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According to our current conception of
physics, any valid physical theory is supposed
to describe the objective evolution of a unique
external world. However, this condition is chal-
lenged by quantum theory, which suggests that
physical systems should not always be under-
stood as having objective properties which are
simply revealed by measurement. Furthermore,
as argued below, several other conceptual puz-
zles in the foundations of physics and related
fields point to limitations of our current per-
spective and motivate the exploration of an al-
ternative: to start with the first-person (the ob-
server) rather than the third-person perspective
(the world).

In this work, I propose a rigorous approach
of this kind on the basis of algorithmic informa-
tion theory. It is based on a single postulate:
that universal induction determines the chances
of what any observer sees next. That is, instead
of a world or physical laws, it is the local state of

the observer alone that determines those proba-
bilities. Surprisingly, despite its solipsistic foun-
dation, I show that the resulting theory recovers
many features of our established physical world-
view: it predicts that it appears to observers
as if there was an external world that evolves
according to simple, computable, probabilistic
laws. In contrast to the standard view, objec-
tive reality is not assumed on this approach but
rather provably emerges as an asymptotic sta-
tistical phenomenon. The resulting theory dis-
solves puzzles like cosmology’s Boltzmann brain
problem, makes concrete predictions for thought
experiments like the computer simulation of
agents, and suggests novel phenomena such as
“probabilistic zombies” governed by observer-
dependent probabilistic chances. It also suggests
that some basic phenomena of quantum the-
ory (Bell inequality violation and no-signalling)
might be understood as consequences of this
framework.
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1. Introduction

1 Introduction

Theoretical physics is more than just a fixed framework that
allows us to predict measurable quantities. Ever since the
first philosophers have wondered what our universe is made
of, the very nature of the questions that we ask in physics
has been continuously evolving. Novel discoveries and prob-
lems have led to completely new concepts that did not even
make sense within earlier theories. For example, the prob-
lem of ether and of the Lorentz transformations in electro-
dynamics have ultimately led us to a framework (relativ-
ity) in which the structure of spacetime itself is dynamical,
which is an idea that could not even have been formulated
within Newtonian mechanics.

The starting point of this work is the hypothesis that we
are perhaps at a point where we may want to consider an-
other substantial revision of some traditional aspects of our
worldview, at least in certain contexts. We are facing sev-
eral conceptual problems, some of them of enormous impor-
tance, for which systematic problems and difficulties arise
when we try to address them with standard approaches.
While some of these questions are simply free-floating ex-
pressions of human curiosity (like “Why are there simple
laws of physics at all?”), others have emerged as notori-
ous and persistent problems in physics and related areas.
They seem to show us in a rather annoying way that there
is something that we fundamentally do not understand (see
Table 1 for an overview).

For example, consider some questions that are currently
being discussed in the context of cosmology: what if the
universe is really large (as in eternal inflation) and contains
a multitude of copies of every observer [1]?7 How can we
assign probabilities to properties of “possible worlds” [2]?
What if thermal fluctuations produce a massive amount of
randomly appearing “Boltzmann brains” [3, 4, 5] — can
we use the assumption that we are not the result of such
fluctuations to constrain our cosmological models? Inde-
pendently, philosophers are discussing questions related to
agents or observers that seem at first sight to be of a very
different category, like: What happens if we simulate an in-
telligent agent on a computer — would the simulation be
“alive” [11]7

Even though these puzzles seem to be of quite different
nature at first sight, they do have a common core — they
are all specific instances of the question: “What will I see
next?” In the empirical regime, physics allows us to an-
swer this question, at least probabilistically. For example, if
we send a photon to a half-silvered mirror in the laboratory,
then quantum physics tells us that we will see the photon
being transmitted (or rather hear a specific detector click)
with 50% probability. But we can ask this question also in
exotic situations, some of which are listed in Table 1. For
example, if we are promised to be scanned in all detail to a
computer, and then to be simulated in one (or even many
different) virtual worlds, will we “wake up” in a simulation
(and, if so, in which one)? In this context, it seems inap-
propriate to try to predict what happens to us solely on the

basis of information about the detailed physical composi-
tion of body or computer. Instead, the question now seems
to fall into the realm of the philosophy of mind.

Similarly, if we assume the validity of a cosmological
model predicting a universe with a large number of Boltz-
mann brains, does it make sense for me to hold a degree
of belief on whether I am actually one of them? Can we
assign a meaningful probability to the possibility that what
I see next is the strange experience of one of those fluctu-
ating beings, perhaps suddenly realizing that something is
very strange before disappearing? Conversely, can we use
the empirical fact that this is not what we see to rule out
some cosmological models? The very existence of contro-
versy among cosmologists regarding these questions tells us
that we have no idea how to approach them in a conclusively
coherent way.

Quantum theory. “Unperformed experiments have
no results” [6, 7]; measurement problem [8]; no-go re-
sults about observer-independent facts [9, 10].

e Cosmology. Boltzmann brain problem [3, 4]; self-
locating uncertainty [1]; measure problem [2].

e Philosophy of mind / future technology. “Are
you living in a computer simulation?” [11], puzzles of
personal identity like “A Conversation with Einstein’s
Brain” in Hofstadter’s and Dennett’s “The Mind’s
I? [12], or Parfit’s teletransportation paradox [13].

e Fundamental curiosity. Why is there a “world” with

“laws of nature” in the first place?

TABLE 1.
this paper.

Some enigmas that motivate the approach of
As explained in more detail in the main text,
even though these conceptual puzzles are rooted in different
fields, they have a common feature: they can all in principle be
reformulated in terms of the question of what is the probability
of my future state, given my current state (including my
momentary observations and memory, conscious or not). This
motivates the attempt to formulate a framework for which
these first-person conditional probabilities are fundamental, and
which does not assume that they come from an external world.

From this perspective, it seems odd that a single unify-
ing question has to be approached with so different meth-
ods in the different regimes — physics, philosophy, or out-
right speculation. But is this actually a fair comparison?
Isn’t physics, after all, more concerned with the question
of “What is the world like?” rather than “What will I see
next?” Not if we live in a quantum world. Ultimately,
the formalism of quantum theory tells us the probabilities
of outcomes of experiments, i.e. the chances of what to see
next, given the physical context. In particular, due to re-
sults like Bell’s theorem [16, 17], it is provably inconsistent
to assume that measurements simply reveal preexisting un-
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1. Introduction

known facts of the world, without sacrifizing other impor-
tant principles of physics like locality. We should not think
of the wave function as the “configuration of the world”
in a naive sense, but rather as a catalogue of expectations
about what an agent will see next. Therefore, quantum the-
ory gives us a physical motivation to regard the question in
boldface above as more fundamental than the question of
what the world is like.

Given that this single question appears in so many in-
stances in different fields — could there be a single, unified
approach or theory that answers this question in all contexts
uniformly? Such a theory would have an important advan-
tage: while most ad hoc claims about problems like the
brain emulation question above do not seem to be directly
amenable to empirical testing?, the hypotheses of such a
unified approach about these exotic phenomena could be
put to an indirect test. Namely, if that theory made in
principle successful empirical predictions in the regime of
physics, then this would justifiably increase our trust in its
predictions in the more speculative regime.

The goal of this work is to provide a proof of principle
that we can indeed have a theory? of this kind — one that
is simple, rigorous, and well-motivated. We arrive at such
a theory quite naturally by following a few well-motivated
assumptions. Our first assumption is to committ to the
first-person perspective of observers® as being fundamental.
In more detail, we start with what we call the “observer
state”: a mathematical formalization of the information-
theoretic state of the observer, including its current obser-
vations and its memory (conscious and unconscious). This
will be our primitive notion, and we will drop all assump-
tions of an “external world”. A moment’s thought shows
that such a move is unavoidable if we want to address ques-
tions like those mentioned above. For example, if we ask
“why is there a “world” with “laws of nature” at all?, then
we must have a starting point that does not assume the ex-
istence of such a world from the outset. Similarly, if we do

IAfter all, we cannot directly empirically test any predictions of
the form “Yes, if we do a simulation of this or that kind, then the
simulated mind really has an inner life in the same way that we do”.
Simply observing the simulated mind, or asking it, will not allow us
to draw any ultimate conclusions; see e.g. the philosophical discussion
of “zombies” [32]. Of course we can (and should) study other aspects
of this problem empirically, e.g. via neuroscience.

2Note that this is not supposed to be a “theory of everything”; in
fact, the theory predicts its own limitations. By construction, it will
have to say nothing about most things. As an obvious example, it will
not be useful for the search for a theory of quantum gravity.

9In line with Rovelli [14], here the word “observer” is by no means
restricted to human observers, and it is not (at least not directly)
related to the notion of “consciousness”. The question of consciousness
is irrelevant for this paper; my notion of “first-person perspective” is
not meant to be equivalent to consciousness. The former (but probably
not the latter) describes a very general, technically formalizable notion
that is agnostic about the question “what that perspective really feels
like”. As a rough analogy, note that computer science can reason
about the information content of a painting (say, after it is digitized
and saved on a hard drive) without the need to decide what it is
supposed to depict, or whether it is “beautiful”.

not think that detailed insights into physical properties of
the world can help us resolve puzzles like Parfit’s teletrans-
portation paradox, then we must be able to argue without
these ingredients.

Given such a notion of “observer state”, we can formulate
a possible answer to the question of “what the observer will
see next”: namely, we would like to write down some notion
of propensity, or chance,

P(next observer state | current observer state). (1)

Our second assumption is that this chance [30] always ex-
ists, and that there is a mathematical object P that formal-
izes it. For the moment, think of P as a probability distri-
bution; later on, its role will in fact be played by a more
general object (a countable set of asymptotically equivalent
distributions). Consider the following example. Suppose
that x describes the state of an observer who knows that
she will now be put to sleep, scanned, and simulated in a
computer. Let y be the observer state that she would have
at the first moment of computer simulation. Then what we
assume here is that there is in fact an “objective chance”
P(y|z) that the observer will “wake up” in the simulation.
Moreover, this notation implies that this chance is inde-
pendent of all other “facts of the world” — it really only
depends on the state of the observer.

It is important to understand that P is mot meant to
represent the observer’s degree of belief. As a colourful and
imprecise example, suppose that = describes the state of a
little insect that is crawling across the edge of a table. Then
(we think that) there is a large chance P(y|z) of transition-
ing into a state that experiences falling, even if the insect is
too stupid to hold beliefs (let alone to compute probabili-
ties). Moreover, the observer state should be interpreted as
encompassing all information “contained in” the observer,
not just what the observer is consciously aware of. In this
example, x could contain enough information from the in-
sect’s nervous system to indicate in principle the presence
of the table’s edge, even if the insect is not aware of it.

Finally, to obtain a complete theory, we have to con-
cretely postulate what P should be. As mentioned above,
P will be something like (but not quite) a probability dis-
tribution. In order to obtain a meaningful, mathematically
formalized, objective theory, it should not be necessary to
determine what it “feels like” to be in a particular observer
state x in order to determine P(y|x). Instead, P(y|x) should
only depend on the abstract information content of x and
y, and not on questions of qualia. As we will explain in
Section 2 and motivate in detail in Section 3, we will here
postulate that P should express some form of “universal in-
duction”: P(y|z) is large if an external rational agent with
complete knowledge of x would be led to predict y. This
will lead us to claim that P is some version of algorithmic
probability. Such P is related to description length: the
more compressible the conceivable future state y (given the
current state x), the more likely. Thus, in the approach of
this paper, answering the brain emulation question above
boils down to estimating the algorithmic complexities of the
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2. Algorithmic probability

simulated observer states. We study this problem in detail
in Subsection 6.2.
The theory is introduced in two successive steps, distin-
guished by their color shading:
I. Mathematical formulation
Sections 2 (algorithmic probability) and 3.
II. Predictions of the theory
Sections 4-7.

Section 2 will introduce the notions of observer states and
algorithmic probability. Section 3 spells out the postulates
of this paper’s approach, and motivates why algorithmic
probability is our measure of choice.

The second part reconstructs aspects of physics from the
postulates, and uses them to address some of the puzzles of
Table 1. While our methodological starting point is in some
sense solipsistic, Section 4 shows how we can nevertheless
understand the existence of an external world with simple
computable probabilistic laws of physics as a consequence
of this framework. Furthermore, Section 5 proves that we
also obtain an emergent notion of objective reality. Sub-
sections 5.2 and 5.3 argue, however, that there are extreme
situations in which objective reality breaks down, leading to
the phenomena of “probabilistic zombies” and “subjective
immortality”. Section 6 describes how the Boltzmann brain
problem gets dissolved, and what we can say about the com-
puter simulation of agents. Finally, Section 7 argues that
some basic phenomena of quantum theory can perhaps be
understood as consequences of this paper’s approach, before
we conclude in Section 8.

2 Algorithmic probability

There are two main notions mentioned in the introduction
that we have to discuss in all mathematical details: the
state of an observer, and the chance P. We will begin by
stipulating that observer states shall be modelled by the
finite binary strings:

S = {e,0,1,00,01,10, 11,000, ..}.

The length of a string € S will be denoted £(z); for ex-
ample £(11) = 2. The symbol ¢ denotes the empty string
of length zero. We will assume that every possible observer
state corresponds to a binary string; and, vice versa, to ev-
ery binary string there is a corresponding observer state, i.e.
“state of being” of a conceivable observer. As explained in
the introduction, we should think of an observer state as an
exhaustive description of an observer’s memory (conscious
or unconscious) and momentary observations — all her “lo-
cally accessible information”. Naively, think of a raw dump
of the information-theoretic content of a human brain at
some moment in time, scanned up to all functionally rel-
evant detail. Now, this is not an exact interpretation. To
what detail exactly are we supposed to scan? Where exactly
do we put the boundaries of the brain? In the following, we
will see that we do not need to answer these questions to

construct our theory and to extract its predictions. More-
over, the interpretation of an observer state will gradually
become more clear in the course of construction of the the-
ory.

It is important to understand that most observer states
are completely unrelated to states of humans or animals.
(This is a truism as obvious as stating that “almost all
theoretically possible digital pictures do not show anything
that you are familiar with”.) We have to, may, and will
ignore questions of qualia like “what does it feel like to be
in state 2”7 Moreover, the actual zeroes and ones in an
observer state do not carry any meaning in isolation. This
is comparable to, say, the theory of general relativity, where
coordinates of spacetime points like z = (0, 0.3, —0.14, 1.25)
do not carry any meaning in themselves, but only relative
to a choice of coordinate system. While general relativity
allows for a mostly arbitrary choice of coordinate system,
we will see in Section 3 that we also have a mostly arbitrary
choice of encoding, and changing the encoding will change
the bit string.

Since observer states are discrete, it makes sense that the
state of the observer changes in discrete (subjective) time
steps. That is, every observer will be in some state now, in
another state next, and so on. This leads us to study tran-
sition probabilities of the form P(y|z) (as indicated in (1)).

What are those probabilities? We would like to postu-
late a probability measure P that determines the chances
of what observers see. How can we do so, without making
arbitrary choices or smuggling known facts of physics into
the definition? I will argue in the following that a version
of algorithmic probability is a good candidate, since it uses
only structure that is unavoidably available once we start to
reason logically: the computability structure of axiomatic
systems. While a more detailed discussion of the motiva-
tion will be deferred to Section 3, this subsection will now
appeal to intuition, and at the same time derive and present
a definition of algorithmic probability.

Let us step back for a moment and recall some basic
ideas from probability theory. When students start to learn
stochastics at school, often the first example they discuss is
that of an “urn”, containing balls that have different colors,
and of some experimenter drawing one of the balls at ran-
dom. In our case, the differently colored balls correspond to
the observer states, i.e. the finite binary strings. Also, bit
strings are purely mathematical objects, so in some sense,
mathematics itself represents the analog of the urn, or, say,
the formal axiomatic system that is used to define the no-
tion of a “binary string”. But what corresponds to the act
of “drawing” such a mathematical object at random?

Intuitively, the concrete mechanism of drawing deter-
mines the resulting probability distribution. If the urn con-
tains two red balls and a green ball, say, then the chance
of drawing the green ball will only be close to % if the ex-
perimenter has equal access to all the balls (for example,
none of the balls lies at the bottom of the urn and can-
not be reached by the experimenter), if she moves her arm
uniformly inside the urn in a pseudo-random fashion, and
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if she does not see, feel or detect the color of the balls in
any way“. On the other hand, if one of the balls is in some
sense “easier to draw” (say, there are 3 balls, and 2 of them
are hidden in the urn’s corners), then the chance of drawing
that ball will be higher.

How can we “draw” a finite binary string? If we are
looking for a “natural” mechanism that is not just chosen
arbitrarily from all conceivable mechanisms, then we should
only use structures that are given to us a priori — that is,
ones that are supplied by mathematics itself. Mathematics
constitutes the “urn” that contains the finite binary strings,
and supplies mechanisms for drawing them. In a mathemat-
ical formal system, we can “draw” a mathematical object by
describing it. That is, we can write down a definition, based
on the axioms of our formal system, and thereby selecting
a mathematical object from the “urn” of all mathematical
objects.

Thus, our random experiment might be performed by a
mathematician, equipped with paper and pencil, who draws
finite binary strings by describing them. Some strings are
much easier to describe than others, even if they contain
more bits. For example, the binary string

z:= 00000...0
—_———

a million zeroes

is easy to describe — in fact, we have just described it
(and it remains easily describable even if we demand a more
formally sound way, say, a definition according to the rules
of a fixed formal system). Similarly, it is easy to describe
the string

T, := 0010001000011111101 ...

containing the first 10% binary digits of 7. Some strings are
much more difficult to describe, like

z. := 010010100010000011110. ..

which is a concrete structureless string of 1000 bits, gener-
ated by a thousand tosses of a fair coin. The simplest way
to describe the string by mathematical means seems to be
to write it down bitwise, which arguably needs more effort
(and more paper space) than the previous two strings.

So the strings = and z, seem to be easier to describe,
and, according to our urn metaphor, easier to “draw” than
T, for example. Hence they should have larger probability
with respect to the distribution that we are looking for.

But how can we formalize this idea? How can we “de-
scribe a string at random” and get a meaningful probability
distribution? The idea of a mathematician, randomly writ-
ing down definitions on a piece of paper, is clearly not formal
enough to determine a well-defined distribution.

It turns out that there is a precise formal definition of this
very idea, which is known as algorithmic probability. The

4What I write here has only motivational value; I do not claim to
say anything profound about the foundations of probability theory.

main insight is as follows: every step of formal manipula-
tion performed by the mathematician can also be done by a
universal computing machine. Thus, instead of asking how
easy it is for a mathematician to write down a definition
of a binary string, we can ask how easy it is to program a
universal computer to output the corresponding string.

I will now briefly summarize a few key concepts from al-
gorithmic information theory as they are relevant for this
work. I will mainly focus on the book by Hutter [31] and a
subsequent paper [46], and assume that the reader is famil-
iar with some basic notions of theoretical computer science
(e.g. the Turing machine, the halting problem, and com-
putability). A more detailed and pedagogical introduction
can be found in the book by Li and Vitanyi [47], see also [48].

One of the basic models of computation is the Turing
machine [49], consisting of several (input, work and out-
put) tapes carrying some data given by bits, a finite state
machine, and some read-write-heads pointing to a single cell
on each tape and giving the position where to read or write
next. In accordance with [31], we shall only consider Turing
machines with one unidirectional input tape, one unidirec-
tional output tape (to be generalized later), and several
bidirectional work tapes. “Input tapes are read only, output
tapes are write only, unidirectional tapes are those where the
head can only mowve from left to right. All tapes are binary
(no blank symbol), work tapes initially filled with zeros.”

Now we distinguish two different possible events: first,
the Turing machine 7" might halt and output a fixed, finite
binary string x € S. Second, the Turing machine 7" might
compute a possibly infinite bit string without ever halting;
in this case, we may still observe that the output string
starts with a finite bit sequence x € S. This is due to the
fact that the output tape is assumed to be unidirectional.
We use the definition given in [31]:

Monotone TM. We say T oulputs/computes a string
starting with x € S on input p € S, and write T'(p) = x*
if p is to the left of the input head when the last bit of x
is output (T reads all of p but no more). T may continue
operation and need not halt. For given x, the set of such p
forms a prefiz code. We call such codes p minimal programs.

This allows us to define the concepts of Kolmogorov com-
plexity and algorithmic probability:

Definition 2.1 (Algorithmic probability and complexity).
Let T be any monotone Turing machine. The monotone
complezity or (monotone) Kolmogorov complexity of a string
x € § with respect to T' is given by

Kmg(2) := min{((p) | T(p) = w+}

or by oo if no such program p exists. Moreover, define
the algorithmic probability that T outputs some string that
starts with € S by

Mr(z) := Z

PpiT(p)=a

9—t(p)
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Since the set of programs p such that T'(p) = xx is prefix-
free, it follows from the Kraft inequality that My (z) < 1
for all . This expression can be interpreted as the proba-
bility that T" outputs a string that starts with x if the input
is chosen by tossing a fair coin. In more detail, My is a
semimeasure in the sense of the following definition:

Definition 2.2 (Measures and semimeasures [31]).
A function m : S — R is called a semimeasure if m(g) < 1
and m(xz) > m(x0) + m(zl), and a probability measure if
equality holds in both cases.

We define the conditional (semi)measure as

if m(z) # 0, where zy denotes the concatenation of z and
y.

One of the most important facts in computer science is
the existence of “universal computers” that are capable of
simulating every other computer. The following theorem
defines what we mean by a “universal monotone Turing
machine”, and claims the existence of such machines [46]:

Theorem 2.3 (Universal monotone Turing machine [31,
46]). There exist monotone Turing machines U which sim-
ulate every (other) monotone Turing machine T in the fol-
lowing sense. There is an enumeration {T; };en of all mono-
tone Turing machines, and a computable uniquely decod-
able self-delimiting code I : N — S, such that

U (I(Z)p) =T;(p) foralli e N;p € S,

where I(i)p denotes the binary string obtained by concate-
nating the strings () and p.

Intuitively, the string I(i) is a program that makes U
emulate the machine T;. Since a universal Turing machine U
can simulate every other machine, its monotone complexity
measure Kmy is “optimal” in the sense that Kmy(z) <
Kmy(x) + ¢r for every Turing machine T', where ¢y € N is
a constant that does not depend on z. In particular, if U
and V are both universal, then there are constants ¢, C € N
such that

Kmy(z) + ¢ < Kmy(z) < Kmy(z) + C for all z € S.

In other words, Kmy and Kmy agree up to an additive
constant, which is sometimes denoted Kmy () = Kmy (z)+
O(1). Similarly, we will find that My (z) = My (z) - O(1).
This kind of “weak” machine-independence will be of high
relevance for the theory of this paper, as we will discuss in
Section 3.

In this paper, we will make extensive use of the following
property of universal monotone Turing machines.

<& [0]1]1]oJo]1]o]1]o]o

et
reads bits
sequentially

Computer
(including
work tapes)

writes bits
sequentially

< o011

Figure 1: Sketch of a monotone Turing machine T'. The machine
reads some (possibly infinite) binary input string, here starting with
0110010100, and the snapshot depicts the output relation 7'(01) =
0011x.

Theorem 2.4 (Universal enumerable semimeasure [31]).
If T is a monotone Turing machine then My is an enu-
merable semimeasure. Vice versa, for every enumerable
semimeasure m there exists a monotone Turing machine 7'
with My (x) = m(z) for all non-empty strings € S. More-
over, if U is universal, then My is a universal enumerable
semimeasure; that is, for every enumerable semimeasure m,
it holds
My (z) > 27Kv (™) ()

for all x € S, where Kyy(m) denotes the length of the short-
est binary string that makes U emulate any monotone Tur-
ing machine which has m as its semimeasure, i.e.

Ky(m) = min{l(x) | Vp: U(zp) = T'(p) and My = m}.

This definition uses the notion of enumerability of a func-
tion f : & — R. Suppose we have a computable function
® : S x N — R such that lim, o, ®(z,n) = f(z) and
O(x,n) < ®(z,n+1) for all z € S and n € N. Then f can
be approximated from below by a single computer program
(computing @), without necessarily knowing how close the
approximation will be to the true value f(x). In this case f
is called enumerable. If additionally (—f) is enumerable as
well, then we can estimate the error of approximation for
finite n by computably determining a finite interval that
contains f(x). If this is the case, f is called computable.

The semimeasures My will be the subject of the key
claims of the postulates of this paper. So far, it seems as if
the My represent properties of our specific choice of com-
putational model, the monotone Turing machine. Since this
model was chosen somewhat arbitrarily, doesn’t this under-
mine our motivation from above to find a natural (class of)
probabilities for which such a choice does not have to be
made?

We will now see that the semimeasures My have an al-
ternative definition that does not refer to monotone Tur-
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3. Postulates of an incomplete theory

ing machines. This shows that the My represent natural
mathematical structure independent of our favorite choice
of computational model.

Definition 2.5 (Universal mixture [46]). A universal mix-
ture M is a mixture with non-zero positive weights over an
enumeration {v;};en of all enumerable semimeasures:

M(z) =Y wivi(z), R3w;>0, > w; <1,
1€N ieN

where, in addition, ¢ — w; is an enumerable function.

It turns out that the universal mixtures are exactly the
semimeasures My that we have defined above via monotone
Turing machines (MTMs):

Lemma 2.6 (Universal mixtures and the My [46]).
Up to their value at the empty string” e, we have

{My | U universal MTM} = {M | M universal mixture}.

In other words, for every universal mixture M there is a
universal MTM U such that M(z) = My (z) for all z €
S\ {e}, and vice versa.

This gives a model-independent characterization of the
My the definition of universal mixtures uses only the no-
tion of computability, without referring specifically to the
monotone Turing machine. Since the notion of computabil-
ity is identical for all models, including quantum computa-
tion (more on this in Subsection 3.3), the approach of this
paper is independent of the choice of model of computation.

While any given universal mixture M is only a semimea-

sures, we can define its Solomonoff normalization [47)
M(za)

P(za) =P(1) ==+

>y M(xb)

to obtain a measure P that shares many (but not all) de-

sirable properties with M. Universal mixtures M and their

Solomonoff normalizations P are related by the inequalities

P(z) > M(z),

P(e) =1, (a€{0,1})

P(ylr) > M(y|x).

Every P that is derived from a universal mixture M in this
way will be called an algorithmic prior.

3 Postulates of an incomplete theory

Let me clarify right away that the theory of this paper will
not satisfy all the desiderata that have been formulated in
the introduction. Namely, what we would like to have is a
theory that satisfies the following Postulates:

5The special role of the empty string e follows from the fact that
My (e) = 1 for all U by construction, but M(e) < 1 for all universal
mixtures M [46].

Postulates 3.1 (Desired postulates; not used in that form).

(i) Observer states. Having a first-person perspective
means to be in some observer state at any given (sub-
jective) moment. The observer states are in com-
putable one-to-one correspondence with the finite bi-
nary strings.

(ii) Dynamics. Being in some observer state 2 now, there
is a well-defined chance of being in some other observer
state y next. It is denoted

P(yl|z), (2)
where P is an algorithmic prior.

(iii) Predictions. The predictions of the theory are those
that are identical for every choice of algorithmic prior.
They follow from (i) and (ii) alone; no underlying phys-
ical world is assumed to “cause” those probabilities.
“Now” and “next” are understood as purely first-person
notions, not related to any external notion of time or
clock.

Before giving the actual form of the postulates that we
use in this paper, let me give some more intuition on the
worldview that they express. The formulation itself seems
solipsistic in some sense: it talks about what it means to
“have a first-person perspective”. In this sense, it talks
about the “I”: I am currently in some state z, and then I
will be in some other state y. So who is this “I”? What
about “you” or “them”, i.e. other observers? Or is there
only ever one observer?

We will address these questions in more detail in the fol-
lowing sections, when the ontology of the theory will be-
come gradually more clear while working out the postulates’
consequences. A preliminary answer is that the postulates
describe everybody: they allow to determine the chances
of what happens to any observer next, given their current
observer states. This is somewhat similar to the tenets of
Bayesianism, which can be used by everybody to make ra-
tional bets on their future.

However, in the approach of this paper, the probabilities
P(y|z) are not betting probabilities. They are interpreted
as private, but objective chances, not as degrees of belief.
For an observer in state x, they are meant to say which
states y are more or less likely to be actualized next for
this observer. In particular, these probabilities are seen as
fundamental: neither do they represent missing knowledge
about an underlying state of the world (as in statistical
mechanics), nor do they arise from some kind of fundamen-
tal quantum state. In particular, there is no claim of any
actual underlying computation or Turing machine which
would justify the appearance of these probabilities: mono-
tone Turing machines have only been used in the mathemat-
ical definition of P, but they are not part of any ontological
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claim.

In the theory described by these postulates, there is no
fundamental notion of an “observer”, but only of “observer
states”. That is, observers are not material objects in some
universe which could be distinguished and counted, at least
not fundamentally. This is perhaps not so surprising, given
that we are about to construct a theory that intends to
say something meaningful about puzzles like Parfit’s tele-
transportation paradox or about “copying” observers. For
a colorful example, think of the “Back to the Future” movie
series, in which the main protagonist (Marty McFly) meets
his older self in the future. Is this now one observer, or two?
Here, we view this as a fundamentally meaningless question.
Nonetheless, our theory will admit situations that can best
be interpreted as “observers encountering other observers”,
and we will discuss these situations in detail in Section 5.

So when did the observer start? When did she hold her
first observer state? Will she not die some time? Indeed,
the postulates above say that the answer to the latter ques-
tion is negative — the observer will follow a never-ending
Markovian process. It also doesn’t make sense to talk of a
“beginning”. Any notions of this kind — and of an external
world that seems to have begun in a Big Bang a long time
ago — will have to be reconstructed from the postulates
alone. The exciting news is that this can in fact be done to
some extent. That is, we will understand “why” observers
will see something like an external world “around them” as
a consequence of these postulates.

Before discussing Postulate (iii) in more detail, let me
explain why our notion of algorithmic probability does not
quite satisfy all the desiderata of Postulates 3.1 above. In-
tuitively, if an observer is in state x, then she can transition
into another state y that may hold more or less information
than x. In particular, it is possible for observers to “for-
get” information: sometimes, memory is erased, and our
next observer state y does not contain full information on
the previous state x. It seems overly restrictive to disallow
this possibility. On the other hand, conditional algorithmic
probability P(y|z) = P(zy)/P(x) is defined as the proba-
bility that the next observer state will be zy, given that it
is now x. In other words, algorithmic probability defines a
situation in which an observer’s state will in principle al-
ways contain full information on its previous states. This
will define the postulates that we are actually working with
— and, as expressed below, it will therefore be an approx-
imation to our desired postulates which applies whenever
memory erasure can be neglected:

6This notion of “forgetting” should be interpreted in purely tech-
nical terms: it refers to a situation in which an exhaustive description
of an observer at some moment (given by its observer state) does
not admit the reconstruction of its earlier observer states in princi-
ple. This is not the same as the colloquial notion of “forgetting” that
we use for human observers, in the sense that some information in
the brain becomes consciously unavailable (“when again is my wife’s
birthday?”). Observer states include much more than just consciously
accessible information (indeed, most types of observers will anyway
not be “conscious” in any meaningful sense of the word).

Postulates 3.2 (Simplified postulates as actually used).

(i) Observer states. Having a first-person perspective
means to be in some observer state at any given (sub-
jective) moment. The observer states are in com-
putable one-to-one correspondence with the finite bi-
nary strings.

(ii) Dynamics. Being in some observer state z now, there
is a well-defined chance of being in some other observer
state za next, where a € {0,1} is a bit. It is given by

P(a|z), 3)

where P is an algorithmic prior which can be chosen
arbitrarily, but has to be fixed.

(iii) Predictions. The predictions of the theory are those
that are identical for every choice of algorithmic prior.
“Now” and “next” are understood as purely first-person
notions, not related to any external notion of time or
clock.

Interpretation: These postulates will make similar predic-
tions as the “desired theory” (expressed in Postulates 3.1) in
those cases where the observer holds a large amount of mem-
ory on her previous states; they will fail to do so, however,
when “forgetting”® (informat