as f(x). An
important property of perfect encodings that we will use is that of unique randomness:

Theorem 2.5 (Unique randomness [AIK04]). Suppose f̂ is a perfect randomized encoding of f .
Then for any input x, the function f̂(x, ·) is injective; namely, there are no distinct r,r′ such that
f̂(x, r) = f̂(x, r′). Moreover, if f is a permutation, then so is f̂ .

The main result in [AIK04] is the following:

Theorem 2.6 ([AIK04]). Any Boolean function that can be computed by a log-depth circuit,
admits a perfect randomized encoding that can be computed in constant depth.

In fact a more general result is shown in [AIK04], however the result of the above theorem is
sufficient for our purposes. We also require the following result:

Lemma 2.2 (Randomness reconstruction). Given x and f̂(x, r), where f̂ is a randomized encod-
ing following the construction from [AIK04], there is a deterministic polynomial-time algorithm,
denoted Rrc, for computing the randomness r.

Note that this property is not universal to randomized encodings, in that it cannot be derived
from the definition of randomized encodings. However, the property is satisfied by the specific
encodings defined in [AIK04]. This fact is mentioned in [AIK04], however no formal proof is
provided. We outline their construction in Appendix A and prove the randomness reconstruction
property in Appendix B.

Finally, we show the following fact concerning randomized encodings of functions that may
have collisions:

Lemma 2.3 (Collision preservation). For every x1, x2 with x1 6= x2 for which f(x1) = f(x2)
there exist unique r1 and r2 such that f̂(x1, r1) = f̂(x2, r2). In addition, for every (x1, r1), (x2, r2),
x1 6= x2, such that f̂(x1, r1) = f̂(x2, r2) it is the case that f(x1) = f(x2).
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Proof. Perfect privacy says that there exists a polynomial-time simulator S, such that for all x,
it should be that TVD(S(f(x)), f̂(x, r)) = 0, where TVD is the total variation distance and r
is sampled uniformly at random. Essentially, S should always be able to sample from the set of
randomized encoding values that can be decoded to f(x) (i.e. all f̂(x, r), for all r).

But now suppose we have x1 and x2 such that f(x1) = f(x2). By perfect privacy it must
be that TVD(S(f(x1)), f̂(x1, r1)) = 0 and TVD(S(f(x2)), f̂(x2, r2)) = 0, for uniform r1 and r2.
Since f(x1) = f(x2), it must be that TVD(f̂(x1, r1), f̂(x2, r2)) = 0. In other words, f̂(x1, r1)
and f̂(x2, r2) are the same distribution (for random choices of r1 and r2) and so the randomized
encodings that can be decoded to f(x1) = f(x2) are the same for both x1 and x2.

Moreover, unique randomness (Theorem 2.5) ensures that there are no distinct r1 and r′1 such
that f̂(x1, r1) = f̂(x1, r

′
1) (with the analogous statement holding for the x2 case). Thus, for

uniform r1, f̂(x1, r1) is the uniform distribution over all randomized encodings which decode to
f(x1) = f(x2). As f̂(x2, r2) is the same distribution (for uniform r2), it is the case that there are
unique r1 and r2 such that f̂(x1, r1) = f̂(x2, r2). This shows the first part of the lemma, that
for every x1, x2 with x1 6= x2 for which f(x1) = f(x2) there exist unique r1 and r2 such that
f̂(x1, r1) = f̂(x2, r2).

Next, consider (x1, r1), (x2, r2), x1 6= x2, such that f̂(x1, r1) = f̂(x2, r2). Since
Dec(f̂(x1, r1)) = f(x1) and Dec(f̂(x2, r2)) = f(x2), because f̂(x1, r1) = f̂(x2, r2) it follows
that Dec(f̂(x1, r1)) = Dec(f̂(x2, r2)) and so f(x1) = f(x2).

Hence, the collisions of the original function are exactly preserved by the encoding.

3 Generic proofs of quantumness in constant quantum depth
We now have all the tools for presenting our generic compiler which can take the two proof of
quantumness protocols from Subsection 2.3 and map them to equivalent protocols in which the
prover’s operations require only constant quantum depth and logarithmic classical depth. The
idea is the following: provided the (N)TCF of the original protocol can be evaluated in log depth,
simply replace it with a constant-depth randomized encoding, as follows from Theorem 2.6. In other
words, y = f(x) should be replaced by ŷ = f̂(x̂) where x̂ = (x, r) and r denotes the randomness
of the encoding. As mentioned, it was shown in [GH20, KMCVY22] that the (N)TCFs of the two
proofs of quantumness considered here, can indeed be performed in classical logarithmic depth.
Thus, to show that our construction works, we prove two things:

1. The prover can evaluate f̂ coherently in constant quantum depth (as well as perform its
remaining operations in constant depth). This is the completeness condition of the protocol
shown in Subsection 3.1.

2. A randomized encoding of a (N)TCF is itself a (N)TCF. This means that the modified
protocol is sound against classical polynomial-time provers. We show this in Subsection 3.2.

3.1 Completeness
To show completeness, we give a strategy for an honest prover, that interleaves constant-depth
quantum circuits and log-depth classical circuits, to succeed in the proofs of quantumness described
in Section 3. We assume that the (N)TCFs used in those protocols can be evaluated in constant

classical depth and denote the corresponding function as f̂k. These circuits are allowed to contain
gates of unbounded fan-out. We can always map such a circuit to one that uses only gates of
bounded fan-out, provided multiple copies of the input bits are provided. The intuition for this
was mentioned in the Introduction and in Figure 1. We will assume each input bit of the initial
circuit has been copied k times.

The first step is preparing the state corresponding to a coherent evaluation of the (N)TCF over
a uniform superposition of inputs:

|ψ〉 =
∑

b∈{0,1}

∑
x̂∈{0,1}poly(λ)

|b〉B |x〉X |f̂k(b, x)〉Y , (19)
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where the B and X registers store the inputs of f̂ and the Y register will store the computed value
of f̂ . As a slight abuse of notation, we omit the normalization term and assume the state is an
equal superposition.

Instead of preparing the state in Equation 19, we will prepare a state that is essentially equiv-
alent to it, namely:

|ψ〉 =
∑

b∈{0,1}

∑
x̂∈{0,1}poly(λ)

|b̄〉B |x̄〉X |f̂k(b, x)〉Y , (20)

where |b̄〉 = |b〉⊗k and |x̄〉 = |x〉⊗k. We view the X register as consisting of multiple sub-registers,
one for each bit in x. In other words9, if x = x1x2...xn, with n(λ) = poly(λ), and x̄ = x̄1x̄2...x̄n,
we assume X = X1 ⊗ X2 ⊗ ...⊗ Xn. Here, Xi holds the state

∑
xi∈{0,1} |x̄i〉.

The prover starts by preparing:

|ψ0〉 =
∑
b,x̂

|b̄〉B |x̄〉X |0〉Y . (21)

Note that the B and X registers contain cat states. These can be prepared in constant quantum
depth, together with logarithmic classical depth. As outlined in the introduction, the idea is to
first prepare a poor man’s cat state in constant depth, as described in [WKST19]. The prover
then uses the parity information from the prepared poor man’s cat state to perform a correction
operation consisting of Pauli-X gates. Determining where to perform the X gates from the parity
information requires logarithmic classical depth. The X corrections will map the poor man’s cat
states to cat states.

Next, the function f̂ needs to be evaluated and the outcome will be stored in Y register. With
multiple copies of the input, the circuit evaluating f̂ consists only of gates with bounded fan-out.
It can therefore be mapped to an equivalent constant depth quantum circuit (having twice the
depth, so as to perform the operations reversibly) consisting of Toffoli, Pauli-X and CNOT gates.
Evaluating this circuit on the state from 21 will result in the state from 20, as intended.

The prover is then required to measure the Y register and report the outcome to the verifier.
This adds one more layer to the circuit. The measured state will collapse to

|ψy〉 =
∑

b∈{0,1}

|b̄〉B |x̄b〉X |y〉Y .

In the preimage test, the prover will also measure this state in the computational basis and report
the outcome to the verifier.

The next steps will differ for the two protocols.

1. For the BCMVV protocol: In the equation test, the prover applies a layer of Hadamard gates
on the qubits in B and X. It then measures them in the computational basis, denoting the
results as b′ ∈ {0, 1}k and d ∈ {0, 1}n·k. In the original protocol, b′ was one bit and d was
n bits and they satisfy the relation d · (x0 ⊕ x1) = b′. To arrive at that result, the prover
will xor all the bits in b′ and all bits in each k-bit block of d and report those results to the
verifier. Note that the distributions of these xor-ed outcomes is the same as the distribution
over the outcomes of a Hadamard-basis measurement of:∑

b∈{0,1}

|b〉B |xb〉X .

2. For the KMCVY protocol: In the computational Bell test, the prover receives the string
v from the verifier. The original protocol has the prover use an ancilla qubit to store the
bitwise inner product v · xb. However, such a multiplication requires serial CNOT gates
which cannot be performed in constant depth. We therefore use a multi-qubit ancila register

initalized as a cat state |a〉A = |0〉⊗n+|1〉⊗n√
2 . For every bit vi, in v, if vi = 1, the prover applies

9Note that this is the only place where a subscript on x is used to denote a bit of x. Throughout the rest of the
section, xb will denote a specific x string, and does not refer to the b’th bit of the string x.
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a controlled-Z (CZ) gate with control qubit any of the qubits in Xi and target qubit |a〉i.
The resulting state will be

∑
b∈{0,1}

|0〉⊗nA + (−1)v·xb |1〉⊗nA√
2

|x̄b〉X =
∑

b∈{0,1}

|(−1)v·xb〉A |x̄b〉X

where we denote |(−1)v·xb〉 =
∑
b∈{0,1}

|0〉⊗nA +(−1)v·xb |1〉⊗nA√
2 . Next, the prover is required to

measure X in the Hadamard basis yielding the result d ∈ {0, 1}n·k. Once again, in the original
protocol d is an n-bit string. As in the BCMVV protocol, this is “fixed” by having the prover
xor each k-bit block of d and report those outcomes to the verifier. The verifier can then use
this result to determine the state in the ancilla register.

After the measurement, the ancilla register will be in the state |γ〉A ∈ {|0̄〉 , |1̄〉 , |+̄〉 , |−̄〉}
where |±̄〉 = |0̄〉±|1̄〉√

2
10. As the last step, the prover receives φ ∈ {−π/4, π/4}. The original

protocol requires him to measure the ancilla register in the rotated basis{
cos(φ/2) |0̄〉+ sin(φ/2) |1̄〉
cos(φ/2) |1̄〉 − sin(φ/2) |0̄〉

and report the result, b′. But how does the prover perform this measurement in constant
depth? We give an approach that requires one more round of interleaving constant-depth
quantum circuits and a log-depth classical computation. The basic idea is to reduce the multi-
qubit state in the ancilla to a single-qubit state, i.e. {|0̄〉 , |1̄〉 , |+̄〉 , |−̄〉} → {|0〉 , |1〉 , |+〉 , |−〉}.
This reduction needs to be done in such a way that {|0̄〉 , |1̄〉} → {|0〉 , |1〉} and {|+̄〉 , |−̄〉} →
{|+〉 , |−〉}. Once this is done, the resulting qubit can be measured in the rotated basis.

To perform the reduction, the prover first measures all but one qubit of |γ〉A in the Hadamard
basis. Denote this (n−1)-bit outcome as w. If the initial state was |0̄〉 or |1̄〉, the unmeasured
qubit will be |0〉 or |1〉 respectively. If the initial state was |±̄〉, it can be re-expressed as

|±̄〉 ∝ |0〉 |00...0〉 ± |1〉 |11...1〉
∝ |0〉 (|+〉+ |−〉)⊗n−1 ± |1〉 (|+〉 − |−〉)⊗n−1

∝
∑
w

(
|0〉 ± (−1)|w| |1〉

)
|w〉

∝
∑
w

Z |w| mod 2 |±〉 |w〉

Thus, the qubit after the measurement will be Z |w| mod 2 |±〉. The prover will apply the
Z |w| mod 2 operation to this qubit. In this way, the state |±̄〉 is reduced to |±〉.
Finally, the prover has to measure the qubit in the rotated basis and report the outcome.
This can be done in constant depth by rotating the qubit appropriately and measuring in
the standard basis. As in the original protocol, this prover will pass the verifier’s checks with
probability cos(π/8)2 ≈ 85%.

3.2 Soundness
We do not need to prove soundness from scratch for our modified protocols. Instead, since our
only change was to replace the (N)TCFs used in the protocols with randomized encodings, we will
have the same soundness as the original constructions provided randomized encodings of (N)TCFs
are still (N)TCFs. That is what we show here.

Theorem 3.1. A perfect randomized encoding of a (N)TCF, satisfying the randomness recon-
struction property, is still a (N)TCF.

10Note that here the bar notation, |ā〉, refers to an n-fold repetition, rather than a k-fold one as in the previous
case. That is, here |ā〉 = |a〉⊗n.
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Proof. We show this result for NTCFs specifically, since the TCF case is subsumed. The idea of
the proof is to show that every property of a NTCF is also satisfied by its randomized encoding.

1. Efficient Function Generation. By definition, randomized encodings can be efficiently
generated given a description of the function to be encoded. In this case, the description
is given by the public key produced by the PPT algorithm GENF . More precisely, GENF
generates the key k ∈ KF together with a trapdoor tk. The generating procedure for the
encoding will run GENF and output k, the efficient circuit for generating a randomized
encoding and the trapdoor tk. Schematically,

(f̂k,b, tk) randomized encoding←−−−−−−−−−−−−− (fk,b, tk) ≡ (k, tk)← GENF (1λ) .

2. Trapdoor Injective Pair.

(a) Trapdoor : Due to perfect correctness, Supp(f̂k,b(x0, r0)) ∩ Supp(f̂k,b(x1, r1)) = ∅ is
satisfied since if Supp(f̂k,b(x0, r0)) ∩ Supp(f̂k,b(x1, r1)) 6= ∅, then perfect correctness
leads to Supp(fk,b(x0)) ∩ Supp(fk,b(x1)) 6= ∅ which violates the trapdoor injective pair
property of the original function f . The efficient deterministic algorithm for inverting
the randomized encoding also exists and is defined as InvF̂ (tk, b, ŷ) = Rrc ◦ InvF ◦
Dec(tk, b, ŷ), i.e. the composition of the decoding operation for the encoding, the
original InvF procedure of the NTCF and the randomness reconstruction procedure
(see Lemma 2.2).

(b) Injective pair : Let R̂k be the set of all tuples of the form ((x0, r0), (x1, r1)) such that
f̂k,0(x0, r0) = f̂k,1(x1, r1). Additionally, let X̂ ′k ⊆ X̂k be the set of values (x, r) which
appear in the elements of R̂k. It is the case that every (x, r) ∈ X̂ ′k appears in exactly one
element of R̂k. This is because, using the collision-preservation property (Lemma 2.3),
it must be that f̂k,0(x0, r0) = f̂k,1(x1, r1) only if fk,0(x0) = fk,1(x1) and only for unique
r1 and r2. We also know from the injective pair property of fk,b, that every x appears
in exactly one tuple defining a collision for fk,b.
Also note that |X̂k| = 2m|Xk|, where |r| = m. In other words, the set of possible
inputs for f̂k,b is 2m times larger than that of fk,b, as for every input, x, we also
have the m-bit string r. The collision preservation property (Lemma 2.3) also ensures
that |X̂ ′k| = 2m|X ′k|. Since we know that limλ→∞ |X ′k|/|Xk| = 1 it also follows that
limλ→∞ |X̂ ′k|/|X̂k| = 1.

3. Efficient Range Superposition. The efficient range superposition property of the original
function f means there’s an efficient quantum procedure to create a state approximating a
superposition over the range of f . Assume we add an additional register, R, to represent the
randomness of the encoding, f̂ , and initialize it as a uniform superposition over computational
basis states. We can now combine the efficient procedure for generating f̂ with the procedure
for generating the range superposition of f and apply them coherently on R. This will then
yield the desired state

∑
x,r,y

√
(f̂ ′k,b(x, r))(y) |x〉 |r〉 |y〉 ,

suitably normalized.

4. Adaptive Hardcore Bit. We prove this property by contradiction. Assume there exists
a QPT adversary Â that breaks the adaptive hardcore bit property for the randomized
encoding. This means that there exists a non-negligible function p(λ) that satisfies∣∣∣ Pr

(k,tk)←GENF (1λ)
[Â(k) ∈ Ĥk]− Pr

(k,tk)←GENF (1λ)
[Â(k) ∈ Ĥk]

∣∣∣ ≥ p(λ)

where

Ĥk =
{

(b, x̂b, d̂, d̂ · (x̂0 ⊕ x̂1)) | b ∈ {0, 1}, (x̂0, x̂1) ∈ R̂k, d̂ ∈ Ĝk,0,x0 ∩ Ĝk,1,x1

}
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and
Ĥk = {(b, x̂b, d̂, c) | (b, x̂, d̂, c⊕ 1) ∈ Ĥk

}
.

By definition x̂b = (xb, rb), therefore d̂ can be split into (dx, dr) such that

x̂b · d̂ = (xb · dx)⊕ (rb · dr)

which implies that

d̂ · (x̂0 ⊕ x̂1) = (dx · (x0 ⊕ x1))⊕ (dr · (r0 ⊕ r1)).

Note that the output of Â is a tuple (b, x̂b, d̂, d̂ · (x̂0 ⊕ x̂1)). One can now define a new QPT
adversary A which runs Â and then outputs (b, xb, dx, d̂ · (x̂0 ⊕ x̂1) ⊕ (dr · (r0 ⊕ r1))). This
then implies that∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣ ≥ p(λ) .

Hence, the adaptive hardcore bit of the original NTCF family is violated. We conclude that
the randomized encoding must also satisfy the adaptive hardcore bit property.

3.3 Resource estimation
In this section, we give some estimates of the resources required to run our modified protocols. We
summarize this information in Table 1 and proceed to explain the results. The functions listed in
the table are the same as the ones from [KMCVY22], as these are the existing candidate TCFs
used in proof of quantumness protocols.

Function Adaptive H.C. # of quantum-classical interleavings Depth Width
LWE 3 3 14 O(λl4)

Ring-LWE 7 4 18 O(λl4)
x2 mod n 7 4 18 O(λl4)

Diffie-Hellman 7 4 18 O(λl4)

Table 1: The table of resource estimations for each type of (N)TCF function that may be used. Here H.C.
means hardcore bit. The number of quantum-classical interleavings refers to the instances where the prover
performs a constant-depth quantum circuit followed by a classical computation. This is done, for instance, in
the preparation of cat states as well as when it responds to one of the verifier’s challenges. Depth refers to
the total number of layers of quantum gates that the prover has to perform. Width refers to the width of the
quantum circuits the prover has to implement. Here, λ denotes the security parameter and l is the size of the
branching program implementing the randomized encoding, as described in Appendix A.

3.3.1 Quantum depth and quantum-classical interleavings

In this subsection we explain the overall quantum depth that the prover has to perform in our
modified proofs of quantumness. Depth here represents the number of layers of quantum gates or
measurements (as described in Section 2) that the prover will perform throughout the protocol,
in the worst case. As mentioned, the prover’s operations consist of alternating between constant-
depth quantum circuits and log-depth classical computation. This latter step we referred to as a
quantum-classical interleaving.

For the NTCF-based protocol which uses LWE, the total quantum depth is 14 and 3 quantum-
classical interleavings are performed, whereas for the TCF-based approaches the depth is 17 and
the number of interleavings is 4. Let us explain where these numbers come from:

1. Preparation of cat states. As mentioned, we prepare cat states by interleaving a constant
depth quantum circuit with a log-depth classical computation, followed by another quantum
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circuit. The exact steps are outlined in [WKST19], while here we just summarize the gates
performed in each step. The procedure starts with a layer of Hadamard gates followed by
two layers of CNOT gates. Some of the qubits are then measured in the computational
basis. The remaining qubits will collapse to a poor man’s cat state, while the measured
qubits contain the parity information for that state. To “correct” the state to a cat state, the
parity information is used to compute a Pauli-X correction. This is one quantum-classical
interleaving. The final quantum layer consists of Pauli-X gates. Thus, the total depth will
be 5 and we have 1 quantum-classical interleaving. This applies to all cat states, as they can
be prepared in parallel.

2. Evaluation of the randomized encoded function. As illustrated can see in Figure 8, the
classical circuit for a randomized encoding has depth 3. In the quantum case, the AND gates
are implemented by Toffoli gates and the XOR gate is a CNOT . As the quantum gates are
reversible, one needs to uncompute any auxiliary results and so the quantum depth will be
double that of the classical circuit. Hence, for this step the quantum depth is 6 and there
are no quantum-classical interleavings.

3. Measurement of the Y register. Measuring the image register requires a layer of computa-
tional basis measurements and so the depth is 1. The results are read out and sent to the
verifier, which we count as 1 quantum-classical interleaving.

4. Preimage test or equation/Bell test. If a preimage test is performed, the prover only needs
to measure the X register in the computational basis and report the result. This counts as
depth 1 and 1 interleaving. In the NTCF protocol, if an equation test is performed, then the
prover is expected to apply a layer of Hadamard gates to the X register and measure them.
This counts as depth 2 and 1 interleaving. In the TCF protocol, when the computational Bell
test is performed, the prover’s operations (as outlined in Subsection 3.1) will consist of a layer
of CZ gates, a layer of Hadamard gates together with a computational basis measurement, a
classical computation and reporting the results to the verifier, a Pauli-Z operation, a rotation
gate and finally another measurement and reporting the results to the verifier. This counts
as depth 6 and 2 interleavings.

We can see that for the NTCF-based protocol the worst-case depth is 5+6+1+2 = 14 and the
number of interleavings is 1+0+1+1 = 3. For the TCF-based one, the depth is 5+6+1+6 = 18
and the number of interleavings is 1 + 0 + 1 + 2 = 4.

3.3.2 Circuit width

The constant-depth versions of the proof of quantumness protocols require larger numbers of
qubits than the original version. As explained, most of this is due to the use of cat states, which
effectively copy the input and allow us to apply a constant depth circuit with bounded fan-out
gates. That circuit is a randomized encoding of the original TCF. Following the construction of
randomized encodings from [AIK04] and described in Appendix A, the width of the constant-depth
circuit will depend on the size of the branching program used to evaluate the original function.
In Appendix A we explain how, as a result of Barrington’s theorem, the size of this branching
program is exponential in the depth of the original TCF. As all TCFs considered here can be
evaluated in logarithmic depth, the resulting branching programs will have sizes polynomial in
the security parameter λ. Giving a precise account of the size of the branching program, as a
function of λ, for each TCF, is beyond the scope of this paper. Instead, we find in Appendix A
that the overall circuit width for the prover’s quantum circuit is O(λl4), where l is the size of
the branching program used to evaluate the TCF. The λ factor comes from having to repeat the
branching program construction in parallel O(λ) times. This is because one branching program
computes a single output bit of the TCF and so one has to consider a different branching program
(of the same size) for each output bit.

As a rough estimate, we can relate the width to the security parameter for the LWE-based
NTCF of [Mah18, BCM+18]. There we know from [GH20] that the functions can be evaluated in
depth ∝ 4 log λ. From Barrington’s theorem, the size l of the corresponding branching program is
on the order of λ8. As the width is O(λl4), we find that the prover requires O(λ33) qubits. This
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is a discouraging result for the purposes of implementing these protocols on near-term devices.
However, it should be noted that this was merely a rough calculation based on existing asymptotic
estimates. We conjecture that these estimates are not optimal and can be improved with a tighter
analysis, better circuit implementations and more compact branching programs. Additionally, for
a fixed-size implementation (say λ = 50), it is likely that additional optimizations are possible that
could further reduce the number of required qubits.

4 Proofs of quantumness via phase encoding
The first construction based on randomized encoding is a generic method that works for all types
of (N)TCFs. However, as mentioned, its naive implementation based on Barrington’s theorem
leads to circuits which are too wide to be implemented on near-term devices.

In this section, we propose another approach that can be implemented on much narrower
circuits, thus bringing it closer to implementation on near-term devices. This construction relies
on phase encodings to evaluate a specific NTCF, based on the LWR problem that is defined in
Subsection 2.2. As we will see, the resulting circuits also involve only constant quantum depth and
logarithmic classical depth.

Before presenting the protocol, we first define the LWR-based NTCF, denoted as f , and intro-
duce its phase encoded implementation.

4.1 LWR-based NTCF
The LWR-based NTCF was suggested in [BCM+18] but not used. It is however used in [ZKML+21],
but without the phase encoding. The specific NTCF we consider is the following:

Definition 4.1 (LWR-based NTCF). Let λ > 0 be a security parameter. We take
n(λ),m(λ), q(λ), p(λ) as functions of λ subject to the following constraints: n = O(λ), q = 2O(n)

is prime, m = Ω(n log q), and p = O(
√
mn log q) is a power of 2. Additionally χ will denote a

discrete Gaussian distribution over Zq having width O(q/p5). Taking A ←r Zm×nq , s ←r {0, 1}n,
e←χm Zmq (so that ‖e‖∞ = O(q/p5)), we define the function

f(b, x) : {0, 1} × Znq → Zmp = bg(b, x)cp

where
g(b, x) : {0, 1} × Znq → Zmq = Ax+ b · (As+ e).

For the specific constants in the parameters defined above, we use the same values as in [BCM+18].
It should be noted that the width of the error distribution is taken to be polynomially smaller than
in [BCM+18] (O(q/p5) versus O(q/p)). But since the width is still superpolynomial (in n) we are
still in the “hardness regime” where both LWE and LWR are intractable. For more details, we
refer the reader to the Preliminaries of [BCM+18]. The reason for this choice will become apparent
in Subsection 4.3.1.

Although we are referring to f as an NTCF, it is not clear if this is indeed the case. Following
the definition from Subsection 2.3, we next show that all the properties are satisfied. As f(b, x) uses
the same LWE instance as the LWE-based NTCF of [BCM+18], we will have the same Gen, which
immediately proves the efficient function generation property. Additionally, Lemma 2.1 confirms
that the (k, tk) pair sampled by Gen is also the key and trapdoor pair for the LWR-based function
(for this reason we will sometimes write the function as fk). We can also see that if (0, x) is the
preimage of y = f(0, x), the other preimage is (1, x−s). The trapdoor injective pair property then
follows. The efficient evaluation property comes from the fact that mod-q matrix multiplication
and additions can be efficiently performed by polynomial-depth quantum circuits. In fact, the rest
of this section is devoted to showing an efficient evaluation in constant quantum-depth using the
phase encoding construction.

We are left with showing the adaptive hardcore bit property. As a first step, we show the
following:

Lemma 4.1. x0 and x1 form a claw of the LWR-based NTCF if and only if they are also a claw
of the corresponding LWE-based NTCF (from [BCM+18]), with high probability.
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Proof. Consider

f(b, x) = bAx+ b · (As+ e)cp
h(b, x) = Ax+ b · (As+ e) + e′

where h is the LWE-based NTCF using in [BCM+18] and both functions are based on the same
LWE sample As+ e. The statement we would like to show is then re-expressed as

f(0, x0) = f(1, x1)⇔ h(0, x0) = h(1, x1)

with high probability over the choices of A, s, and e. We can prove it by showing both implications.

• (→) Consider its contrapositive: if h(0, x0) 6= h(1, x1), then f(0, x0) 6= f(1, x1), with high
probability. In [BCM+18], it was shown that h(0, x0) 6= h(1, x1) if and only if x1 6= x0 − s,
with high probability. Now take x1 = x0 − s+ w for some non-zero w ∈ Znq . We know that
Aw is a uniformly random vector (over the random choice of A) and therefore every bit of
f(1, x1) has a probability of 1

2 to be flipped with respect to f(0, x0). Thus, the probability
of f(0, x0) = f(1, x1) can be bounded by the additive Chernoff inequality

Pr(dH(f(0, x0), f(1, x1)) = 0) ≤ exp
(
−m log2 p

4

)
which is negligible.

• (←) Suppose h(0, x0) = h(1, x1), which immediately leads to x1 = x0−s, with high probabil-
ity. We then have f(0, x0) = bAx0cp and f(1, x1) = bAx0 +ec. As we have ‖e‖∞ = O(q/p5),
the probability of f(0, x0) = f(1, x1) is 1− negl(n) as shown in [AKPW13].

Now we have all the ingredients for the proof of the adaptive hardcore bit property.

Theorem 4.1. The LWR-based NTCFs (fk(b, x)) have the adaptive hardcore bit property.

Proof. We present a proof by contradiction. Suppose fk(b, x) = bAx + b(As + e)cp is an LWR-
based NTCF where k is the key and tk is the trapdoor, both generated by Gen. Assume there
exists a QPT adversary Â that breaks the adaptive hardcore bit property of f . This means that
there exists a non-negligible function κ(m) that satisfies∣∣∣ Pr

(k,tk)←GenF (1λ)
[Â(k) ∈ Ĥk]− Pr

(k,tk)←GenF (1λ)
[Â(k) ∈ Ĥk]

∣∣∣ ≥ κ(m)

where

Ĥk =
{

(b, xb, d, d · (x0 ⊕ x1)) | b ∈ {0, 1}, (x0, x1) ∈ R̂k
}
,

Ĥk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Ĥk

}
,

and R̂k is the set of all tuples x0, x1 such that fk(0, x0) = fk(1, x1). We can then consider the
LWE-based NTCF hk(b, x) := Ax+ b · (As+ e) + e′, whose corresponding sets are denoted by Hk,
Hk, and Rk. As is shown in Lemma 4.1, we have Rk = R̂k, with overwhelming probability, hence
Hk = Ĥk and Hk = Ĥk . Therefore, we can define the QPT adversary, A := Â. It satisfies∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣ ≥ κ(m)

which breaks the adaptive hardcore bit property of LWE-based NTCFs.

This implies that f(b, x) satisfies all requirements of an NTCF.
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4.1.1 Prime q

As mentioned in Definition 4.1, we require q to be a prime. This is, in fact, also a requirement
in [BCM+18]. The reason for this is that some of the properties of these NTCF-based construc-
tions hold only when Zq is a finite field, rather than a finite ring. Normally, this would just be a
minor technical point. However, in our case since we would like to perform the prover’s operations
in constant depth, we would need to provide a procedure that allows the prover to prepare equal
superpositions over the field elements. In other words, the prover needs to create an equal super-
position of a prime number of elements. While this can be done in constant quantum depth, using
cat states and ideas from [HŠ05], we will find that this is not necessary, provided q is sufficiently
large and sufficiently close to a power of 2. In this section, we show that these conditions can
indeed be satisfied and it is possible to efficiently choose a prime q that is close to a power of 2.

We start with a result from [Dus98]:

Lemma 4.2 ([Dus98]). For q′ > 3275, there exists a prime q in the interval

q′ < q <

(
1 + 1

2 ln2 q′

)
q′.

This implies that the ratio of q and q′ = 2n is bounded by

1 < q

q′
< 1 + 1

2(ln 2)2n2 = 1 +O(n−2).

Moreover, a specific prime in between q′ = 2n and
(

1 + 1
2 ln2 q′

)
q′ can be efficiently found. It

suffices to sample random integers in the range and check if they are prime. The checking can be
done by (for instance) the Miller-Rabin algorithm [Rab80], in polynomial time. We can show that
the number of samples to check is O(n) using the Prime number theorem, which states that, if
π(N) is the prime counting function, for integers in the range (0, N), then it is the case that

π(N) ∼ N

logN .

Thus, the number of primes in the desired range can be estimated by

π

((
1 + 1

2 ln2 q′

)
q′
)
∼

2n
(

1 + 1
2(ln 2)2n2

)
n+ log

(
1 + 1

2(ln 2)2n2

) ∼ 2n
(

1
n

+ 1
2(ln 2)2n3 +O(n−4)

)

and

π

((
1 + 1

2 ln2 q′

)
q′
)
− π(q′) = 2n

2(ln 2)2n3 +O(2nn−4).

Therefore, the density of primes in the range is

ρ =
π
((

1 + 1
2 ln2 q′

)
q′
)
− π(q′)

q′ 1
2 ln2 q′

∼
2n 1

2(ln 2)2n3

2n 1
2(ln 2)2n2

= 1
n

+O(n−2),

which immediately implies that a prime can be found with an expected number of O(n) random
samples. All of this is incorporated in the Gen procedure as that is responsible for choosing a
suitable q. As will also be mentioned later, since q is close to a power of 2, when the prover has to
create an equal superposition over the elements of Zq it will instead create the superposition over
elements up to q′, the nearest power of 2, larger than q. The resulting state will be sufficiently
close in trace distance that we only incur a 1/poly(n) penalty in completeness for making this
replacement.

Accepted in Quantum 2022-08-24, click title to verify. Published under CC-BY 4.0. 29



4.2 Phase encoding
The concept of phase encoding was described in Section 2. In this section we will look at several
properties of the phase encoding for the LWR-based NTCF (Definition 4.1). We aim to show how
to evaluate g(b, x) = Ax + b · (As + e) in phase, and show that measuring the resulted state in
Hadamard basis will reveal the value of f(b, x) = bg(b, x)cp, with high probability.

It is natural to start by considering the phase encoding of g(b, x) for a specific (b, x). Note that
x ∈ Znq and g(b, x) ∈ Zmq , both being vectors. The phase encoded state that we would like the
prover to prepare (for each b and x) should have the following form:

|φ(b, x)〉 =
m⊗
i=1
|φi(b, x)〉 (22)

with

|φi(b, x)〉 = 1√
2

(|0̄〉+ eiφi(b,x) |1̄〉) (23)

and

φi(b, x) = 2πgi(b, x)
q

− π

2 (24)

where gi represents the i’th component of g(b, x).
For the majority of this section, we will focus on the case p = 2. That is, we assume that

f(b, x) simply takes the most significant bit of each component of g(b, x). This, of course, is not
the NTCF we defined since there we had that p = O(

√
mn log q). We will address the case of

general p in Subsection 4.2.3.
For p = 2, we denote the output of f(b, x) = bg(b, x)c2 by y, a binary string of length m. We

have yi = bgi(b, x)c2 where yi is the i’th bit of y and gi(b, x) is the i’th component of g(b, x). Before
explaining how to prepare the phase encoded state in constant depth, let us first investigate how
to decode y = f(b, x) from |φ(b, x)〉 with high probability.

4.2.1 Decoding by measurements

The phase encoding can be probabilistically decoded through Hadamard measurements. Denote the
process of measuring theXX...X observable on the state in Equation 25 byM and the measurement
outcomes of all m phase encoded states by z ∈ {0, 1}m. One can then write z ← M(|φ(b, x)〉). It
should be clear that z = y indicates that the decoding was completely successful.

Let us consider the case of a single component in the encoding, namely |φi〉. In order to
investigate the possible values of zi = M(|φi〉), |φi〉 can be rewritten as

|φi〉 = 1√
2

(|0̄〉+ eiφi |1̄〉) (25)

= 1
2((1 + eiφi) |+̄〉+ (1− eiφi) |−̄〉). (26)

If the qubit is measured in the Hadamard basis, we can express the outcome probabilities as

PrM(±| |φi〉) = 1
4 [(1± cosφi)2 + sin2 φi] = 1

2(1± cosφi). (27)

with φi = 2πgi
q −

π
2 . Note that gi < q/2 is equivalent to yi = bgic2 = 0. Additionally, gi < q/2

leads to cosφi > 0. Therefore the probability of getting + is larger than that of −. If we map +
to 0 and − to 1, it is clear that the Hadamard measurement is essentially a probabilistic decoding
of yi from φi, with success probability always greater than 1

2 . More compactly, we can write the
probability of measuring any zi from |φi〉 by

PrM(zi| |φi〉) = 1
2(1 + (−1)zi cosφi). (28)

Furthermore, the probability of successfully decoding φi (i.e. zi = yi) is denoted by

pcor(φi) := Pr(zi = yi) = PrM(yi| |φi〉). (29)
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where Pr(zi = yi) = PrM(+|φi) = 1
2 (1 + cosφi) if yi = 0 and Pr(zi = yi) = PrM(−|φi) =

1
2 (1− cosφi) if yi = 1. Similarly, the probability of unsuccessful decoding is represented by

pinc(φi) := Pr(zi 6= yi) = PrM(¬yi| |φi〉) = 1− pcor(φi). (30)

We can now evaluate the expected values of these probabilities over the uniform choice of the
matrix A and show the following:

Lemma 4.3. Over the choice of matrix A, the average probability of successful decoding of any
|φi〉 is 1

2 + 1
π ≈ 0.82.

Proof. To clarify, there are two sources of randomness here. On the one hand we have the random-
ness of the measurement and on the other hand we have the random choice of the matrix A. We’re
interested in seeing the expected probability of a successful (as well as an unsuccessful) decoding
over the choice of A. As g(b, x) = Ax+ b · (As+ e), we can see that if A is uniform (over a finite
field), then g(b, x) will also be uniform (for any non-zero b and x). Hence, Pr(φi) = Pr(gi) = 1

q for
all φi ∈ {−π2 ,

2π
q −

π
2 , . . . ,

3π
2 }. The expected probability of a correct decoding is then

p̄cor := EA(pcor(φi)) =
q/2−1∑
gi=0

Pr(φi)PrM(+|φi) +
q−1∑

yi=q/2

Pr(φi)PrM(−|φi)

= 2
q/2−1∑
gi=0

Pr(φi)PrM(+|φi)

= 2
q/2−1∑
gi=0

1
q

1
2(1 + cosφi) := S

(31)

which we can view as a Riemann sum. For large q, the summation converges to an integral

p̄cor = S → I := 2
∫ q

2−1

0

1
2q

(
1 + cos

(
2πgi
q
− π

2

))
dgi. (32)

By the change of variable φi = 2πgi
q −

π
2 , this becomes

p̄cor → I = 1
π

∫ π
2

−π2

1
2(1 + cos(φi))dφi (33)

= 1
2 + 1

π
∼ 0.82. (34)

We also have the expected probability of an incorrect decoding

p̄inc := EA(pinc(φi))→ 1− p̄cor = 1
2 −

1
π
∼ 0.18. (35)

The approximation S → I comes with an error which we can bound. Such an error for an (l+ 1)-
order differentiable integrand χ can be determined with the Euler-Maclaurin formula

S − I =
l∑

k=1

Bk
k!

(
χ(k−1)

(q
2 − 1

)
− χ(k−1)(0)

)
+Rl (36)

where Bk is the k-th Bernoulli number, Rl = o(q−l) is the remainder term, and χ(yi) = 1
q (1 +

cos( 2πgi
q −

π
2 )) is the integrand. We can see that χ(k−1)( q2−1)−χ(k−1)(0) = 0 for odd k. Therefore,

the error can be written as

S − I = B2

2
1
q

2π
q

[
− sin

(
π

2 −
2π
q

)
+ sin

(
−π2

)]
+ o(q−2)

= − 1
3q2 + o

(
q−2) = O(q−2).

(37)
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As g(b, x) is uniform (over the random choice of A and whenever (x, b) 6= (0, 0)), each of its
components will be a uniform value in Zq. Thus, we can view the measurement of each component
of |φ(b, x)〉 to be an independent and identically distributed random variable. As the expected
probability of a correct decoding is 0.82, it follows from a Chernoff bound that 0.82m values will
be decoded correctly, with overwhelming probability over the choice of A. While this means that
most values are correctly decoded, we, in fact, need all values to be decoded correctly with high
probability. To achieve this, we use a classical repetition code and repeat each output component
several times in order to take a majority vote.

4.2.2 Decodability and repetition code (p = 2)

Instead of the prover having to prepare |φ(b, x)〉 (for each b and x), we will instead ask it to prepare:

|φ(b, x)〉 =
m⊗
i=1
|φi(b, x)〉⊗v =

m⊗
i=1

(
1√
2

(|0〉+ eiφi |1〉)
)⊗v

(38)

where v represents the number of repetitions. In this case, to decode the value of the i’th com-
ponent, one measures all v copies of that component and uses the majority outcome as the value
zi.

We say that one component, for instance the i’th component, has been correctly decoded, if
zi = yi, where recall that yi is the most-significant bit of gi(b, x). By analogy, we say that the
whole state has been correctly decoded if all of its components were (i.e. z = y). Our goal is to
find the relation between v and m such that z = y with sufficiently high probability (say, 99%) for
most states |φ(b, x)〉 (say, 99% of all such states). In doing so, we show the following

Theorem 4.2. At least 99% of all |φ(b, x)〉 states can be correctly decoded with probability 99%,
whenever v = Ω(m2 logm).

Proof. Without loss of generality, we focus on the case of gi < q
2 , that is yi = 0. Recall that

pcor(φi) = PrM(+|φi) = 1
2(1 + cos(φi)) = 1

2

(
1 + sin

(
2πgi
q

))
. (39)

It should be clear that for the very special case gi = 0, the probability of having the correct
measurement outcome is 1

2 . In this case, it is impossible to tell if zi should be 0 or 1 even with
repetition, because no matter how large v is, there will always be an equal number of correctly
and incorrectly decoded bits, on average. Therefore, any component gi that is extremely close to
0 or q

2 so that pcor(φi) is close to 1
2 would make the whole |φ(b, x)〉 state undecodable11.

To be more explicit, we will consider |φi〉 to be undecodable whenever we have that either
|gi| < q

cm or |gi − q/2| < q
cm , for a constant c > 0 to be determined later. But as noted before,

for a uniform A, each gi (excluding the case g(0, 0)) is also uniform in Zq. It follows that the
probability that gi leads to an undecodable |φi〉 is at most 1

q
4q
cm = 4

cm , over the choice of A. From
a union bound, we then also have that the probability of |φ(b, x)〉 to be undecodable (i.e. at least
one of its components is undecodable) is at most m 4

cm = 4
c . This means that at least a fraction

1 − 4
c of all |φ(b, x)〉 states are, in fact, decodable. That is, all of their components are at least

q
cm away from the undecodability boundary. By taking c = 400, we have that 99% of |φ(b, x)〉 are
decodable.

Without loss of generality, let’s now consider a state that is barely decodable, with say gi = q
cm .

The probability of correctly decoding the corresponding |φi〉 state will be

pcor(φi) = 1
2

(
1 + sin

(
2πgi
q

))
≈ 1

2

(
1 + 1

O(m)

)
. (40)

11In fact, even if we ignore the cases where pcor(φi) = 1
2 , it is still required to have v = O(q) to distinguish

between φi = 2π
q
− π

2 and φi = − 2π
q

+ 3π
2 where gi = 1 and gi = q − 1, respectively. This is clearly unacceptable

since q is exponential in n and the resulting circuit would be exponentially wide.
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The state is biased away from 1/2 by 1/O(m). From an application of the Chernoff-Hoeffding
bound12 it follows that repeating the measurement Ω(m2) times and taking a majority vote is
enough to ensure that the value is correctly decoded with constant probability (say 99%). Of course,
we want that all m values are correctly decoded which means that we should take the number
of repetitions v so that the probability of correctly decoding one value is at least 1 − 1/O(m).
Once again, we can use Chernoff-Hoeffding and find that v = Ω(m2 logm). As the probability of
incorrectly decoding one value is now 1/O(m), from a union bound the probability of incorrectly
decoding any of the m values is O(1). By suitably choosing the constant factors, we can set
this probability to be, say 1%. We therefore have that v = Ω(m2 logm) = Ω(n2 logm log2 q) =
Ω(n4 logn).

4.2.3 Phase encoding for general p

The analysis from the previous subsections was concerned with the case p = 2. We now adapt this
to the general case of p = O(

√
mn log q).

As we expect p to be a power of 2, the rounding bgicp for any value of gi is exactly a (log2 p)-bit
number. What we have been doing so far with the phase encoding is to encode the most significant
bit of fi = bgicp in phase. What about the other log2 p− 1 bits? The solution is simply to phase
encode those bits as well.

Lemma 4.4. Applying the phase encoding to the log2 p significant bits of every gi ∈ Zq, leads to
a repetition factor v = Ω(n4 log2 n) in order to achieve the same guarantees as Theorem 4.2.

Proof. Specifically, the k’th significant bit of gi can be encoded as

|φi,k〉 = 1√
2

(|0̄〉+ eiφi,k |1̄〉) (41)

with
φi,k = 2kπgi

q
. (42)

How does this affect the decodability results of the previous sections? The expected probability
of decoding a single bit, without repetition, will still be negligibly close to 0.82. This is because,
as we saw in Subsection 4.2.1, the deviation from this expectation is inverse in the square of the
field size, which is now ∼ q

2k . As k ≤ log2 p, p = O(
√
mn log q) so that 2k = O(

√
mn log q) and

q = 2O(n), the deviation from the expected value of 0.82 remains negligible in n (or λ).
The decodability boundary, from Subsection 4.2.2, also changes from q

cm to q
2kcm . As 2k =

O(
√
mn log q) and m = Ω(n log q), the boundary becomes q

c′n4 , for some constant c′ > 0. Following
the same steps as in Subsection 4.2.2, to ensure that most states can be correctly decoded, we see
that the number of repetitions remains Ω(n4). But this is just for the m-bit vector containing the
k’th most significant bit of each component. As we have log2 p such vectors, and we want all of
them to be decoded correctly, we need to add an additional log2 p factor so that overall we have
v = Ω(n4 logn log2 p) = Ω(n4 log2 n).

Thus, for each b and x, the state the prover will prepare is

|φ(b, x)〉 =
m⊗
i=1

log2 p⊗
k=1

(
|0̄〉+ eiφi,k |1̄〉

)⊗v
. (43)

4.2.4 Constant-depth circuit implementation

Here we show that the phase encoding construction can be performed in constant quantum depth.

12Each measurement is viewed as an i.i.d. random variable. The empirical mean of these variables is expected to
be close to 1/2 + 1/O(m). Chernoff-Hoeffding tells us that a deviation of ε from this expected value occurs with
probability exp(−vε2). Thus, since the case of interest is ε = 1/O(m), we can see that to have a constant probability
of incorrectly decoding, it must be that v = Ω(m2).
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Theorem 4.3. It is possible to prepare the state in Equation 43 in constant quantum depth and
with logarithmic depth classical computation.

Proof. We’ve already mentioned that cat states can be prepared in constant quantum depth with
one quantum-classical interleaving. Let us then assume that we have sufficient cat states (of a size
that will be determined later) and see how we can apply the required phases in constant quantum
depth.

Recall that g(b, x) = Ax+ b · (As+ e), and determines the phase13 φi = 2πgi
q −

π
2 . The phase

can then be expressed as

eiφi = exp
(
−πi2

)
exp

(
bi

2π(As)i + 2πei
q

)
exp

2πi
q

n∑
j=1

Aijxj


= exp(φ′i(b))

n∏
j=1

exp
(

2πi
q
Aijxj

) (44)

where

exp(φ′i(b)) := exp
(
−πi2

)
exp

(
bi

2π(As)i + 2πei
q

)
. (45)

Note that φ′i only depends on b and not on x. Having multiple copies of b, we can easily apply
a φ′i rotation in parallel using Z-rotations (Rz) and controlled-Z-rotations (CRz):

Rz

(
−π2

)
CRz

(
2π(As)i + 2πei

q

)
1√
2

(|b̄〉 |0̄〉+ |b̄〉 |1̄〉) = |b̄〉 ⊗ 1√
2

(|0̄〉+ eiφ
′
i(b) |1̄〉). (46)

The corresponding circuit is shown in Figure 4.

X0

Zi,0 Rz

(
2π(As)i+2πei

q

)

Zi,1 Rz(−π2 )

Figure 4: The quantum circuit for the vector addition operations in phase encoding. Here X0 is the first qubit
of the X register that stores information of b. Zi,j is the j’th qubit of the i’th cat state which stores information
of φi.

We now need to implement the phase-encoded matrix-vector multiplication in parallel on the
cat state. Note that xj is a non-negative integer less than q and it can be expanded as

xj =
dlog2(q)−1e∑

k=0
2kxj,k (47)

denoting the k’th significant bit of xj by xj,k. The phase can be further expanded:

n∏
j=1

exp
(

2πi
q
Aijxj

)
=
∏
j,k

exp
(

2πi
q

2kAijxj,k
)
. (48)

13We again focus only on the case of the most significant bit, as the k’th most significant bit can be obtained by
simply mapping q to q/2k.
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Therefore, the desired phase can be applied to the cat state by parallel controlled-Z-rotation gates
in constant-quantum depth. Specifically, n∏

j=1

dlog2(q)−1e∏
k=0

CRz

(
2π
q

2kAi,j
) 1√

2
(|xj,k〉 |0̄〉+ eiφ

′
i(b) |xj,k〉 |1̄〉) =

|xj,k〉 ⊗
1√
2

(|0̄〉+ eiφi(b,x) |1̄〉)

(49)

where the CRz gates can be performed in parallel if the size of cat is Ω(n log q) = Ω(n2). The local
quantum circuit for multiplying Ai,j with the k’th significant bit of xj is shown in Figure 5.

Xj,k

Zi,l Rz

(
2π
q 2kAi,j

)
Figure 5: Part of the quantum circuit for matrix-vector multiplication in phase. Here Xj,k is the qubit that
stores the k’th bit of xj , and Zi,l is the l’th qubit of the cat state storing the information of |φi〉.

Thus, all operations can be performed in constant quantum depth.

It is worth noting that in current physical realizations of quantum computers, these (con-
trolled) rotations can be performed directly by tuning microwave frequencies for superconducting
qubits [Wen17] or laser frequencies for trapped-ions [BCMS19]. Alternatively, if one insists on
having a fixed-size gate set, [HŠ05] provides a constant-depth implementation with 1/poly error
which is also acceptable.

The Hadamard measurements discussed in the previous sections are performed by measuring
X on each qubit of a phase encoded cat state and then taking the parity of the outcomes.

4.3 LWR-based protocol with phase encoding
The protocol using the LWR-based NTCF and the phase encoding is outlined in Figure 6. The
verifier behaves essentially the same as in the BCMVV protocol. The major difference is in the
prover’s honest strategy, which requires it to perform the constant-depth evaluation of the phase
encoding.

As we saw in the previous subsections, due to the randomness over the choice of A and the
probabilistic nature of the measurements, the protocol is not perfectly complete. That is, the
success probability for the honest prover is no longer 100% as in the original BCMVV protocol.
Before accounting for all sources of “imperfections” we first need to examine the post-measurement
state in the preimage register after the prover performs step 2 in the protocol. Ideally, we would
like this state to be as close as possible to an equal superposition over valid preimages. Thus, in
the next subsection we compute a bound on the fidelity of the true state with respect to an ideal
state.

4.3.1 Fidelity of the post-measurement state and the success probability for an honest prover

We wish to determine the success probability of an honest prover in the protocol. To do so, we
need to characterize the prover’s state after it measures the phase-encoded image register. We
will show that the state in the preimage register (post-measurement of the phase-encoded image
register) has high overlap with the “ideal” preimage state that would have be obtained if the prover
performed the evaluation in the computational basis, rather than in phase. With this result, we
can then compute the protocol’s completeness in the next subsection.

To start the proof we will consider splitting the prover’s measurement of the image register
into two steps. First, the prover measures in the Hadamard basis all but one qubit from each
phase encoded state in the image register. Then, it measures the remaining unmeasured qubits
as well. This separation is fictitious, as in the protocol the prover will measure all qubits of the
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Modified BCMVV protocol

Let λ = n be a security parameter and N ≥ 1 a number of rounds. The parties taking part in the protocol
are a PPT machine, known as the verifier and a QPT machine, known as the prover. They will repeat the
following steps N times:

1. The verifier generates (k, tk)← Gen(1λ). It sends k to the prover.
2. The prover uses k to implement the phase encoding of the function gk(b, x), and prepare the following

state:
|ψ〉 = 1√

2qn
∑

b∈{0,1},x∈Znq

|b̄〉B |x̄〉X |φ(b, x)〉Z

with

|φ(b, x)〉 =
m⊗
i=1

log2 p⊗
k=1

(
|0̄〉+ eiφi,k |1̄〉

)⊗v
.

where φi,k(b, x) = 2π2kgi(b,x)
q

− π
2 . The prover then measures the Z register in Hadamard basis. By

conducting majority votes for the parities of the Hadamard measurement outcome of every block(
|0̄〉+ eiφi,k |1̄〉

)⊗v, the prover obtains a new string y ∈ {0, 1}m log2 p which it sends to the verifier.
The remaining state is

|ψy〉 =
∑

b∈{0,1}

|b̄〉 |x̄b〉 |y〉 . (50)

3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.
4. (a) (Preimage test:) When c = 0, the prover measures in the standard basis the BX registers of

the state leftover in step 2. It obtains the outcomes b ∈ {0, 1} and x ∈ {0, 1}poly(n), which it
sends to the verifier. If fk(b, x) = y, the verifier sets Nc ← Nc + 1.

(b) (Equation test:) When c = 1, the prover measures each qubit in the BX register in the Hadama-
rad basis. It obtains the outcomes b′ ∈ {0, 1}k

′
and d ∈ {0, 1}poly(n)·k′ which it sends to the

verifier. Here k′ denotes the size of a cat state (used to encode b and each bit in x). The verifier
computes (x0, x1) = LWRInv(tk, y) and sets Nc ← Nc + 1 if d · (x̄0 ⊕ x̄1) = b′′ where b′′ is the
xor of all k′ bits of b′.

At the end of the N rounds, if Nc
N
> 0.95, the verifier accepts.

Figure 6: Honest provers’ strategy for the constant-depth version of the BCMVV protocol [BCM+18] based
on phase encoding.

image register in one step. But performing this separation and considering the prover’s state after
it measures all but one qubit of each phase encoded state will make the analysis simpler. Let us
begin with the honest prover’s state after performing the coherent evaluation of the function in
phase,

|ψ〉 = 1√
2qn

∑
b∈{0,1}

∑
x∈Znq

|b̄, x̄〉BX |φ(b, x)〉Z (51)

where, as before,

|φ(b, x)〉 =
m⊗
i=1

log2 p⊗
k=1
|φi,k(b, x)〉⊗v . (52)

Also recall that each component |φi,k〉 has the form of a rotated cat state

|φi,k(b, x)〉 = 1√
2

(|0̄〉+ eiφi,k |1̄〉). (53)

The prover will measure each qubit of such a state (or, more precisely, of the coherent superposition
of such states) in the Hadamard basis. It should be clear that when measuring all but one qubit
in the Hadamard basis, the state of that qubit becomes

|φ̃i,k(b, x)〉 = 1√
2

(|0〉 ± eiφi,k |1〉), (54)
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where the ± relative phase is determined by the parity of the Hadamard basis measurement
outcomes. Without loss of generality, let us fix14 this phase as +.

We now rewrite each component |φ̃i,k〉 as

|φ̃i,k(b, x)〉 = 1√
2

(|0〉+ eiφi,k |1〉)

= α(0|φi,k)
√

PrM(+| |φi,k〉) |+〉+ α(1|φi,k)
√

PrM(−| |φi,k〉) |−〉

→H α(0|φi,k)
√

PrM(0| |φi,k〉) |0〉+ α(1|φi,k)
√

PrM(1| |φi,k〉) |1〉

(55)

where in the last line we mapped from the Hadamard basis {|+〉 , |−〉} to the computational basis
{|0〉 , |1〉}, and α(0|φi,k) and α(1|φi,k) are pure phases (i.e. |α(0|φi,k)| = |α(1|φi,k)| = 1). Let us
now consider what happens when all of these qubits are measured. Let z̃ ∈ {0, 1}mv log2 p denote
the Hadamard measurement outcome of all mv log2 p |φ̃i,k〉 states. This string can be expressed
as a concatenation of m log2 p substrings z̃i,k ∈ {0, 1}v for i ∈ {1, . . . ,m} and k ∈ {1, . . . , log2 p}.
The substring with index i, k represents the measurement outcomes of |φ̃i,k〉

⊗v
. We can then write

the state as

|φ̃i,k(b, x)〉⊗v →H

(
α(0|φi,k)

√
PrM(0| |φi,k〉) |0〉+ α(1|φi,k)

√
PrM(1| |φi,k〉) |1〉

)⊗v
=

∑
z̃i,k∈{0,1}v

 v∏
j=1

α(z̃i,k,j |φi,k)
√

PrM(z̃i,k,j | |φi,k〉)

 |z̃i〉
=

∑
z̃i,k∈{0,1}v

α(z̃i,k|φi,k, v)
√

PrM

(
z̃i,k| |φi,k〉⊗v

)
|z̃i〉

(56)

where z̃i,k,j denotes the j’th bit of the substring z̃i,k, and α(z̃i,k|φi,k, v) is the product of the pure
phases α(z̃i,k,j |φi,k) with j ranging from 1 up to v. The entire phase encoded state |φ̃(b, x)〉 can
then be expressed as:

|φ̃(b, x)〉 →H
∑

z̃∈{0,1}mv log2 p

α(z̃|φ)
√

PrM(z̃| |φ(b, x)〉) |z̃〉 . (57)

Finally, the state of the coherent phase encoding evaluation in Equation 51 (but after the prover
has measured all but one qubit of each phase-encoded cat state) can be expressed as well:

|ψ̃〉 →H 1√
2qn

∑
b,x

|b̄, x̄〉BX

∑
z̃

α(z̃|φ(b, x))
√

PrM(z̃| |φ(b, x)〉) |z̃〉Z . (58)

Recall that we aim to estimate the success probability of an honest prover. To do so, we can first
find an ideal state such that, if the prover holds that state, it would very likely succeed in the
protocol. The success probability can therefore be estimated by evaluating the fidelity between
the real and the ideal states, then evaluating the success probability if the prover holds the ideal
state. Denoting the ideal state by |ψideal〉 and the procedure of majority voting by Maj15, we let

|ψideal〉 = c√
2qn

∑
x0∈Znq

∑
Maj(z̃)=f(0,x0)(

α(z̃|φ(0, x0))
√

PrM(z̃| |φ(0̄, x̄0)〉) |0, x0〉+ α(z̃|φ(1̄, x̄1))
√

PrM(z̃| |φ(1, x1)〉) |1, x1〉
)

BX
|z̃〉Z
(59)

14We can do this because, as we will see, this is equivalent to the prover having to flip the outcome of one of the
measurements it performs. Alternatively, the prover can always perform a quantum-classical interleaving here in
order to flip the phase, though this is not necessary.

15In other words, Maj(z̃) will be a string of m log2 p bits containing the majority value of each substring of v bits.
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where c is a normalization constant, x0 and x1 := x0 − s form a claw of f(b, x), hence f(0, x0) =
f(1, x1). It should be clear why |ψideal〉 is considered ideal, since the state in the BX register
conditioned on having measured Z, will be a superposition of the claw ((0, x0), (1, x1)). This is due
to the fact that Maj(z̃) = f(0, x0) which ensures that the image f(0, x0) can be perfectly decoded.
Hence, only the claw ((0, x0), (1, x1)) will be consistent with this outcome of the image register.

We now show the following:

Lemma 4.5. F (|ψ̃〉 , |ψideal〉) = | 〈ψ̃|ψideal〉 |2 > 0.98.

Proof. Let us first give a lower bound of c, where recall that c is the normalization constant in
Equation 59. We showed in Theorem 4.2 that at least 99% of |φ〉’s are decodable. In other words,
we have ∑

Maj(z̃)=f(0,x0)

PrM(z̃| |φ(0, x0)〉) ≥ 0.99 (60)

and ∑
Maj(z̃)=f(1,x1)

PrM(z̃| |φ(1, x1)〉) ≥ 0.99 (61)

for at least 99% possible x0’s. Keeping in mind that f(0, x0) = f(1, x1), the normalization condition
leads to

c2

2qn
∑
x0∈Znq

∑
Maj(z̃)=f(0,x0)

(PrM(z̃| |φ(0, x0)〉) + PrM(z̃| |φ(1, x1)〉)) = 1, (62)

which implies that
1 < c2 ≤ 2qn

0.99 · (0.99 + 0.99)qn = 1.02. (63)

The fidelity can be computed as

F (|ψ̃〉 , |ψideal〉) = | 〈ψ̃|ψideal〉 |2

≥
∣∣∣∣1c
∣∣∣∣2 > 0.98.

(64)

In the ideal state, every z̃ measurement outcome corresponds to exactly two |φ(b, x)〉 states
that form a claw of f . Supposing a specific z̃ is measured, the remaining post-measurement state
in the BX register will be

|ψz̃〉 ∝
∑
b

α (z̃|φ(b, xb))
√

PrM(z̃| |φ(b, xb)〉) |b, xb〉 . (65)

Recall that the honest prover would certainly succeed in the protocol with an equal superposition
over the claw (without any relative phase between the components):

|ψy〉 ∝
∑
b

|b, xb〉 . (66)

Unfortunately, the state in Equation 65, resulting from the measurement of |ψideal〉, is not of this
form due to the presence of the phases α(z̃|φ(b̄, x̄b)) which could lead to a non-negligible relative
phase. We now show that this relative phase is in fact close to zero. To do so, consider a “more
ideal state” |ψideal,2〉:

|ψideal,2〉 = c′√
2qn

∑
x0∈Znq

∑
Maj(z̃)=f(0,x0)(

α(z̃|φ(0, x0))
√

PrM(z̃| |φ(0, x0)〉) |0, x0〉+ α(z̃|φ(0, x0))
√

PrM(z̃| |φ(0, x0)〉) |1, x1〉
)

BX
|z̃〉Z ,

(67)
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where c′ ∈ R is another normalization factor. Note that in this state the two components corre-
sponding to the preimage register share the same phase, α(z̃|φ(0, x0)), meaning that there is no
relative phase.

We start by bounding the normalization constant c′ from the norm of the state:

1 = 〈ψideal,2|ψideal,2〉 = c′2

2qn
∑
x0∈Znq

∑
Maj(z̃)=f(0,x0)

PrM(z̃| |φ(0, x0)〉) (〈0, x0|0, x0〉+ 〈1, x1|1, x1〉) 〈z̃|z̃〉

(68)
which implies that

1 < c′2 ≤ 2qn
0.99qn · (0.99 + 0.99) . (69)

It should be clear that if the prover holds |ψideal,2〉, it would succeed in the equation and
preimage tests with 100% probability. Thus, to calculate the success probability of the real prover
in our protocol, we simply evaluate the fidelity between |ψideal〉 and |ψideal,2〉.

Lemma 4.6. F (|ψideal〉 , |ψideal,2〉) = | 〈ψideal|ψideal,2〉 |2 > 0.97.

Proof.

| 〈ψideal|ψideal,2〉 | =
cc′

2qn

∣∣∣∣∣∣
∑
x0∈Znq

∑
Maj(z̃)=f(0,x0)[

PrM(z̃| |φ(0, x0)〉+ α∗(z̃|φ(1, x1))α(z̃|φ(0, x0))
√

PrM(z̃| |φ(1, x1)〉PrM(z̃| |φ(0, x0)〉
]∣∣∣

≥ 1
2qn

[∣∣∣∣∣0.99qn · 0.99 +
∑
x0

〈φ(1, x1)|φ(0, x0)〉
∣∣∣∣∣− 0.01qn

]
,

(70)
since

〈φ(1, x1)|φ(0, x0)〉 =
∑

z̃∈{0,1}mv log2 p

α∗(z̃|φ(1, x1))α(z̃|φ(0, x0))
√

PrM(z̃| |φ(1, x1)〉PrM(z̃| |φ(0, x0)〉.

(71)
The inner product 〈φ(1, x1)|φ(0, x0)〉 can also be evaluated by considering their phase encoded

form. We start with

|φ(b, x)〉 =
m⊗
i=1

log2 p⊗
k=1

(
|0̄〉+ eiφi,k |1̄〉

)⊗v
where φi,k(b, x) = 2kπgi(b,x)

q − π
2 . As both states are phase encodings, the inner product will be

determined by the angle differences between the components. In other words, letting

∆φi,k = 2kπ(gi(0, x)− gi(1, x− s))
q

(72)

and noting that gi(0, x) = (Ax)i and gi(1, x− s) = (Ax)i + ei, it is the case that

∆φi,k = 2kπei
q

. (73)

We can now express the inner product as

〈φ(0, x)|φ(1, x− s)〉 =
∏
i,k

[
exp

(
i
∆φi,k

2

)
cos
(

∆φi,k
2

)]v

= exp

i∑
i,k

∆φi,k · v
2

∏
i,k

(
cos
(

∆φi,k
2

))v (74)
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But now note that ‖e‖∞ ≤ cq
p5 , for some constant c > 0, as per Definition 4.1. If we substitute this

into the formula for ∆φi,k, keeping in mind that 2k ≤ p, we find that

∆φi,k = 2kπei
q
≤ π

p4 . (75)

Taking n to be sufficiently large, so that p is sufficiently large, leads to

cos
(

∆φi,k
2

)
≥ 1− π2

8p8 −O
(
p−16) (76)

and ∏
i,k

(
cos
(

∆φi,k
2

))v
≥
(

1− π2

8p8

)mv log2 p

. (77)

But now p8 = O
(
(mn log q)4) = O(n16) and mv log2 p = O(n2 · n4 logn · logn) = O(n6 log2 n). It

follows that ∏
i,k

(
cos
(

∆φi,k
2

))v
≥ 1− 1

poly(n) . (78)

For the phase part∑
i,k

∆φi,k · v
2 = O

(
p−4(m log2 p)3 log2(m log2 p)

)
= O

(
(log2 n)4

n2

)
(79)

and similarly

exp

i∑
i,k

∆φi,k · v
2

 = 1−O
(

(log2 n)8

n4

)
+ iO

(
(log2 n)4

n2

)
= 1− 1

poly(n) + i · 1
poly(n) . (80)

Finally,
〈φ(0, x)|φ(1, x− s)〉 = 1− 1

poly(n) + i · 1
poly(n) (81)

and the fidelity can be lower-bounded as follows

| 〈ψideal|ψideal,2〉 |2 ≥

[
1

2qn

(∣∣∣∣∣0.99qn · 0.99 +
∑
x0

(
1− 1

poly(n) + i · 1
poly(n)

)∣∣∣∣∣− 0.01qn
)]2

=
[
−0.01

2 + 1
2

∣∣∣∣0.98 + 1− 1
poly(n) + i · 1

poly(n)

∣∣∣∣]2

=

−0.01
2 + 1

2

√(
1.98− 1

poly(n)

)2
+
(

1
poly(n)

)2
2

=
[
−0.01 + 1.98− 1

poly(n)

2

]2

=
[

1.97− 1
poly(n)

2

]2

> 0.97

(82)

for large sufficiently n.

Combining Lemmas 4.5 and 4.6, we conclude that the success probability for an honest prover
is lower bounded by 0.95, using a union bound.
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4.3.2 Completeness

We can now compute the probability for an honest prover, following the strategy outlined in
Figure 6, to pass the verifier’s checks. We start with the observation that q is prime. As mentioned,
this would require the prover to create a superposition in the preimage register of qn components.
Instead, the prover creates a superposition of q′n components, where q′ is a power of 2 that is
close to q. From the results in Subsection 4.1.1, we incur a O(n−1) penalty in the honest prover’s
success probability as a result of this. Next, we saw that when performing the measurement
of the image register, there is a chance that the |φ(b, x)〉 state contains components that are
undecodable. We limited the probability of this happening to 1%, with the parameter choices
mentioned in Subsection 4.2.2. Assuming the state is decodable, we saw that the probability
of incorrectly decoding is also 1%. With these results, we showed in Subsection 4.3.1 that the
prover’s state, upon measuring the image register (and successfully decoding the result, which is
sent to the verifier), gives it at least a 95% success probability in the equation and preimage tests.
This also accounted for the failure probability of incorrectly decoding the image register. Finally,
as discussed in Subsection 4.2.4, if we choose to use a fixed-size gate set, we will incur another
1/poly(n) error.

Putting everything together, we find that the overall completeness of the protocol is 95% −
O(n−1).

4.3.3 Soundness

Since we showed that the LWR-based function f(b, x) is also an NTCF, in Subsection 4.1, our new
constant quantum depth protocol inherits the soundness of the original BCMVV protocol.

4.4 Resource estimation
As in Subsection 3.3, we summarize the resources required for an honest prover to succeed in the
protocol.

4.4.1 Quantum depth and quantum-classical interleavings

1. Preparation of cat states. Same as in the randomized encoding construction, the depth of
this step is 5 and the prover interleaves constant-depth quantum computation and classical
log-depth computation once.

2. Evaluation of the LWR function by phase encoding. As is illustrated in Figure 5, this step
consists of only parallel CRz gates or Rz(π2 ) gates. The depth added is only 1 for the example
case in Figure 5.

3. Measurement of the Z register. As is explained in Subsection 4.2.2, the measurement of
the Z register contains Hadamard measurements and a majority vote (performed classically
on the measurement outcome), hence this step has quantum depth 2 and adds 1 step of
quantum-classical interleaving.

4. Preimage test/equation test. Exactly the same as in the BCMVV protocol, this step requires
at most depth 2 and 1 interleaving for the equation test.

In summary, the phase encoding construction requires even shorter quantum depth than the generic
construction, as the overall quantum depth is 5 + 1 + 2 + 2 = 10. The number of quantum-classical
interleaving is 3, same as the generic construction.

4.4.2 Circuit width

The total width of the circuit is determined by the product of several multipliers in the protocol:

1. Number of output components of g(b, x) is O(m) = O(n2), by definition.

2. b·cp rounding function. The phase encoding needs to be prepared for all of the log p bits.
This leads to another O(log(

√
mn log q)) = O(logm) = O(logn) multiplier.
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3. Cat state. As discussed in Subsection 4.2.4, the size of the cat state for each component |φi〉
needs to be O(n log q) = O(n2).

4. Repetition for majority votes. This is calculated in Subsection 4.2.3 and each |φi〉 needs to
be repeated for v = O(n4 log2 n) times.

In summary, the total circuit width required is O(n8 log3 n). Although this is still a high-order
polynomial, it is a significant improvement over the randomized encoding construction (where we
estimated O(n33) width). Note that the normal, poly-depth, construction requires O(m log q) =
O(n3) width.

It is also worth mentioning that there can be a trade-off between the size of the cat states and
the depth of the circuit, since the matrix multiplication does not need to be fully parallelized. In
practice, one can double the number of CRz gates applied on each qubit to halve the width.

4.5 Robustness against noise
Another feature of our phase encoding construction is some amount of intrinsic robustness against
noise, which makes it closer to practical use on near-term devices.

The key reasons for the noise-resistance are the use of cat states, the classical repetition code
we applied in measuring the Z register, as is discussed in Subsection 4.2.2, the error-correcting
properties of the LWR construction which we used implicitly in Subsection 4.3.1 and the constant
gap between the best quantum strategy and the best classical strategy (assuming intractability of
LWE) as encapsulated by Inequality 17.

We can therefore see that errors on the image register, Z, may lead to bit flips of the output
string z such that z 6= y (where recall that y is the ideal decoding). However, since any bit
zi is determined by majority voting for all v repetitions of the phase encoding of that bit, the
probability that zi is flipped is much smaller than that of single bit flipping. Intuitively speaking,
some correctly measured bits may be flipped due to noise that might appear in any stage of the
protocol, but incorrect bits are equally likely to be flipped. Hence the majority vote will still very
likely output zi = yi.

A repetition code is also used indirectly in the preimage register, as the preimages are encoded
in cat states. While this makes the preimage test robust to noise, the equation test will not be,
in general. This is because in the equation test, the prover needs to report a string d and a bit b
such that

d · (x̄0 ⊕ x̄1) = b (83)

where x̄0 and x̄1 are the repetition code encodings of preimages x0 and x1 (that match the image
the prover returned in the previous round of the protocol). In this case we can see that even a
single bit flip in either the string d or of the bit b can make the equation invalid. We therefore
leave it as an open problem to find a fully noise-robust implementation of the protocol.
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A Randomized encoding construction from [AIK04]
The construction of randomized encodings from [AIK04] is based on branching programs. We are
only interested in mod-2 branching programs, which we define here:
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Definition A.1 (Branching programs [AIK04]). A branching program (BP) is defined by a tuple
BP = (G,φ, s, t) where G = (V,E) is a directed acyclic graph, φ is a labeling function assigning
each edge either a positive literal xi or a negative literal ¬xi. An input binary vector ~w determines
a subgraph Gw where an edge labeled as xi is preserved if and only if wi = 1. In a (counting)
mod-2 BP, the BP computes the number of paths from s to t modulo 2. The size, l, of a BP is
defined as the number of vertices, |V |.

As an example, Figure 7 shows a mod-2 branching program of size l = 4 and having three inputs
x = (x0, x1, x2).

s©

t©

1©

2©

1

x0

x1

¬x1

x
2

Figure 7: This size-4 mod-2 branching program consists of 5 edges whose connectivity is decided by the value
of the input bits. Note that ¬x1 means that this edge is available if and only if x1 = 0. As an example, when
the input x = (x0, x1, x2) = (0, 1, 1), there is only one path from s to t which is s©− 1©− 2©− t©. Thus the
output of this mod-2 BP will be 1.

We now state one of the most important results concerning branching programs, due to Bar-
rington:

Theorem A.1 (Barrington’s theorem [Bar89]). If f : {0, 1}n → {0, 1} can be computed by a
circuit of depth d, then it can be computed by a branching program of width 5 and length O(4d).

The above theorem ensures that the log-depth (N)TCFs used in proof of quantumness protocols can
be transformed into polynomial-size branching program. Given that branching programs output a
single bit, this construction has to be performed for every output bit of a (N)TCF.

A size-l mod-2 BP for a binary function f can be represented by an adjacency matrix since
BPs are directed acyclic graphs. Let A(x) denote the l× l adjacency matrix of a BP with input x.
We also denote as L(x) the (l − 1) × (l − 1) submatrix of A(x) − I obtained by deleting the first
column and the last row. It turns out that the following fact holds:

Lemma A.1 ([AIK04]). f(x) = det(L(x)) mod 2.

This lemma is the basis for constructing a randomized encoding for f . The goal will be to
“garble” L(x) through products with certain random matrices. The garbling should be done in
such a way that the determinant of the resulting matrix matches that of L(x), thus preserving the
correctness of the construction.

To that end, let r(1) ←R {0, 1}(
l−1

2 ) and r(2) ←R {0, 1}l−2. Use these to construct matrices
R(1) and R(2) of dimensions (l − 1) × (l − 1). Both matrices have all diagonal elements equal to

1. The right upper-diagonal elements of R(1) (that is, the entries R
(1)
i,j with j > i) are filled with

the entries of r(1). The last column of R(2), except for the last element, (that is, the entries R
(2)
i,l−1,

1 ≤ i ≤ l − 2) is filled with the elements of r(2). All other entries of R(1) and R(2) are 0. The
following can be shown:

Lemma A.2 ([AIK04]). det(L(x)) = det(R(1)L(x)R(2))

This is not too difficult to see, as both R(1) and R(2) have determinant 1. One now defines the
randomized encoding f̃(x, r(1), r(2)) = R(1)L(x)R(2). It follows that:

Lemma A.3 ([AIK04]). f̃ is a perfect randomized encoding of f .
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By construction, every entry of f̃ is a degree-3 polynomial in its input variables. However,
computing this function (i.e. computing every matrix entry of R(1)L(x)R(2)) cannot be done in
constant-depth. The reason is that some of the input variables are involved in a linear number of
monomials of the output. To compute the function in constant depth, it must be that each input
variable appears in only a constant number of monomials. The authors of [AIK04] remedy this by
considering a randomized encoding for f̃ . Before doing so, note that

Lemma A.4 ([AIK04]). The composition of perfect randomized encodings is still a perfect ran-
domized encoding of the original function.

Thus, a randomized encoding for f̃ will also be a randomized encoding for f . Denote the i, j entry
of f̃ as f̃i,j . We can see that

f̃i,j(x, r(1), r(2)) = T1(x, r(1), r(2))⊕ T2(x, r(1), r(2))⊕ ...⊕ Tk(x, r(1), r(2)) (84)

where each Tm is a monomial in the input variables. Finally, define f̂ as

f̂i,j(x, r(1), r(2), r, r′) = (T1 ⊕ r1, T2 ⊕ r2, ..., Tk ⊕ rk, r1 ⊕ r′1, r′1 ⊕ r2 ⊕ r′2, ..., r′k−1 ⊕ rk) (85)

where r and r′ are newly introduced vectors of random bits. Note that adding all entries in 85
results in the summation from Equation 84. Thus, f̂ contains all of the information required to
compute f̃ and moreover,

Lemma A.5 ([AIK04]). f̂ is a perfect randomized encoding of f with output locality 4.

Here, output locality 4 means that each output bit depends on at most 4 input bits, which
immediately implies that the function can be evaluated in constant depth. The classical circuit
computing an entry of f̂ is shown in Figure 8. Detailed proofs of all these results can be found in
[AIK04].

r
(1)
i

xj

r
(2)
k

rm

AND

AND

XOR f̂m(x)

Figure 8: The circuit for evaluating each entry in the randomized encoding f̂ . The circuit shown here computes
the m’th entry, with m ≤ k, consisting of the monomial r(1)

i xjr
(2)
k xored with rm. For the entries with m > k,

note that a single XOR gate is required.

B Reconstruction of randomness
In our first constant quantum-depth proof of quantumness, the prover is instructed to evaluate
a randomized encoding of a TCF. The verifier must still be able to use the trapdoor in order
to invert an output of the randomized encoding. As mentioned in Subsection 3.2, this is true
provided the encoding satisfies the randomness reconstruction property. Here we prove this fact
for the construction of [AIK04].

Proof of Lemma 2.2. We would like to show that given an instance of f̂i,j(x, r(1), r(2), r, r′), as
shown in Equation 85, as well as x, it is possible to efficiently recover the randomness r(1), r(2), r, r′.
First note that if the terms Tk were known as well as r(1), r(2), it is straightforward to recover r
and r′. We will therefore focus on that case. From Equation 85 it is possible to efficiently compute
the result of Equation 84, since f̂ is a randomized encoding of f̄ : simply xor all the terms in

Accepted in Quantum 2022-08-24, click title to verify. Published under CC-BY 4.0. 47



Equation 85. We will then focus on randomness reconstruction for f̄ as that will then yield
randomness reconstruction for f̂ .

Denote as M = f̃(x, r(1), r(2)) = R(1)L(x)R(2). Given M and x we wish to recover r(1), r(2).
This boils down to solving a specific quadratic system of equations. To see why, take l = 4 as an
example,

M = R(1)L(x)R(2) =

1 r
(1)
1 r

(1)
3

0 1 r
(1)
2

0 0 1


x1 x4 x6
−1 x2 x5
0 −1 x3


1 0 r

(2)
1

0 1 r
(2)
2

0 0 1



M =

x1 − r(1)
1 r

(1)
1 x2 − r(1)

3 + x4 r
(2)
1 (x1 − r(1)

1 ) + r
(2)
2 (r(1)

1 x2 − r(1)
3 + x4) + r

(1)
3 x3 + r

(1)
1 x5 + x6

−1 x2 − r(1)
2 r

(2)
2 (x2 − r(1)

2 ) + r
(1)
2 x3 − r(2)

1 + x5

0 −1 x3 − r(2)
2


Note that the main diagonal of M is just a linear system of 3 equations with 3 unknowns. It can
therefore be solved, yielding r(1)

1 , r(1)
2 and r(2)

2 . Plugging these values into the second diagonal (the
one above the main diagonal), yields another system of linear equations with an equal number of
unknowns. By repeating the process and solving all of these systems, all bits in r(1) and r(2) are
recovered.

We now show that this strategy works for arbitrary l. Start by observing that:{
R

(1)
i,j = 1, i = j

R
(1)
i,j = 0, i > j,{

Li,j = −1, i = j + 1
Li,j = 0, i > j + 1,{

R
(2)
i,j = 1, i = j

R
(2)
i,j = 0, (i > j) ∨ (i < j < l − 2).

The entries of M can then be expressed as:

Mi,j =
∑
k1,k2

R
(1)
i,k1

Lk1,k2R
(2)
k2,j

.

Consider the entries on the main diagonal, excluding the last element:

Mi,i =
∑
k1

R
(1)
i,k1

Lk1,i = R
(1)
i,i Li,i +

∑
k1>i

R
(1)
i,k1

Lk1,i = Li,i −R(1)
i,i+1

with i < l − 2 and where R(1)
i,i+1 are the elements of the second diagonal of R(1) and the Li,i’s are

already known (as they only involve entries of x). This gives us a simple linear system which we
can solve to recover the R(1)

i,i+1 values. Then, for i = l − 2:

Ml−2,l−2 =
∑
k2

Ll−2,k2R
(2)
k2,l−2 = Ll−2,l−3R

(2)
l−3,l−2 + Ll−2,l−2R

(2)
l−2,l−2 = R

(2)
l−3,l−2 + Ll−2,l−2.

From this we also recover R(2)
l−3,l−2, i.e. the last entry in r(2). Note that the unknowns here

consisted of the entries in the second diagonal of R(1) and the last element of r(2). This matches
the number of equations and so all values could be recovered.

We now claim that the k’th diagonal of M is a linear system which depends only on the k + 1
diagonal of R(1) and the k’th last element of r(2) given the solutions to the previous k−1 diagonals
of M . Writing out the elements, we have:

Mi,i+j =
∑
k1,k2

R
(1)
i,k1

Lk1,k2R
(2)
k2,i+j .
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with j = k − 1. For i+ j 6= l − 2:

Mi,i+j =
∑
k1

R
(1)
i,k1

Lk1,i+j = −R(1)
i,i+j+1 + Li,i+j +

∑
i<k1<i+j+1

R
(1)
i,k1

Lk1,i+j

where the first term is from the (k + 1)’th diagonal of R(1) and the remaining terms are known
from solving the equations for the previous diagonals. Thus, we have a linear system, which we
can solve, with unknowns comprising the elements of the (k + 1)’th diagonal of R(1).

For i+ j = l − 2:

Ml−2−j,l−2 =
l−2∑

k2=l−2−j−1
Ll−2−j,k2R

(2)
k2,l−2 +

l−2∑
k1=l−2−j+1

R
(1)
l−2−j,k1

l−2∑
k2=k1−1

Lk1,k2R
(2)
k2,l−2.

The first term is a linear combination of the last k + 1 entries of R(2), i.e. the last k elements
of r(2), and only the k’th element is unknown. The remaining terms are known from solving the
systems corresponding to the previous diagonals.

We can therefore proceed in this fashion, starting from the first diagonal of M and going
upwards solving all systems of linear equations and thus recovering all values of r(1) and r(2). This
procedure is clearly efficient and we have shown that it is also correct. To conclude the proof, we
also need to make sure that there is a unique solution to the system. This is guaranteed by the
unique randomness property of the randomized encoding (Theorem 2.5).
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