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Quantum algorithms can deliver asymptotic
speedups over their classical counterparts.
However, there are few cases where a sub-
stantial quantum speedup has been worked out
in detail for reasonably-sized problems, when
compared with the best classical algorithms
and taking into account realistic hardware pa-
rameters and overheads for fault-tolerance.
All known examples of such speedups corre-
spond to problems related to simulation of
quantum systems and cryptography. Here
we apply general-purpose quantum algorithms
for solving constraint satisfaction problems to
two families of prototypical NP-complete prob-
lems: boolean satisfiability and graph colour-
ing. We consider two quantum approaches:
Grover’s algorithm and a quantum algorithm
for accelerating backtracking algorithms. We
compare the performance of optimised ver-
sions of these algorithms, when applied to ran-
dom problem instances, against leading classi-
cal algorithms. Even when considering only
problem instances that can be solved within
one day, we find that there are potentially
large quantum speedups available. In the most
optimistic parameter regime we consider, this
could be a factor of over 10° relative to a clas-
sical desktop computer; in the least optimistic
regime, the speedup is reduced to a factor
of over 10°. However, the number of phys-
ical qubits used is extremely large, and im-
proved fault-tolerance methods will likely be
needed to make these results practical. In par-
ticular, the quantum advantage disappears if
one includes the cost of the classical process-
ing power required to perform decoding of the
surface code using current techniques.

Many quantum algorithms are known, for tasks as
diverse as integer factorisation [92] and computing
Jones polynomials [4]. Indeed, at the time of writ-
ing, the Quantum Algorithm Zoo website [62] cites
392 papers on quantum algorithms. However, there
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are relatively few cases known where quantum algo-
rithms substantially outperform their classical coun-
terparts for problems of practical importance, and
the runtime of the quantum algorithm has been cal-
culated in detail. Examples include simulating the
chemical processes involved in biological nitrogen fix-
ation [84]; breaking cryptosystems based on integer
factorisation [58, 75] and elliptic curves [86]; quan-
tum simulation of spin systems [37] and electronic
structure Hamiltonians [10]. In all of these cases, the
underlying quantum algorithm achieves an exponen-
tial speedup over its classical counterpart, and under
realistic assumptions about the performance of the
quantum hardware, can solve a problem in days or
weeks that might take decades or centuries on a fast
classical computer.

Notwithstanding the extreme practical importance
of some of these applications, they share the feature
that they are rather special-purpose. While simula-
tion of quantum systems, for example, has a large
number of uses [55], there are many problem domains
for which it is simply not relevant. Here we focus on
problems in the general area of constraint satisfaction
and optimisation — an area critical to many different
industry sectors and applications — and aim to quan-
tify the likely advantage that could be achieved by
quantum computers. We seek to satisfy the following
desiderata:

1. (Rigour) There should exist a quantum algo-
rithm which solves the problem with provable
correctness and rigorous performance bounds.

2. (Broad utility) The abstract problem solved
by the algorithm should be broadly useful across
many different applications.

3. (Performance bounds) We should compute
the performance of the quantum and classical
algorithms explicitly for particular problem in-
stances, including all relevant overheads.

4. (Runtime) The problem instance used for com-
parison should be one that can be solved by
the quantum computer within a reasonable time
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(e.g. < 1 day) under reasonable assumptions
about the performance of the quantum hardware.

5. (Benchmarking) The point of comparison
should be one of the best classical algorithms
known, running on modern-day hardware.

These points between them seem to put severe re-
strictions on the ability of quantum computing to
achieve a significant performance enhancement. First,
the requirement of rigour rules out heuristic algo-
rithms running on current or near-term hardware,
such as quantum annealing (e.g. [85]) or the quantum
approximate optimisation algorithm [49].

Next, the requirement of broad utility rules out
the exponential speedups discussed above. In general,
quantum algorithms that are broadly applicable to ac-
celerating classical algorithms tend to achieve at best
quadratic speedups (that is, the scaling with problem
size of the quantum algorithm’s runtime is approxi-
mately the square root of its classical counterpart);
one famous example is Grover’s algorithm [57], which
speeds up unstructured search. In other models, such
as query complexity, it can even be proven that spe-
cial problem structure is required to see an exponen-
tial quantum speedup [16]. Although even a quadratic
speedup will become arbitrarily large for large enough
input sizes, choosing an extremely large input size will
make the execution time of the quantum algorithm
unacceptably long for practical purposes. This moti-
vates the runtime requirement, which is particularly
challenging to satisfy because many quantum algo-
rithms (e.g. Grover’s algorithm [96]) are inherently
serial: they cannot be parallelised without reducing
the quantum speedup.

The requirement to compute accurate performance
bounds implies that we should take into account not
just the performance of the quantum hardware it-
self (which will in general be slower than modern-day
classical hardware) but also the overhead from fault-
tolerance, which could correspond to an increase of
several orders of magnitude in the number of qubits
required, and a concomitant increase in cost and run-
time. Table 1 lists parameters for quantum hardware
in various regimes (“Realistic”, “Plausible” and “Op-
timistic”). “Realistic” is based on relatively modest
improvements on parameters already demonstrated in
experiment. For example, in superconducting qubit
systems, 2-qubit gate times of 40ns [15] and mea-
surement times of under 50ns [94] have been demon-
strated, and numerical simulations suggest the pos-
sibility of 26ns gates [45]; 2-qubit gate error rates of
0.06 have been demonstrated [15] and 0.004 is pre-
dicted [45]. In ion traps, 2-qubit gate times of 480ns
have been demonstrated [87], as have error rates of
0.001 (at the cost of increasing the gate duration) [13].
The other categories are based on the simple assump-
tion that order-of-magnitude improvements are pos-
sible.

Parameter Realistic | Plausible | Optimistic
Measurement time 50ns 5ns 0.5ns
2-qubit gate time 30ns 3ns 0.3ns

Cycle time 200ns 20ns 2ns

Gate error rate 1073 10—4 107°

Table 1: Parameter regimes considered in this work. “Realis-
tic” corresponds to values reported in the literature as possi-
ble now, or predicted in the near future. “Cycle time” is the
time required to perform one surface code cycle. Each such
cycle comprises four 2-qubit gates, possibly two 1-qubit gates
and a measurement. These must be performed for each of X
and Z, but this can be parallelised to an extent that depends
on the relative times required to implement measurements
and gates; we therefore only consider one X/Z cycle when
estimating the cycle time, and assume that a 1-qubit gate
can be implemented in half the time required for a 2-qubit
gate.

One may reasonably query whether this assumption
is realistic. Considering gate times, there is quite a
wide variation in leading results reported in the litera-
ture. Even considering superconducting qubits alone,
these include 40ns in a 5-qubit system (2014) [15],
150ns in a 6-qubit system (2017) [63], and 100-250ns
in a 19-qubit system (2017) [79]. Classically, within
the period 1995-2000 Intel CPUs increased in clock
speed by about a factor of 10. In the case of er-
ror rates, although error rates of 1072 combined with
<100ns gate times have not yet been demonstrated,
an ultimate error rate of 107® may even be pes-
simistic, if more exotic technologies such as topologi-
cal quantum computers come to fruition; an effective
error rate of 107% has been assumed elsewhere in the
literature for such devices [84]. See [3] for a more
detailed performance extrapolation.

Finally, the benchmarking requirement implies that
we should not simply compare the quantum algorithm
against the simplest or most obvious classical com-
petitor, but should choose a competitor that is one
of the fastest options actually used in practice. For
example, Grover’s algorithm can determine satisfiabil-
ity of a boolean formula containing n variables with
O(2"/?) evaluations of the formula [57], whereas ex-
haustive search would use O(2") evaluations. How-
ever, other algorithms are known which are much
faster in practice, for example based on the DPLL
method [41, 42]. A fair quantum-classical comparison
should test against these best algorithms.

It is worth pausing to check whether there is hope
to achieve a substantial quantum speedup at all while
satisfying all the above desiderata. Imagine there ex-
ists a family of problems which is exceptionally chal-
lenging to solve classically: for a problem instance
involving n boolean variables, the best classical algo-
rithm consists of simply evaluating some simple “or-
acle” function of the variables for ~ 2" different as-
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signments. Further assume that this function can be
evaluated efficiently on both a classical and quantum
computer. For example, we could consider a crypto-
graphic hash function. Such functions are designed to
be easy to compute and hard to invert, and in some
cases the hash of (e.g.) a 256-bit integer can be com-
puted in under approximately 1000 CPU cycles [21].
Given the overhead required to implement a classical
circuit reversibly, it is hard to imagine! performing
an equivalently complex operation via a quantum cir-
cuit in circuit depth less than 1000 (and if this were
possible, it is plausible that it would lead to a faster
classical algorithm).

Therefore, assume that the quantum circuit depth
required to solve an instance of size n is approximately
1000x2™/2 corresponding to approximately the depth
required to execute Grover’s algorithm, while the clas-
sical runtime is 1000 x 2™ clock cycles. For simplicity,
assume the classical computer’s clock speed is 1GHz.
(This may appear unrealistic, as high-performance
computing hardware could be used to solve a prob-
lem of this form via parallel computation. However,
in the context of a cost comparison between quantum
and classical computation, this would correspond to
multiplying the cost of the classical computation by
the number of parallel processors used. So comput-
ing the speedup over one classical processor can be
used as a proxy for the cost advantage over multiple
processors.)

Given no overhead at all for fault-tolerance, con-
sidering the gate times in Table 1 and only problem
instances that can be solved in 1 day, we obtain the
middle row of Table 2. It is clear that the speedups
achieved are very substantial in all cases. An exam-
ple of a more realistic depth overhead is the quantum
circuit for computing the SHA-256 hash function de-
scribed in [8], which has depth ~ 5 x 10°. Using
this example, we achieve a speedup factor between
roughly 2 x 10% and 4 x 108, depending on assump-
tions, which is still quite substantial at the high end.
Note that, counterintuitively, decreasing the quantum
clock speed (equivalently, increasing the oracle circuit
depth) by a factor of ¢ reduces the largest speedup
that can be achieved in a given time period by a fac-
tor of approximately ¢?. This strongly motivates the
design of depth-efficient quantum circuits and hard-
ware with high clock speeds.

Table 2 represents an estimate of the best possible
speedups for square-root-type quantum algorithms. It
remains to attempt to show that significant speedups
can actually be achieved for problems of practical in-
terest, which is our focus in this work.

THowever, see Section 2 for a very low-depth quantum circuit
for boolean satisfiability.

Oracle Realistic Plausible Optimistic
depth
Max depth | 2.88 x 1012 | 2.88 x 10'3 | 2.88 x 10
1000 Max size n 62 69 76
Cl. runtime | 4.61 x 10'%s | 5.90 x 10's | 7.56 x 10'%s
Speedup 7.16 x 107 8.10 x 10° | 9.16 x 10!
5 x 10° | Max size n 44 51 58
[8] Cl. runtime | 1.76 x 107s | 2.25 x 10%s | 2.88 x 10!!s
Speedup 2.80 x 102 3.16 x 10* 3.58 x 106

Table 2: Likely upper bounds on speedup factors possible
for square-root-type quantum algorithms running for at most
one day in different regimes, assuming that there is no over-
head for fault tolerance, so maximum circuit depths are only
determined by gate times.

1 Our results

In an attempt to satisfy all the above requirements,
we focus on two prominent and fundamental NP-
complete problems: graph colouring and boolean sat-
isfiability. In the graph colouring problem, we are
given a graph G with n vertices, and asked to as-
sign one of k colours to each vertex, such that no
pair of adjacent vertices shares the same colour. If
no such colouring exists, we should detect this fact.
In the boolean satisfiability problem, we are given a
boolean formula ¢ on n variables in conjunctive nor-
mal form and asked to find a satisfying assignment
to the formula, if one exists. That is, the formula is
made up of clauses, where each clause is an OR func-
tion of some of the variables (each possibly appearing
negated), and we are asked to find an assignment to
the variables such that all of the clauses evaluate to
true. Here we consider the special case k-SAT, where
each clause contains exactly k variables.

Each of these problems has countless direct appli-
cations. In the case of graph colouring, these include
register allocation [38]; scheduling [65]; frequency as-
signment problems [2]; and many other problems in
wireless networking [12]. In the case of boolean satis-
fiability, these include formal verification of electronic
circuits [82]; planning [90]; and computer-aided math-
ematical proofs [64].

We seek a problem instance which can be solved
using a quantum computer in one day, but would take
substantially longer for a classical computer to solve.
This raises the question of how to be confident that
the runtime of the classical algorithm is indeed large
(we cannot simply run the algorithm, as by definition
it would take too long). A strategy to achieve this is
to find a family of instances, parametrised by problem
size, which can be solved for small problem sizes in
a reasonable time, and where the runtime for larger
problem sizes can be extrapolated from these.

A straightforward way to satisfy this criterion is to
choose instances at random. Another advantage of
using random instances is that they are likely to be
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Figure 1. Blue solid line: the mean chromatic number of
1000 random graphs on n vertices with edge probability 1/2.
Red dashed line: estimate from (1). For n > 20, all 1000
graphs had chromatic number within +2 of the estimate.

hard for classical algorithms, as they have no struc-
ture that the algorithm can exploit. Indeed, in the
case of graph colouring, even random instances on
around 80 vertices are already challenging for the best
classical algorithms [68]. We use the following models:

e k-colouring: pick a uniformly random (Erdés-
Rényi) graph on n vertices, where each edge is
present with probability 0.5. As n — oo, the
chromatic number X, 0.5 of such graphs has long
been known to be (1+0(1))n/(2log, n) with high
probability [23]. Empirically, the estimate

n

(1)

Xn,0.5 = 2logyn — 2logy logan — 17
which is based on a small modification to the
asymptotic formula in [80], seems to be an ex-
cellent predictor of the mean chromatic number
of a random graph (see Figure 1). For n < 200,
this estimate is at most 24.

e k-SAT: choose m clauses, each of which contains
k variables. Each clause is picked independently
and uniformly at random from the set of 2* (Z)
distinct clauses containing k distinct variables.
We aim to fix m such that m/n ~ «j, where
oy, is the threshold for k-SAT. The threshold is
the point «j such that, as n — oo, a random
k-SAT formula on an clauses will be satisfiable
with probability approaching 1 for @ < ay, and
unsatisfiable with probability approaching 1 for
a > «ay. It has long been predicted theoretically,
and verified experimentally, that random k-SAT
instances around the satisfiability threshold will
be very challenging [35].

Here we applied efficient quantum algorithms with

rigorous performance bounds to these random in-
stances of k-colouring and k-SAT problems, carried
out a detailed analysis of their performance (includ-
ing overheads for fault-tolerance), and compared them
against leading classical competitors.

It may be debatable whether random problem in-
stances satisfy the broad utility criterion above, as
they may not correspond to instances encountered
in practice. Indeed, SAT solvers are often able to
solve significantly larger instances of structured SAT
problems than random problems. However, in this
work we aim to find problem families on which quan-
tum algorithms achieve as large a speedup as possible,
which is approximately equivalent to finding the hard-
est problem instances possible for the classical algo-
rithm. Removing structure is one way to achieve this,
while remaining within a family of problems that do
contain many practically relevant instances. Random
problem instances could also be seen as modelling the
unstructured and most challenging component of a
partially structured problem.

We considered two (families of) general-purpose
quantum algorithms: Grover’s algorithm [57] for ac-
celerating unstructured search, and a quantum algo-
rithm for accelerating the general classical algorith-
mic technique known as backtracking [76]. Each of
these algorithms achieves a near-quadratic reduction
in computational complexity compared with its clas-
sical counterpart (that is, if the classical runtime is
T, the dominant component of the quantum runtime
scales like v/T) and has a rigorous correctness proof.

In the case of k-SAT, we compared the performance
of these two algorithms against the performance of the
Maple LCM_Dist SAT solver, which was the winner
of the SAT Competition 20177 [14]. We evaluated the
performance of this solver on many random instances,
for different values of k, to estimate its runtime scal-
ing with the number of variables n. We then calcu-
lated the complexity of highly optimised versions of
Grover’s algorithm and the quantum backtracking al-
gorithm applied to this problem. In order to solve the
largest instances possible while meeting the runtime
requirement, the algorithms are optimised to perform
as many operations in parallel as possible, and hence
minimise their circuit depths.

In the case of graph k-colouring, we compared
against the commonly used (“de facto standard” [91])
DSATUR algorithm [28] (see Section 6). This is a
backtracking algorithm itself, so can be accelerated
directly via the quantum backtracking algorithm. In
this case, Grover’s algorithm is not applicable, as for
relevant values of k the runtime of DSATUR is empir-
ically exponentially faster than the O(k™/?) runtime
scaling that would be achieved by Grover’s algorithm
applied to k-colouring.

2A modified version of this solver was also the winner of the
2018 competition.
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Figure 2: The runtime (circuit depth) of the quantum algo-
rithm for backtracking is of the form f(n, k)T, where T is
the number of nodes in the backtracking tree. Figure illus-

trates scaling of f(n, k) with n when k is chosen according
to (1).

In Figure 2 we illustrate the depth overhead of
our optimised k-colouring algorithm versus the in-
put size n. For reasonable graph sizes (e.g. n €
{100, ...,200}) it is less than 4 x 105, and hence not
substantially greater than the overhead of the SHA-
256 hash function implemented in [8]. We stress, how-
ever, that the algorithm has been optimised for depth,
and the number of logical qubits that it uses is large
(> 10° for reasonable problem sizes).

We obtain the result that for both k-SAT and k-
colouring, substantial quantum speedups could be
possible: in the case of k-SAT, in the most optimistic
regime we consider, the speedup could be as large as
a factor of over 10°, compared with a standard desk-
top computer. (That is, to solve an instance solved
by the quantum algorithm in one day, the classical al-
gorithm running on a standard computer would need
over 10° days.) In the case of k-colouring, speedups
by a factor of over 10* could be possible. However,
the extent of these speedups is strongly dependent on
the details of the hardware parameters, and the over-
head for error-correction. In other regimes for these,
there is no quantum speedup at all. In addition, the
number of physical qubits required to obtain these
speedups is very large (e.g. over 10'2). This is largely
caused by the need for many large “factories” to op-
erate in parallel to produce high-quality magic states,
which are used to implement T gates and Toffoli gates
fault-tolerantly in the error-correcting code used (the
surface code [53]). A related issue is that this speedup
does not take into account the cost of classical process-
ing in the quantum error-correction process, which
should also be considered to obtain a true cost com-
parison (see Section 8). When we include an estimate
for the cost of the classical processing power required
to perform decoding of the surface code using current

techniques, the quantum advantage disappears. Thus,
improvements to fault-tolerance methods are likely to
be required if such speedups are to be realised in prac-
tice.

In order to state our results more precisely, we must
describe the model and methodology used to calculate
the cost of a quantum computation.

1.1 Timing and cost model

Here we outline our resource methdology, which fol-
lows a model developed by several previous works in
this area [3, 8, 10, 53, 78]. The model assumes that
the quantum computation is encoded using the sur-
face code [53], a quantum error-correcting code with
properties that make it an excellent candidate for im-
plementation on near-term hardware platforms (e.g.
high fault-tolerance threshold, implementability via
local operations). Then the cost of a computation
can be calculated via the following sequence of steps:

1. Determine the cost of the quantum circuit, in
terms of the number of gates used and the cir-
cuit depth.

2. Calculate the number of physical qubits required
for the logical computation, and the physical
depth.

3. Insert hardware-dependent parameters for clock
speed and other variables to compute a physical
runtime. According to the runtime requirement,
this should be at most 1 day, putting a limitation
on the problem instance size that can be solved.

4. Use the above to make a comparison between the
cost of quantum and classical computation.

When considering the cost of quantum circuits im-
plemented using the surface code, it is helpful to
divide the circuit into parts consisting of Clifford
gates (which can be implemented relatively straight-
forwardly) and non-Clifford gates (which cannot). In
the circuits that we consider, the non-Clifford gates
used are Toffoli and T gates.

Toffoli and T gates can be implemented fault-
tolerantly using a state injection technique where a
special state is prepared offline (a Toffoli state [48, 61]
or T state [27]), and then used to implement the cor-
responding gate. We include in Appendix A an al-
gorithm for computing the costs associated with this,
based on the protocol of [48, 61] and using the analysis
of [78] (see also [3, 53]). Some illustrative spacetime
costs are shown in Table 3 for Toffoli gates, which
dominate the complexity of the circuits we consider;
the values for T gates are similar.

For reasonable parameter ranges for the error rate
€ and the number N of Toffoli gates, and using stan-
dard protocols, the number of qubits used by a single
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N\ e 103 1074 10°
10'2 | 4.10 x 107 | 4.22 x 10% | 8.98 x 10°
1018 | 2.45 x 108 | 9.86 x 10° | 2.30 x 106
10%* | 4.51 x 10% | 4.60 x 107 | 4.69 x 10°

Table 3: Representative spacetime costs (measured in units
of surface code cycles x physical qubits) to implement one
Toffoli gate, assuming gate error rate € and a circuit of IV
Toffoli gates. Calculated using method described in Appendix
A. 10%* gates is a generous upper bound on the number of
Toffoli gates that can be executed in 1 day (corresponding
to > 10° qubits at a clock speed of 1GHz).

Toffoli-factory is between 10* and 10°, and the depth
of the factory is between 100 and 1000 surface code
cycles. However, using more factories this process
can be parallelised, such that each new magic state
is available almost arbitrarily quickly. Using time-
optimal methods [51], the limiting factor becomes
only the time required to inject a magic state, which
is the time taken for a single physical measurement?.

The time complexity of the circuit is then governed
by its depth, considering only Toffoli or T gates. As a
Toffoli gate can be implemented using a single layer of
T gates [89] or injected directly from a Toffoli magic
state, this is equal to the “T-depth” of the circuit.
The T-depth is defined as the number of T-stages in
a circuit, where a T-stage is a group of T gates that
can be performed simultaneously [7]. Each time step
corresponds to the cost of one measurement.

The parts of the circuit corresponding to Clifford
gates can also be implemented using state injection by
preparing a particular graph state offline, then mea-
suring all the qubits of this state simultaneously. As
the results of this measurement only affect the in-
terpretation of subsequent measurement results, not
which measurements are performed, it can be per-
formed in parallel with the implementation of a sub-
sequent Toffoli or T gate. Hence Clifford gates do not
contribute to the time cost of the circuit.

The drawback of implementing the circuit in this
way is that a large number of ancillas are used, though
in practice this ancilla cost is still small compared to
the size of the magic state factory. Making a detailed
analysis of time-optimal implementations of a Grover
oracle, we found that the factory comprised 95%—99%
of all physical qubits, so it is safe to assume factory-
dominated costs. There is a space-time tradeoff here
and we have chosen to minimise time over space.

Some additional aspects which we do not take into
account in our cost calculations, for simplicity and
because of their hardware-specific nature, are:

SThere is also a cost associated with performing a gate be-
fore the measurement, but when multiple logical gates are per-
formed, this cost becomes negligible.

Realistic Plausible Optimistic

Max n 65 72 78
T-depth 1.46 x 10'2 | 1.65 x 1013 | 1.32 x 104
Toffoli count | 4.41 x 10'7 | 5.52 x 10'® | 4.79 x 10"
Factory qubits | 3.14 x 10'3 | 5.15 x 102 | 1.38 x 10'?
Speedup factor | 1.62 x 103 | 1.73 x 10* | 1.83 x 10°

Table 4: Likely speedup factors for 14-SAT via Grover's al-
gorithm achievable in different regimes.

Realistic Plausible Optimistic

Max n 55 63 72
T-depth 1.63 x 10'2 | 1.43 x 10" | 1.63 x 10™
T/Toffoli count | 4.72 x 10'8 | 4.72 x 1019 | 6.16 x 1020
Factory qubits | 3.85 x 10™ | 5.03 x 10'3 | 2.17 x 10'3
Speedup factor | 1.50 x 10' | 3.92 x 102 | 1.16 x 10*

Table 5: Likely speedup factors for 12-SAT via backtracking
achievable in different regimes.

e Any additional cost required to implement long-
range gates. This cost will depend on the under-
lying hardware (e.g. certain architectures allow
long-range gates, while others are restricted to
nearest-neighbour interactions), and some appar-
ently “long-range” gates can be implemented ef-
ficiently in the surface code (e.g. controlled-NOT
gates with multiple targets).

e Any additional cost required to lay out and route
qubits physically within a desired spacetime vol-
ume. A discussion of these issues can be found
in [10].

One way to address point 4 above, and find a ba-
sis for comparing the cost of classical and quantum
computation, is to consider the cost of the classical
processing required to perform the quantum compu-
tation (and in particular to carry out the calculations
required for fault-tolerance). We discuss this in Sec-
tion 8.

1.2 Summary of results

Having described the cost model, we summarise the
results obtained in Tables 4 to 6. Each table col-
umn corresponds to an extrapolation for the maximal
instance size n that can be solved by a quantum algo-
rithm in one day, and includes the parameters of this
algorithm, and the speedup obtained. These speedups
are expressed as a multiple of the likely performance of
the DSATUR and Maple_ LCM _Dist algorithms run-
ning on a standard desktop computer in the cases of
graph colouring and SAT, respectively (see Section
7 for more on the classical experimental results, and
the assumptions made). We stress that these figures
are sensitive to the precise assumptions made about
the classical algorithm’s scaling and hardware perfor-
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Realistic Plausible Optimistic

Max n 113 128 144
T-depth 1.70 x 10'? | 1.53 x 10*3 | 1.62 x 1014
T/Toffoli count | 8.24 x 1017 | 9.94 x 108 | 1.24 x 10%°
Factory qubits | 6.29 x 1013 | 9.26 x 10'? | 3.59 x 10'2
Speedup factor | 7.25 x 10° | 5.17 x 10® | 4.16 x 10*

Table 6: Likely speedup factors for graph colouring via back-
tracking achievable in different regimes.

mance, as well as to certain assumptions (detailed be-
low) about the quantum algorithms’ performance on
random instances. However, any reduction in per-
formance due to a change in these assumptions can
be offset by allowing the quantum algorithm to run
for longer.

If there were no need for fault-tolerance at all, the
runtime of the algorithm would be determined only by
the time required for 2-qubit gates, which is somewhat
faster than the measurement time in Table 1, so the
speedup factor would likely be somewhat larger.

The results in Tables 4 to 6 were obtained by us-
ing computer programs to calculate the complexity
of the various algorithms used (in terms of T-depth
and T-count) for different parameter values. We then
chose parameters that produced the largest speedups,
while respecting the constraint that the quantum al-
gorithm should run for at most one day. For example,
in the case of k-SAT and Grover’s algorithm, choosing
k = 14 led to the largest quantum speedup. All code
developed, together with the experimental results for
the classical algorithms, is available at [1].

The largest potential speedup factor found is rea-
sonably large in the “Plausible” scenario, and very
large in the “Optimistic” scenario; over 10° in the case
of applying Grover’s algorithm to random 14-SAT,
and over 4 x 10% in the case of determining coloura-
bility of a random graph with 144 vertices. However,
the number of physical qubits used is very large, which
(as discussed in Section 8) implies a concomitant in-
crease in the cost of classical processing, which could
erase this advantage. This strongly motivates the de-
sign of improved fault-tolerance strategies. Observe
that this overhead could be mitigated somewhat at
the expense of allowing a longer runtime.

It is interesting to note that, in the case of k-SAT,
the quantum backtracking algorithm achieves worse
performance than straightforward use of Grover’s al-
gorithm. This is because of lower-order terms in the
runtime (cf. Tables 7 and 9 below); although the
backtracking algorithm will be more efficient for large
problems, Grover’s algorithm is faster for the problem

4The runtime of the quantum algorithm for graph colour-
ing experiences a small overhead that varies depending on the
instance (see Section 7.2), and the complexity of a circuit syn-
thesis step used in the algorithm is also problem-dependent [22]
(see Section 4.7).

sizes that can be solved in one day.

1.3 Organisation and notation

In the remainder of this paper, we give the technical
details behind the calculations reported in Tables 4 to
6. First, in Sections 2 and 3, we describe the variants
of Grover’s algorithm and the backtracking algorithm
that we use. In Section 4, we discuss the detailed im-
plementation decisions and optimisations that go into
calculating the backtracking algorithm’s complexity
in the case of graph colouring. Section 5 describes
the modifications that need to be made to apply the
algorithm to k-SAT. Section 6 describes the classical
DSATUR algorithm, while Section 7 gives the results
of the classical experiments to determine the empirical
complexity of Maple_.LCM_Dist and DSATUR. Sec-
tion 8 discusses how to estimate the cost of quantum
computation in terms of classical processing. We fin-
ish in Section 9 with conclusions and further discus-
sion.

We use certain notation throughout the paper. All
logs are base 2 and [n] denotes the set {1,...,n}.
We use n for the number of variables in a constraint
satisfaction problem, and m for the number of con-
straints (edges in the case of colouring problems,
clauses in the case of k-SAT). In the case of the graph
colouring problem, we also write r = [log(k + 1)],
s = [log(n + 1)]. These represent the number of bits
required to store an element of [k] U {x}, {0,...,n}
respectively.

2 Grover's algorithm

Given access to an oracle function f : [N] — {0,1},
Grover’s quantum search algorithm can be used to
find z such that f(z) = 1, or output that no such z
exists, using O(v/N) evaluations of f [24, 57], with
arbitrarily small failure probability 6. The algorithm
is based on “Grover iterations”, each of which can
be written as DOy, where D is a fixed “diffusion
operator” and Oy is an oracle operator performing
the map |z)|y) — |x)|y @ f(z)). If the size S of the
set {x : f(x) = 1} is known in advance, the optimal
number of Grover iterations to maximise the success
probability can be calculated in advance; otherwise,
one can show that running the algorithm using vary-
ing numbers of iterations (e.g. exponentially increas-
ing, or random) is sufficient to solve the unstructured
search problem. A precise analysis by Zalka [97] of
one variant of the algorithm showed that, to achieve
failure probability J, it is sufficient to carry out at
most
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Input: z € {0,1}".
Ancillae: m-qubit register A.

1. Fan-out x to m copies.

2. In parallel, for each clause c: set A, to 1 if =
satisfies clause c.

3. Set the output bit to 1 if A, =1 for all c.
4. Uncompute A.

5. Fan-in x back to 1 copy.

Algorithm 3: Check whether x violates any clause in a k-SAT
formula ¢ with m clauses.

iterations®. This is close to optimal, as even under
the promise that S = 1, Q(v/N) evaluations of f are
required to find the unique x such that f(z) = 1 with
high probability [19, 96]. Here we will choose § = 0.1,
where we obtain an upper bound of 3.642v/N itera-
tions. (For this value of J, a lower bound of about
0.625v/'N iterations can be derived from the tight
bound for the special case S = 1, also shown by Za-
lka [96].)

Assuming that N = 2" for some integer n (as is
the case for k-SAT), the diffusion operation can be
implemented using a layer of Hadamard gates on ev-
ery qubit, followed by a Toffoli gate controlled on
all n bits, with target an ancilla bit in the state
%(|0> —|1)), and then another layer of Hadamard
gates. In most cases, the majority of the complexity
in the algorithm therefore comes from the purely clas-
sical oracle operation f, as a Toffoli gate controlled on
n bits can be implemented using a circuit with O(n)
gates and depth O(logn).

In the case of k-SAT, the oracle needs to output 1 if
and only if the input z satisfies all clauses ¢ in ¢. This
is an m-wise AND function of OR functions of k bits
each (and some additional NOT operations). There
is a straightforward algorithm for implementing this
depth-efficiently, which is stated as Algorithm 3. The
key point is that to check all the clauses in parallel,
z needs to be fanned out to multiple copies, because
two gates cannot be performed on the same qubit at
the same time. Note that for random formulae, m
will usually be an overestimate of how many copies
of each bit are required, because clauses that involve
disjoint sets of variables can be checked at the same
time. In the best case, the clauses could be grouped
into approximately mk/n sets of n/k clauses, where
the clauses in each set could be checked simultane-
ously. This would lead to mk/n copies of each bit
being required.

We can now calculate the complexity of Grover’s

5This is the “simple algorithm” in [97]; a different algorithm
presented in [97] would be more efficient for small 4.

algorithm for particular choices of k, m and n. The
algorithm consists of Toffoli gates and Clifford gates.
We ultimately will be concerned with measuring the
Toffoli depth and Toffoli count, with our primary goal
being to minimise Toffoli depth (as this controls the
runtime of the overall computation).

Each Toffoli gate controlled on ¢ > 2 bits can be
implemented using a circuit containing 2c — 3 stan-
dard Toffoli gates arranged into 2[logc] — 1 layers
in a tree structure. However, almost half of these
gates can be replaced with classically controlled Clif-
ford gates using the “uncompute AND” operation de-
scribed in [56], to give a circuit containing ¢— 1 Toffoli
gates. This does not change the measurement depth
of the resulting circuit, as the classically controlled
Clifford operation itself requires a measurement.

The operation of fanning out a single bit b to ¢
copies can be implemented via a tree of CNOT oper-
ations of the following form, illustrated for ¢ = 8:
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The depth of the circuit is [loge], and it uses ¢ — 1
CNOT gates and no other gates. However, in the sur-
face code a fan-out operation (equivalently, a CNOT
gate with multiple target bits) can be executed in the
same time as required for one CNOT gate [53]. So
we assign this operation the same cost as one CNOT
gate, which in any case is 0, when considering Toffoli
depth and Toffoli count.

Combining all the components of Algorithm 3, the
Toffoli depth is

4[(logk) — 11+ 2[(logm) — 1] + 