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Identical quantum particles exhibit only two types of statistics: bosonic and fermionic. The-
oretically, this restriction is commonly established through the symmetrization postulate or
(anti)commutation constraints imposed on the algebra of creation and annihilation operators. The
physical motivation for these axioms remains poorly understood, leading to various generalizations
by modifying the mathematical formalism in somewhat arbitrary ways. In this work, we take an
opposing route and classify quantum particle statistics based on operationally well-motivated as-
sumptions. Specifically, we consider that a) the standard (complex) unitary dynamics defines the
set of single-particle transformations, and b) phase transformations act locally in the space of multi-
particle systems. We develop a complete characterization, which includes bosons and fermions as
basic statistics with minimal symmetry. Interestingly, we have discovered whole families of novel
statistics (dubbed transtatistics) accompanied by hidden symmetries, generic degeneracy of ground
states, and spontaneous symmetry breaking– effects that are (typically) absent in ordinary statistics.

I. INTRODUCTION

The concept of identical particles was introduced by
Gibbs in 1902 [1] as an alternative to solve the prob-
lem related to the extensitivity of entropy, the so-called
Gibbs paradox. According to Gibbs, a system consists of
identical particles if its physical magnitudes are invariant
under any permutation of its elements. Bose has put for-
ward this idea in quantum mechanics in his derivation of
Planck’s law of blackbody radiation [2]. This was further
developed by Dirac [3] and Heisenberg [4], who formu-
lated the well-known symmetrization postulate: physical
states must be symmetric in such a way that the exchange
of particles does not give any observable effect. Put in
the standard language of wavefunctions, if the state of,
say, two particles is given by ψ(x1, x2), then

ψ(x2, x1) = eiφψ(x1, x2). (1)

Applying the particle swap twice trivially reveals eiφ =
±1. This is the origin of two types of particle statistics:
bosons (symmetric) and fermions (antisymmetric).

Another approach to explain the origin of quantum
statistics is the topological argument [5, 6]. Namely, the
exchange symmetry is directly related to the continuous
movement of particles in a physical (configuration) space,
which implies that only bosonic and fermionic phases are
allowed, given that the number of spatial dimensions is
three or greater. In lower dimensions, one gets fractional
phases and anyonic statistics [7].

The third common way of addressing the question
of particle statistics is to take the algebraic (field) ap-
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proach [8], i.e., by postulating the set of canonical rela-
tions

[ai, a
†
j ]± = δij11, (2)

where ± stands for (anti)commutator of operators (for
fermions and bosons, respectively). Starting with an as-
sumption of a unique vacuum state, one can build the
multi-particle state space (Fock space) for two types of
particle statistics.
While these approaches agree at the level of ordinary

statistics (bosons and fermions), all of them have been
criticized for their ad hoc nature [9–11]. This leaves the
door open for various generalizations, many of which re-
sort to somewhat arbitrary assumptions added to the
quantum formalism. Earliest work along these lines dates
back to Gentile and his attempt to interpolate between
two statistics [12], and since then, we have seen dozens
of generalized and exotic statistics, such as parastatis-
tics [13], quons and intermediate statistics [14–17], in-
finite statistics [18, 19], generalizations of fractal and
topology-dependent statistics [20–23], ewkons [24] mod-
ifications of statistics due to quantum gravity [25–27],
non-commutative geometry [28] and others [29–32].

A. Operational approach and particle statistics

So far, exotic statistics have never been observed in
nature. This situation can be interpreted at least in two
ways: we need more sophisticated and precise experi-
ments, or (some) generalizations are in collision with ba-
sic laws of physics (believed to hold universally). An ex-
cellent example of the latter point is a question of the par-
ity superselection rule (PSR) for fermions derived from
the impossibility of discriminating a 2π-rotation from the
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identity in three-dimensional space [33]. One may won-
der how to apply this reasoning in a more abstract sce-
nario, such as fermions occupying some discrete degrees
of freedom (e.g., energy) where no notion of rotation (a
priori) exists. An elegant study was provided in a recent
work [34] based on techniques from quantum information,
showing that a PSR violation would allow for superlumi-
nal communication. Thus, the parity superselection rule
can be derived from a more basic law, i.e., the no signal-
ing principle [35]. Such an approach to physical theories
(from physical laws to mathematical formalism) resem-
bles Einstein’s original presentation of special relativity.
In that case, a concise set of physical postulates, namely
the covariance of physical laws and the constancy of the
speed of light in all frames of reference, paved the way for
the formalism of Lorentz transformations. In the realm
of quantum foundations, the application of this method-
ology was particularly successful. With the pioneering
work of Hardy [36], the field of operational reconstruc-
tions of quantum theory [36–41] was established where
one recovers the abstract machinery of Hilbert spaces
starting from a set of information-theoretic axioms. Con-
sidering the significance of identical particles in quantum
information processing (such as in linear optical quan-
tum computing [42]), it becomes evident that utilizing
this operational approach holds significant potential to
derive particle statistics based on physically grounded as-
sumptions. Rather than exploring possible modifications
of the existing formalism, a more constructive approach
may begin by defining a typical quantum experiment and
addressing straightforward physical questions. For exam-
ple, how do we define particle (in)distinguishability from
an experimental standpoint? Is it possible to establish a
clear operational differentiation between various types of
identical particles, and if so, how do we characterize the
corresponding mathematical formalism? Our work can
be understood as an attempt to answer these questions.
Along these lines, promising research studies appeared in
the context of the symmetrization postulate [43], anyonic
statistics [44], quantum field theory [45, 46] and identi-
cal particles in the framework of generalized probabilistic
theories [47, 48].

B. Reconstruction, mathematical foundations and
summary of the results

Following the instrumentalist approach of Hardy [36],
we study identical quantum particles in an operationally
well-defined setup composed of laboratory primitives,
such as preparations, transformations, and measure-
ments (see Fig. 1). Our starting point is a single quan-
tum particle which we assume is an ordinary quantum
particle described by standard formalism and unitary dy-
namics. This appears rather natural, as a single quantum
particle is insensitive to statistics. We introduce a typical
apparatus for a single-particle transformation described
by a unitary channel on d-modes (d× d unitary matrix)

and a set of d detectors at the output. For such a fixed
circuit, we investigate the scenario with multiple identical
particles at the input and analyze the probability of de-
tecting them after the transformation. Detectors can reg-
ister only particle numbers but cannot distinguish them;
thus, indistinguishability is built in from the beginning.
As we shall see, the Fock-space structure will naturally
arise as an ambient space for multi-particle states. Two
central mathematical ingredients will thus figure promi-
nently in our reconstruction of particle statistics:

1) unitary group U(d) describing single-particle trans-
formations, and

2) the Fock space structure encompassing multi-
particle states.

Paired with the locality assumption (i.e., phase trans-
formations acting locally in Fock space), these two ele-
ments will determine how particles are organized in mul-
tiparticle states. Mathematically, the problem concerns
the classification of representations of the U(d) group in
Fock space subjected to locality constraint. We found
a one-to-one correspondence to the well-studied mathe-
matical problem of characterizing completely-positive se-
quences [49–52]. This, in turn, provided us with a com-
plete categorization of particle statistics based on integral
polynomials. To be more precise, a list of integers

[q0, q1, . . . ]±, (3)

defines a type of particle statistics, provided that
Q±(x) =

∑
s(∓1)sqsx

s are polynomials with all negative
(+) or positive (−) roots. We coin the term transtatistics
for this generalized statistics. This is a natural general-
ization of ordinary statistics into two types: fermionic-
like [. . . ]− (transfermions) and bosonic-like [. . . ]+ (trans-
bosons), and to the best of our knowledge, was not pre-
sented in the literature. Ordinary statistics is the sim-
plest possibility (degree-one) [1, 1]± with multiparticle
Fock state being completely specified by irreducible rep-
resentations (IR) of U(d). On the other hand, general
transtatistics requires additional quantum numbers to
identify states of indistinguishable particles; thus, hid-
den symmetries [53] and new degrees of freedom emerge
exclusively from these types of particles. We discuss fur-
ther physical consequences by analyzing the thermody-
namics of non-interacting gases. In doing so, we find an
interesting inclusive degeneracy of ground-states followed
by spontaneous symmetry breaking [54], which (usually)
does not exist in ordinary statistics.

Symmetry is central to our reconstructions. In particu-
lar, the U(d) symmetry of single-particle transformations
is uniquely related to ordinary statistics and transtatis-
tics. This also brings the main difference to other general-
ized statistics, which rely on different symmetries. Apart
from the foundational relevance, our findings apply to
quantum information and quantum many-body physics.
Concretely speaking, transtatistics brings novel theoret-
ical models for non-interacting identical particles. The
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FIG. 1. Operational setup. a) Quantum circuit represented
by U(d)-transformation for a single particle (example of d = 4
is shown). For many particles injected into the setup, detec-
tors can register their number only. This incorporates the
notion of indistinguishability. b) Disconnected (independent)
phase gates acting on particles locally, in individual modes.

latter is relevant for studying strongly-correlated quan-
tum systems (see [55] and references therein), many of
which are reducible to non-interacting models of indis-
tinguishable particles [56]. Therefore, one may find new
integrable models among strongly interacting quantum
systems reducible to our non-interacting model. On the
quantum information side, quantum statistics is essen-
tial in complexity theory and intermediate quantum com-
puting models, such as in boson sampling [57]. In this
respect, our classification is relevant as it may lead to
the discovery of new intermediate computational models.
These points are only summarized here and will be dis-
cussed in more detail in the last section of the manuscript.

II. OPERATIONAL SETUP FOR
INDISTINGUISHABLE PARTICLES

The operational framework for indistinguishable parti-
cles is illustrated in Fig. 1a). The apparatus consists of
d modes into which particles can be injected, followed by
a transformation g and a set of d detectors that register
particles after the transformation. The transformation g
is fixed and independent of particle number at the input
and particle-statistics type. One can think of this trans-
formation as a quantum circuit composed of elementary
gates, such as beam-splitters and phase shifters used in
quantum linear optics to produce a general unitary trans-
formation g ∈ U(d) on dmodes [58], where U(d) is the set
of d× d unitary matrices. As long as just one particle is
injected into the setup, e.g., in mode i, the jth detectors
will register the particle with the probability pj = |gji|2
with gji being the matrix element of g. In other words, g
represents standard complex unitary dynamics of a sin-
gle quantum particle with d levels (modes). The critical
question to be answered is what will happen if more than
one particle is injected into such apparatus? To formalize
the situation, there are three points to be addressed in
the first place:

i) We shall determine the ambient Hilbert space de-
scribing the multi-particle system,

ii) we have to find the corresponding representation of

transformations (as defined by the U(d) group) in
such a space, and

iii) finally, determine the Born rule to calculate prob-
abilities of detection events.

To identify the Hilbert space of many particles, we use
the fact that particles are indistinguishable, i.e., de-
tectors can register only particle numbers (how many
particles land in a particular detector without distin-
guishing them). Thus the overall measurement outcome
is described by a set of numbers (n1, n2, . . . , nd), with
nk = 0, 1, 2, . . . . This outcome fully specifies the physical
configuration; thus, we associate to it the measurement
vector |n1, . . . nd⟩ such that the Born rule gives detection
probabilities

pn1,...,nd
= | ⟨n1, . . . , nd|ψg⟩ |2, (4)

where |ψg⟩ is the state of the system after the transfor-
mation g. From here, we directly see that |ψg⟩ ∈ Fd

resides in a Fock space defined as a span over number
states, i.e.,

Fd = span{|n1, n2, ..., nd⟩ | nk = 0, 1, 2, . . . p}. (5)

Here span denotes the complex linear span (hull) of ba-
sis vectors. Since outcomes (n1, n2, . . . , nd) are perfectly
distinguishable, vectors |n1, n2, ..., nd⟩ form an orthonor-
mal set. We introduced the possibility of there being a
maximal occupation number p ∈ N, which is the gener-
alized Pauli exclusion principle. As we shall see, p = 1
will correspond to fermionic statistics, while bosons are
associated with the case p = +∞. At this stage, p is char-
acteristic of statistics and is kept as an integer parame-
ter (possibly infinite). Note that the Fock space in (5)
shall not be a priori identified with the standard (text-
book) Fock space constructed as a direct sum of particle
sectors. Our Fock space is an ambient Hilbert space for
multi-particle states naturally emerging from operational
considerations and the measurement postulate defined in
(4). Note also that the Fock space in (5) is of the tensor

product form, i.e., Fd = F⊗d
1 .

Now, we shall find an appropriate unitary represen-
tation of g ∈ U(d) in the ambient space Fd, i.e. ∆d :
U(d) 7→ GL(F) such that

|ψg⟩ = ∆d(g) |ψin⟩ , (6)

with ∆d(g) being unitary representation and |ψin⟩ ∈ Fd

is some input state to the circuit in Fig. 1a). For ex-
ample, |ψin⟩ = |1, 1, 0, . . . , 0⟩ represents the input state
of two particles injected in mode 1 and 2. In general,
|ψin⟩ may involve the superposition of number states.
Representation ∆d is reducible in general, and the group
character completely determines its decomposition into
irreducible (IR) sectors [59], that is, a function defined
over the elements of the group

χd(g) = Tr(∆d(g)), ∀g ∈ U(d). (7)
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As we shall see, the irreducible decomposition of Fock
space (5) will be in one-to-one correspondence to the type
of particle statistics. So, the group character will be our
main object of interest.

A. Locality assumption

To evaluate character on U(d) group, recall that any
unitary matrix can be diagonalized, i.e., g = StS†, with
t = diag[x1, . . . , xd] ∈ Td = U(1) × · · · × U(1) being an
element of the maximal torus (also known as the phase
group) with xk = eiθk ∈ U(1). Therefore, the character
of U(d) is entirely specified by the character evaluated
on Td, that is, χd(StS

†) = Tr∆d(StS
†) = Tr∆d(t) =

χd(t) (i.e., class function), thus it effectively becomes a
function of phase variables, i.e., χd(x⃗) = χd(x1, . . . , xd).
Consider the case of a single-mode (d = 1) with the

Fock space F1 = span{|n⟩ | n = 0, 1, . . . , p} on which the
group U(1) acts with representation ∆1(x), with x = eiθ.
We can think of ∆1(x) representing a simple device pro-
viding a phase shift to the state of a single particle placed
in a mode. We can now consider the collection of d such
devices disconnected from each other and operating in-
dependently in separate modes, as illustrated in Fig. 1b).
These transformations form the phase group Td acting in
the entire Fock space, and given their operational inde-
pendence, it appears natural to assume the following.

Assumption 1 (Locality). The action of the phase
group Td in Fock space is local, i.e.,

∆d(x⃗) = ∆1(x1)⊗ · · · ⊗∆1(xd), (8)

for x⃗ ∈ Td.

By taking the trace of the last equation, one gets

χd(x⃗) =

d∏
k=1

χ1(xk), (9)

with χ1(x) = Tr(∆1(x)) being the single-mode character.
One can also go in the reversed direction, i.e., starting
with the character factorization in (9), we may derive
the tensor factorization in (8), which follows from general
character theory [59].
Assumption 1 is our central assumption. We see that

the single-mode character χ1, a function of a single vari-
able, entirely specifies the character of the whole U(d).
The problem then simplifies, and our goal is to determine
the most general form of χ1(x) such that χd(x⃗) in (9) is
a valid character of U(d).

B. Generalized number operator and conserved
quantities

What follows from Assumption 1 and factorization
given in (9) is that the single-mode character χ1(x) com-
pletely specifies the character of the whole U(d) and con-
sequently determines the decomposition of Fock space

into IR sectors. Note that the action of the single-mode
phase transformation x = eiθ ∈ U(1) can be seen as
an instance of the Hamiltonian evolution. Thus we can
write θ = ϵt/ℏ, where ϵ is the single-particle energy asso-
ciated with this mode. With this, the representation of

the phase transformation becomes ∆1(e
i/ℏϵt) = ei/ℏĤt,

where Ĥ is the single-mode Hamiltonian (generator of
phase). From the invariance under (2π)-rotations, i.e.,

ei(θ+2π) = eiθ, we conclude that all eigenvalues of Ĥ are
integer multiples of ϵ, that is, Ĥ = ϵÑ with Ñ being the
operator with integer eigenvalues. This defines the gen-
eralized number operator or excitation operator Ñ . Here,
we will consider only the case Ñ ≥ 0; the possibility of
negative eigenvalues of Ñ , which would account for the
most general generator of U(1), will be discussed later in
Section VIB. Without loss of generality, we can assume
U(1) action to be number preserving, thus

Ñ =

p∑
n=0

fn |n⟩ ⟨n| , (10)

with fn being non-negative integers. Note that Ñ is in
general different from the standard number operator N̂ =∑p

n=0 n |n⟩ ⟨n|. The two will coincide only if fn = n, and
as we shall see, this happens only in the case of ordinary
statistics.

Finally, we can write the single-mode character

χ1(e
iθ) = Tr(eiθÑ ) as

χ1(x) =

+∞∑
s=0

asx
s = xf0 + xf1 + · · ·+ xfp , (11)

with as being a non-negative integer. Mathematically
speaking, the formula above is the decomposition of χ1

into irreducible representations of U(1). For fermions,

we have χ
(−)
1 (x) = 1 + x, while for bosons χ

(+)
1 (x) =

1 + x+ x2 + · · · = 1
1−x .

For the case of d modes, the action of the phase group
in (8) becomes

∆d(x⃗) = eiθ1Ñ1+···+iθdÑd , (12)

where Ñk = 11⊗(k−1)⊗Ñ⊗11⊗(d−k) are generators of local
phases. The vector x⃗ = θ(1, 1, . . . , 1)T ∈ Td corresponds
to the scalar d×d matrix eiθ11d commuting with all U(d)
matrices, thus the operator

Ñ =

d∑
k=1

Ñk, (13)

is a conserved quantity (Casimir operator) and represents
the total number of excitations. We can also write (12)
as being generated by the following Hamiltonian

Ĥ =

d∑
k=1

ϵkÑk, (14)

where θk = ϵkt/ℏ and ϵk is are the single-particle ener-
gies.
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FIG. 2. Hong-Ou-Mandel effect [63]. a) Boson bunching,
and b) fermion antibunching. See main text for details.

III. PARTICLE STATISTICS AND ITS
CLASSIFICATION

A. On exchange symmetry

In the 1st quantization approach, particle statistics are
classified via the exchange of particles and symmetriza-
tion postulate as given in equation (1). However, this
method does not apply to the Fock-space approaches
simply because there is no particle label (they are in-
distinguishable). A partial solution to this problem is to
introduce permutation of modes operator [60]

∆d(σ) |n1, n2, . . . , nd⟩ = |nσ(1), nσ(2), . . . , nσ(d)⟩ , (15)

for some permutation σ ∈ Sd of d elements. In this way,
the permutation group acts in Fock space and plays the
same role as the exchange of particles in the 1st-quantized
picture. For ordinary statistics, we have the usual sign
change, i.e., ∆d(σ) |1, 1, . . . , 1⟩ = (±)σ |1, 1, . . . , 1⟩, where
(..)σ denotes the parity of permutation (+1 for bosons
and (−1)σ for fermions). Nevertheless, the permuta-
tion of modes is only a discrete subgroup of the group
of single-particle transformation, thus insufficient for the
whole physical picture. For example, in our case, it is
the subgroup of the unitary group, i.e., Sd < U(d). But
it can also be a subgroup of some other group, such as
an orthogonal group, in which case one gets parastatis-
tics [61, 62]. Therefore, to fully understand how differ-
ent types of particles integrate into multi-particle states
in Fock space, one must study transformation proper-
ties under the action of the whole group of single-particle
transformations. This work concerns U(d) as our premise
is that standard unitary quantum mechanics governs the
physics of one particle.

B. Physical consequences

To illustrate how single-particle transformations affect
the physical behavior of indistinguishable particles, take
an example of two particles entering the 50/50 beam-
splitter (BS) at different ports (modes), as shown in
Fig. 2. The beam-splitter is defined via unitary ma-

trix ubs = 1√
2

(
1 1
1 −1

)
. Now, if particles are bosons,

then the input state is |1, 1⟩ = a†1a
†
2 |0, 0⟩, where a†1(2)

are bosonic ladder operators associated to two different
modes (ports of BS). The output state (after BS) is given

by 1
2 (a

†
1 + a†2)(a

†
1 − a†2) |0, 0⟩ = 1√

2
(|2, 0⟩ − |0, 2⟩). We

see that bosons exit the BS bunched together, and this
is the well-known Hong-Ou-Mandel effect [63]. In con-
trast, if particles were fermions, the calculation remains

the same but with fermionic ladder operators a†1/2, thus

we have the output state 1
2 (a

†
1 + a†2)(a

†
1 − a†2) |0, 0⟩ =

−a†1a
†
2 |0, 0⟩ = − |1, 1⟩. This means that fermions exit

the BS antibunched (in different ports). These two com-
plementary behaviors can be deduced from the decom-
position of the Fock space (5) into IR sectors of the U(2)
group and action of the ubs element. In the case of two
bosons, U(2) reduces into three-dimensional subspace
span{|2, 0⟩ , |1, 1⟩ , |2, 0⟩} (bosonic IR) which encompasses
the bunching effect. For two fermions, we have the one-
dimensional IR spanned by {|1, 1⟩} (fermionic IR), di-
rectly resulting in fermionic antibunching.

C. Particle statistics

As explained at the beginning of this section, the group
of single-particle transformations determines the physi-
cal behavior of non-interacting indistinguishable parti-
cles, and different types of particle statistics arise due
to the Fock space’s U(d)-IR decomposition. Therefore,
what we mean by classification of particle statistics is
a classification of all possible ways the Fock space (5)
decomposes into IR sectors, i.e.

Fd =
⊕
λ

cλVλ, (16)

where Vλ is an U(d)-IR. These are indexed [59] by a par-
tition (Young diagram) λ = (λ1, . . . λd) with λ1 ≥ · · · ≥
λd, and cλ ∈ N0 is the frequency of the IR. Now, recall
that the character of a representation completely deter-
mines its decomposition into IR sectors. A well-known
fact from representation theory is that IRs of U(d) have
Schur polynomials sλ(x⃗) as characters (see Appendix A
for definition) [64]. Thus, equation (16) translates to de-
composition of character (9) into Schur-polynomials, i.e.

d∏
k=1

χ1(xk) =
∑
λ

cλsλ(x⃗), cλ ∈ N0. (17)

We see that the single-mode character χ1(x) completely
specifies particle statistics (in the sense of definition (16))
and this is a direct consequence of our locality assump-
tion 1.

To clarify the point, we provide examples of bosonic
and fermionic statistics. For fermions, the maximal oc-
cupation number is p = 1, thus the single-mode character

in (11) reduces to χ
(−)
1 (x) = 1+ x. For d-modes, charac-
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ter (9) can be expanded as

χ
(−)
d (x⃗) =

d∏
k=1

(1 + xk) = 1 + (x1 + · · ·+ xd) + (18)

+ (x1x2 + · · ·+ xd−1xd) + · · ·+ x1x1 . . . xd.

Written in terms of Schur-polynomials, this equation
reads

χ
(−)
d (x⃗) = s(0,0,...,0)(x⃗) + s(1,0,...,0)(x⃗) + s(1,1,...,0)(x⃗) + . . .

+ s(1,1...,1)(x⃗). (19)

This expansion corresponds to the decomposition of the

Fock space Fd =
⊕d

N=1 V
(N)
− into fermionic irreducible

subspaces V(N)
− associated with particle sectors.

Similarly, for the case of bosons and p = +∞, equation

(11) reads χ
(+)
1 (x) = 1+x+x2+ · · · = 1

1−x . For d modes,

(9) reads

χ
(+)
d (x⃗) =

d∏
k=1

1

1− xk
= 1 + (x1 + · · ·+ xd) (20)

+ (x21 + x1x2 + x22 + · · ·+ xd−1xd + x2d)

+ (x31 + x21x2 + x1x
2
2 + x32 + · · ·+ xd−1x

2
d + x3d) . . .

or written in terms of bosonic Schur polynomials

χ
(+)
d (x⃗) = s(0,0,...,0)(x⃗) + s(1,0,...,0)(x⃗) + s(2,0,...,0)(x⃗)

+ s(3,0,...,0)(x⃗) + . . . (21)

Again, this corresponds to the decomposition of the Fock

space Fd =
⊕+∞

N=1 V
(N)
+ into bosonic irreducible sub-

spaces V(N)
+ associated with particle sectors.

An important remark is in order about the single-

particle sector F (1)
d = span{|n1, n2, ..., nd⟩ |

∑
k nk = 1}

which is d-dimensional. This subspace is associated with
the character s(1,0,...,0)(x⃗) = x1+· · ·+xd, same for bosons

and fermions, i.e. we have F (1)
d = V(1)

+ = V(1)
− . This is

consistent with the fact that the quantum physics of one
particle is insensitive to the type of statistics. This also
agrees with our operational setup in Fig. 1a), which was
defined through d×d unitary matrices acting in the space
of one particle. Such representation is called the standard
or defining representation.

D. Partition theorem and general statistics

Generally, not all U(1)-characters χ1(x) =
∑

s∈N0
asx

s

induce a valid U(d)-character in (9). To see this, take
a simple example of χ1(x) = 1 + x2. For two-modes
equation (9) reads (1 + x21)(1 + x22) = s(0,0)(x1, x2) +
s(2,0)(x1, x2) + s(2,2)(x1, x2) − s(1,1)(x1, x2) and we have
a negative expansion coefficient c(1,1) < 0, which contra-
dicts cλ ≥ 0 in equation (16).

Next, suppose that the first k coefficients in the single-
mode character expansion are zero. Then, we can always
write χ1(x) =

∑+∞
s=k asx

s = xk
∑+∞

s=0 as+kx
s = xkχ̃1(x).

For the general d mode character in (9), we will have

χd(x⃗) = (x1 . . . xd)
kχ̃d(x⃗). (22)

The term (x1 . . . xd)
k = (det g)k equals determinant of

a unitary matrix g with eigenvalues x1, . . . xd. From
here, we recognize that χd and χ̃d are equivalent up-
to-determinant. Therefore, without loss of generality, we
will assume a0 > 0.
The problem of classifying all single-mode characters

that induce valid representation of U(d) involves non-
trivial mathematics. Luckily, we found an equivalent
formulation to the well-studied combinatorial problem
of characterizing completely-positive sequences [49–52].
Details are provided in the Appendix B together with
the proof of our main theorem:

Theorem 1 (Partition). For χ1(x) =
∑

s∈N0
asx

s with

a0 > 0, a symmetric function
∏d

k=1 χ1(xk) is a U(d)
character for all d ∈ N if and only if the generating func-
tion is of the form

χ1(x) =
Q−(x)

Q+(x)
, (23)

where Q±(x) is an integral polynomial with all positive
(negative) roots. Furthermore Q+(0) = 1.

In other words, Q±(x) = c±
∏

i(1 ∓ αix) are polyno-
mials with integer coefficients, where α1 > α2 > · · · > 0,
c+ = 1 and c− ∈ N. From here, it follows that Q±(x) is
a polynomial with all non-zero coefficients.
Note that we are interested only in elementary statis-

tics, i.e., the Fock space cannot be factorized as a ten-
sor product F = F1 ⊗ F2, with F1/2 being associ-
ated with different particle types. Therefore, the char-
acter of elementary statistics cannot be factorized as
χ1(x) = µ1(x)ν1(x), with µ1(x) and ν1(x) being of the
type (23). Thus equation (23) for elementary statistics
is either χ1 = Q− or χ1 = 1/Q+. We conclude that
statistics is of two kinds, i.e., fermionic-like [. . . ]− and
bosonic-like [. . . ]+ specified by

Q±(x) =

deg[Q±]∑
s=0

(∓1)sqsx
s := [q0, q1, . . . ]±, qs ∈ N,

(24)
with Q±(x) being irreducible polynomials over integers
satisfying conditions in (23). The corresponding single-
mode characters are Q−(x) and 1/Q+(x), respectively.
This classification naturally generalizes ordinary statis-
tics, and we term it transtatistics with two possible
types: transfermions (type [. . . ]−) and transbosons (type
[. . . ]+). Here deg[Q±] is the degree of Q±(x) to which
we also refer as order of statistics. Order 0 is a triv-
ial case, thus we assume deg[Q±] ≥ 1. For [. . . ]−
statistics, the generalized Pauli principle applies with
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p = Q−(1) − 1 < +∞ being the maximal number of
particles per mode, while for [. . . ]+ we have p = +∞.
From now on, we shall use the label [q0, q1, . . . ]± to refer
to a particular type of particle statistics.

Note that one can find the eigenvalues of the excita-
tion operator Ñ defined in (10) by solving the following
equation

xf0 + xf1 + · · ·+ xfp = (Q±(x))
∓1
. (25)

IV. IRREDUCIBLE PARTICLE SECTORS:
BOSONS AND FERMIONS

Ordinary statistics is order-one statistics of the type
[1, 1]±. To answer what makes bosons and fermions spe-
cial in the whole family of generalized statistics classified
in (24), we introduce the following assumptions:

Assumption 2 (Irreducibility). All symmetries of the
system of indistinguishable particles are determined by
the U(d) group.

Assumption 2 essentially states that the Fock space
decomposes into U(d)-IR sectors without multiplicity;
thus, no additional symmetries (conserved quantities) are
present in the system. We show now that only ordinary
statistics has this property.

We start with a general single-mode character χ1(x) =∑+∞
s=0 asx

s. Character equation (9) for d-modes can be
expanded as follows

χd(x⃗) = ad0 + ad−1
0 a1(x1 + · · ·+ xd) +W (x⃗) (26)

= ad0s(0,0,...,0)(x⃗) + ad−1
0 a1s(1,0,...,0)(x⃗) +W (x⃗),

where W (x⃗) is the symmetric function that contains
quadratic and higher-order terms in variables x⃗ =
(x1, . . . , xd)

T . Since Schur polynomials of degree l form
the basis in the space of l-degree symmetric polynomials,
the constant and linear terms in the equation (26) are
already IR-decomposed. Because assumption 2 requests
no multiplicities, we have a0 = 0, 1 and a1 = 0, 1.
Now we turn to concrete cases. For transfermions, the

single-mode character reads

Q−(x) = c−
∏
i

(1 + αix) (27)

= c− + c−

(∑
i

αi

)
x+ c−

∑
i<j

αiαj

x2 + . . .

= a0 + a1x+ a2x
2 + . . .

with α1 > α2 > · · · > 0 and c− ∈ N. This is consistent
with the previous analysis of (26) only if c− = a0 = 1
and

∑
i αi = a1 = 1. For the quadratic coefficient in

(27) we have a2 =
∑

i<j αiαj = 1
2 (
∑

i αi)
2 − 1

2

∑
i α

2
i =

1
2 − 1

2

∑
i α

2
i ∈ N0 because Q− is an integral polynomial.

This is possible only if α1 = 1 and α2 = · · · = 0. Thus,
we recover the fermionic character χ1(x) = 1 + x.

For the case of transbosons, we have the single-mode
character

1/Q+(x) = 1/
∏
i

(1− αix) (28)

= 1 +

(∑
i

αi

)
x+

∑
i

α2
i +

∑
i<j

αiαj

x2 + . . .

= a0 + a1x+ a2x
2 + . . .

By the same analysis as for transfermions, we conclude∑
i αi = 1. For the quadratic term in (28), we have

a2 =
∑

i α
2
i +

∑
i<j αiαj = 1

2 (
∑

i αi)
2 + 1

2

∑
i α

2
i = 1

2 +
1
2

∑
i α

2
i ∈ N0. Again, this is satisfied only if α1 = 1 and

α2 = · · · = 0. Thus χ1(x) = 1
1−x and we recover the

bosonic character. This concludes that only bosonic and
fermionic statistics are consistent with the assumption 2.
For ordinary statistics, the excitation operator in (10)

coincides with the standard number operator. The
Casimir operator in (13) becomes the total number of
particles which is a conserved quantity linked with N -
particle sectors

F (N)
d = span{|n1, n2, ..., nd⟩ |

∑
k

nk = N}. (29)

These are also U(d)-IR sectors associated with the stan-

dard bosonic (fermionic) subspaces V(N)
± .

It is worth pointing out that only in the case of or-
dinary statistics is the solution to the equation (25) for

spectrum fn of the excitation operator Ñ non-degenerate
(in this case fn = n). In all other cases, degeneracy nec-
essarily appears. This follows from the fact that coeffi-
cients in the polynomial Q±(x) are all non-zero, and at
least one of them is 2 or greater (otherwise, all coefficients
are equal to 1, and we have ordinary statistics). Given
this, at least one expansion coefficient on the right-hand
side of (25) is 2 or greater. Thus at least two fn numbers
on the left-hand side of (25) are the same. However, it
should be noted that these results are based on the as-
sumption that Ñ ≥ 0. A generalization to the possibility
of negative values of Ñ is discussed in Section VIB.

V. HIDDEN SYMMETRY AND
TRANSTATISTICS

We learned from the previous analysis that multiplic-
ities in the Fock space decomposition (16) will necessar-
ily appear for all transtatistics apart from bosonic and
fermionic. These multiplicities cannot be resolved with-
out additional, so-called hidden symmetry, present in the
system [53]. The latter is typically identified as a higher
symmetry of the Hamiltonian required to fully resolve
the degeneracy of the energy spectrum (sometimes called
‘accidental’ degeneracy). The classic example is the de-
generation of the spectrum of the hydrogen atom not cap-
tured by the rotational symmetry (SO(3) group) of the
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Hamiltonian but requires a higher (hidden) symmetry for
resolution, which is the SO(4) group [65]. In our case, the
situation is similar; the multiplicities in the Fock space
decomposition are in one-to-one correspondence with the

degeneration of the Hamiltonian Ĥ =
∑d

k=1 ϵkÑk defined
in (14) (generator of the U(d) action). The total energy
is given by

E =

d∑
k=1

ϵkfk, (30)

with fk being the eigenvalues of the excitation opera-
tor Ñ defined in (10). As long as this operator is non-
degenerate, the energy spectrum E is well-resolved with
the set of quantum numbers (fk1

, . . . , fkd
). Nevertheless,

we have seen that this happens only in the case of ordi-
nary statistics. For all other cases, degeneracy in spec-
trum fn necessarily appears, which is to be resolved by
different quantum numbers unrelated to the U(d) group.
Without the specification of these numbers, the represen-
tation of U(d) in Fock space remains unspecified, defined
only up to IR-multiplicity.

We will study these effects in detail for the first non-
trivial case beyond ordinary statistics, i.e., the order-
one statistics [1, q]±, with q ∈ N. To make the analysis
more accessible, we will separate the notation for trans-
bosons (type [1, β]+) and transfermions (type [1, α]−)
with α, β ∈ N. The reason why we set the first coef-
ficient in [. . . ]± to be 1 is because we will restrict our

analysis only to the case of a unique vacuum state |0⟩⊗d
.

To be more precise, we will study the cases in which the
only invariant state under U(d) is a vacuum state. This
is possible only if the first coefficient in the single-mode
character χ1(x) =

∑+∞
s=0 asx

s is set a0 = 1 (see discussion
around equation (26)).

To begin with, take an example of transfermions [1, α]−
with α = 2. In this case, the singe-mode Fock space
is three-dimensional (follows from χ1(x) = 1 + 2x =
1 + 2eiθ), and the maximal occupation number is p =
α = 2. For the case of two modes, the character reads
χ2(x1, x2) = 1 + 2(x1 + x2) + 4x1x2 = s(0,0)(x1, x2) +

2s(1,0)(x1, x2)+22s(1,1)(x1, x2). Thus, the Fock space de-

composes into fermionic multiplets of the size αN = 2N ,
for N = 0, 1, 2. This exponential growth of multiplicity
is generic to order-one transtatistics. It is formalized in
the following theorem (see Appendix C for proof)

Theorem 2. Fock-spaces for [1, α]+ and [1, β]− decom-
pose into IR sectors as

Fd =

d⊕
N=0

αNV(N)
− , α ∈ N, (31)

Fd =

+∞⊕
N=0

βNV(N)
+ , β ∈ N, (32)

where V(N)
− and V(N)

+ are the fermionic and bosonic IRs
(N -particle sectors for ordinary statistics), respectively.

In the next section, we will build the concrete ansatz
to identify auxiliary quantum numbers to resolve the de-
generacy in (31)-(32). Based on this, we will construct
the U(d) representation in Fock space.

A. Hidden quantum numbers

We start with transfermions [1, α]− for some α ≥ 2.
For this case, the single-mode character reads χ1(x) =
1+αx with x = eiθ ∈ U(1). The single-mode Fock space
is (α+1)-dimensional F1 = span{|n⟩ | n = 0, 1, 2, . . . , p =
α}. Equation (25) reads

xf0 + xf1 + · · ·+ xfp = 1 + αx, (33)

with the solution f0 = 0 and fn = 1 for n = 1, . . . , α. The

generator of U(1) action ∆1(e
iθ) = eiθÑ is the excitation

operator defined in (10) and in our case, it acts is as
follows

Ñ |n⟩ =

{
0 n = 0,

+1 |n⟩ n = 1, . . . , α.
(34)

Given this, one can re-interpret the single-mode states
|n⟩ for n ≥ 1 as de facto being the single-particle excita-
tions distinguished by some auxiliary degree of freedom
with α values. Therefore, we can introduce decomposi-
tion n = k + z with k = 0, 1 being the ‘real’ occupation
number of the fermionic type and z = 0, . . . αk − 1 as
an auxiliary quantum number accounting for degener-
acy. Having this, the formula (34) takes the standard

form, i.e Ñ |k + z⟩ = k |k + z⟩. Now, to separate degrees
of freedom captured by k and z quantum numbers, we
introduce the mapping

L1 |k + z⟩ =

{
|0⟩F k = 0,

|1⟩F ⊗ |z⟩A k = 1,
(35)

where |k⟩F is the ordinary fermionic number state with
k = 0, 1, while |z⟩A (with z = 0, . . . α−1) is a new degree
of freedom emerged solely from the statistics type. The
ansatz straightforwardly generalizes to the d-mode Fock
space. We define

Ld |n1, . . . , nd⟩ = T L⊗d
1 |n1, . . . , nd⟩ , (36)

where T is the shift operator needed to separate degrees
of freedom, i.e., to shift all auxiliary states to the right.
For example, T |k1⟩ |z1⟩ |k2⟩ |z2⟩ = |k1, k2⟩F ⊗ |z1, z2⟩A.
To fully clarify the mapping in (36), let |n1, . . . , nd⟩ =
|k1 + z1, . . . , kd + zd⟩, where again, ks = 0, 1 and zs =
0, . . . , αks − 1. We form the ordered list (zs1 , . . . , zsN )
for which ksr = 1, i.e. the list of all non-zero fermionic
excitations. Here N = d− (δ0,n1

+ · · ·+δ0,nd
) is the total

number of them. Then, the equation (36) reads

Ld |n1, . . . , nd⟩ = |k1, . . . , kd⟩F ⊗ |zs1 , . . . , zsN ⟩A (37)
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where |k1, . . . , kd⟩F is the ordinary N -particle fermionic
state, with the auxiliary label of particles |zs1 , . . . , zsN ⟩A.
This brings us precisely to the decomposition in (31),
which can also be written as

Fd =

d⊕
N=0

V(N)
− ⊗H⊗N

A , (38)

where HA = span{|z⟩ | z = 0, . . . α − 1} is the auxiliary
space. Given this factorization, it is clear that U(d) acts

only in the fermionic part V(N)
− , while H⊗N

A remains un-
touched. The additional U(α) group acting in the space

H(N)
A can be added to resolve degeneracy completely.

Now, for an element g ∈ U(d), let the standard action on

the fermionic number state is ∆
(F )
d (g) |k1, . . . , kd⟩F . This

induces the action ∆d(g) in the Fock space (5) as

∆d(g) = L−1
d

(
∆

(F )
d (g)⊗ 11A

)
Ld, (39)

where Ld is the mapping given in(36). With this, we
have defined the action of U(d) in the Fock space.
In complete analogy, we provide an ansatz for trans-

bosons of [1, β]+ type with β ≥ 2. In this case, we
have the single mode character χ1(x) = 1

1−βx with

x = eiθ ∈ U(1) and the single-mode Fock space is infinte-
dimensional F1 = span{|n⟩ | n = 0, 1, 2, . . . }. As before,
we shall solve equation (25)

xf0 + xf1 + xf2 + · · · = 1

1− βx
. (40)

It is convenient to write the particle number n in the
form

n = 1 + β2 + · · ·+ βk−1 + z =
βk − 1

β − 1
+ z, (41)

with k = 0, 1, 2, . . . and z = 0, . . . , βk − 1. Having this
notation, the solution to (40) is simple, i.e., f βk−1

β−1 +z
= k.

We have the following action of the excitation operator
Ñ

Ñ |β
k − 1

β − 1
+ z⟩ = k |β

k − 1

β − 1
+ z⟩ . (42)

Here k represents the ‘new’ occupation number of the
bosonic type, while z is an auxiliary quantum number.
Since z = 0, . . . , βk − 1 counts all possible states associ-
ated to k bosonic excitations, it is convenient to write z in
the β-base, i.e. z = zk−1β

k−1+ zk−2β
k−2+ · · ·+ z0β0 :=

zk−1zk−2 . . . z0, where zs = 0, . . . , β − 1 are the digits.
With this, we can introduce the mapping

L1 |
βk − 1

β − 1
+ z⟩ =

{
|0⟩B k = 0,

|k⟩B ⊗ |zk−1zk−2 . . . z0⟩A k > 0,

(43)
where |k⟩B is the ordinary bosonic Fock (number) state
with k = 0, 1, 2, . . . , while |zk−1zk−2 . . . z0⟩A (with zs =

0, . . . , β− 1) is associated to the statistics degree of free-
dom. The generalization to the d-mode Fock state is as
for the case of transfermions, i.e., we use the same equa-
tion (36). In this case, we have

Ld |n1, . . . , nd⟩ = |k1, . . . , kd⟩B ⊗ |zs1 , . . . , zsN ⟩A , (44)

where |k1, . . . , kd⟩B is the ordinary bosonic number state
with ks = 0, 1, 2, . . . , while |zs1 . . . zsN ⟩A comes from type
of statistics. The action of U(d) is introduced in complete
analogy to the fermionic case and equation (39).

B. Is hidden symmetry an ordinary internal
symmetry?

Wemay question if the hidden quantum numbers intro-
duced in the previous section are related to some genuine
degree of freedom emerging from the type of statistics.
Could these numbers be associated with the standard
internal degrees of freedom, such as spin? For exam-
ple, degeneration in (30) could be potentially explained
by the argument that energy is spin-independent, and
then, transatistics may be just an ordinary (fermionic of
bosonic) statistics where U(d) affects only external de-
grees of freedom (such as modes represented by paths of
particles in Fig. 1a). However, this argument cannot be
well-aligned with the Fock-state decomposition in (31)-
(32), even though only multiplets of ordinary statistics
appear in decomposition. This is due to the dimension
discrepancy between ordinary statistics and transtatis-
tics. To see this, suppose that we deal with ordinary
fermions with d real degrees of freedom (d modes on
which U(d) acts) and some internal degree of freedom
(e.g., spin) with z = 0, . . . , α − 1 values, which is un-
affected by U(d). The overall dimension of the single-
particle space is αd; hence the dimension of the fermionic
Fock space is 2αd. This starkly contrasts the dimension
αd of the transfermionic Fock space for [1, α]− type. As
we shall see, this dimension discrepancy will differentiate
the thermodynamics of non-interacting systems of ordi-
nary and transtatistics. The latter will be accompanied
by the effect of generic spontaneous symmetry breaking
absent in ordinary statistics.
Note that analogy to, e.g., spin degree of freedom dis-

cussed here is only possible for order-one statistics. For
higher-order statistics, no (obvious) similarities can be
concluded. We will discuss this point later.

C. Relation to thermodynamics

To study thermodynamics, we consider the single-
particle energy spectrum ϵ1, . . . , ϵd, where ϵks represent
the energies associated with different modes. This situa-
tion is similar to the one discussed in Section II B. In that
section, we examined the unitary evolution generated by
the Hamiltonian given in equation (14). However, the
system is in contact with a thermal bath in the present
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case. The thermodynamical quantities (e.g., for canoni-
cal ensemble) can be derived from the partition function

Zd(β) = Tre−βĤ , and its explicit form follows directly
from the form of H, i.e.,

Zd(β) =

d∏
k=1

Z1(e
−βϵk) =

d∏
k=1

χ1(e
−βϵk) (45)

with β = 1/kBT being the Boltzmann factor.
The physical relevance of character χ can also be un-

derstood through thermodynamics [66]. This is because
we can get the partition function from the character via
Wick’s rotation, that is, it/ℏϵk → −βϵk. In this respect,
the product form of equation (45) arises directly from
our central assumption 1, i.e., the overall partition func-
tion can be expressed as a product of individual parti-
tion functions (associated with individual modes). This
aligns with the expected behavior for independent sys-
tems, such as a set of independent modes. Therefore,
assumption 1 is in one-to-one correspondence with the
independence in a thermodynamical sense. The formula
(45) trivially holds for ordinary statistics (bosons and
fermions) [67].

When the system is capable of exchanging excitations
(particles) with a reservoir, we can analyze its behav-
ior using the grand canonical partition function Zd =

Tre−β(Ĥ−µÑ). In this expression, Ñ represents the exci-
tation operator as defined in equation (10), and µ corre-
sponds to the chemical potential (variable conjugated to

Ñ). The explicit form of the grand canonical partition
function Zd is as follows

Zd =

d∏
k=1

Z1(e
−β(ϵk−µ)) =

d∏
k=1

χ1(e
−β(ϵk−µ)). (46)

D. Thermodynamics of ideal gasses and
spontaneous symmetry breaking

Let us examine the thermodynamical properties of a
non-interacting system for general order-one statistics
[1, q]± with q ∈ N. Ordinary statistics is recovered for
q = 1. We consider a grand-canonical ensemble de-
fined by a set of single-particle energies ϵ1, . . . , ϵd asso-
ciated with different modes. The system is described by

a equilibrium state ρ = 1
Zd
e−β(Ĥ−µÑ), where Zd is the

grand-canonical partition function defined in (46). All
thermodynamical quantities can be evaluated from the
grand canonical potential Ω = − 1

β logZd. For example,

N = ∂Ω
∂µ gives the mean particle number. For the case of

transtatistics [1, q]±, we get

N =
∑
k

nk =
∑
i

1
1
q e

β(ϵk−µ) ∓ 1
. (47)

This expression reduces to the Fermi-Dirac and Bose-
Einstein distributions for q = 1. The plots for ni in

FIG. 3. Mean particle number for ordinary (blue and
green) and generalized (orange and red) statistics.

(47) for various statistics are presented in Fig. 3. For
the fermionic-type statistics, equation (47) reduces to the
Fermi-Dirac distribution nk = θ(µ− ϵk) at zero temper-
ature for all q. For the bosonic type, the mean number
diverges at the values of energy ϵ = µ+ 1

β log q when the

Bose-Einstein condensation occurs. In the classical limit
of β(ϵ−µ) ≫ 1, the formula (47) reduces to the standard
Maxwell-Boltzmann distribution, i.e., nk ≈ qe−β(ϵk−µ),
where the factor q appears as the degeneracy factor. The
same factor appears in the classical limit for standard
quantum gasses with q = 2s+1 coming from spin s (see,
for example, Chapter 8.3. in [68]). This is because the
energy is independent of spin, and thus, the energy spec-
trum degenerates.
Note that the chemical potential µ in the formulas

above is temperature dependent. To be more precise,
the standard approach to thermodynamics of ideal gasses
is to keep total particle number N as a fixed parame-
ter and then invert (47) to calculate chemical potential
µ = µ(N,T ) as a function of a total number of parti-
cles and temperature [67]. Given this, one can introduce
a simple change of variables µ → µ − 1

β log q, and the

formula (47) would reduce to one for ordinary statistics.
This means that solution for the chemical potential for
order-one transtatistics is

µq = µq=1 − kBT log q, (48)

where µq=1 is the chemical potential of ordinary statis-
tics. What follows is that almost all thermodynamical
quantities (e.g., mean energy, heat capacity, etc.) re-
main the same as in the case of ordinary statistics for
arbitrary q. Nevertheless, the entropy will change. To
see this, note that S = −βΩ + β⟨E⟩ − βµN , thus the
shift of −kBT log q in the chemical potential introduces
a change in the entropy, i.e.

Sq = Sq=1 + kBN log q. (49)

The entropy of ordinary statistics Sq=1 vanishes at T = 0;
hence, a residual entropy of kBN log q remains at zero
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temperature for all q > 1. This is consistent with the
fact that fermionic (bosonic) N -particles IRs in the Fock
space decomposition (31)-(32) appear qN times; there-
fore, the ground state is qN times degenerate. This de-
generation is known to result in residual entropy at zero
temperature and is associated with spontaneous symme-
try breaking [54], here present for transtatistics. This is
one of the main differences compared to ordinary quan-
tum gasses exhibiting non-degenerate ground states.

VI. DISCUSSION AND OUTLOOK

A. Statistics of higher order

Here we briefly analyze some of the technical and con-
ceptual difficulties that arise when dealing with statistics
of higher order. As an illustration, we take the example
of statistics of order two [1, q1, q2]±. A simple inspection
shows that polynomial Q±(x) = 1∓ q1x+ q2x

2 has non-
negative (positive) roots for q21 > 4q2. To see how the
Fock space decomposes in some simple cases, consider
transfermions [1, q, 1]− and the corresponding two-mode
character

χ2(x1, x2) = (1 + qx1 + x21)(1 + qx2 + x22)

= s(0,0)(x1, x2) + qs(1,0)(x1, x2) +

= (q2 − 1)s(1,1)(x1, x2) + s(2,0)(x1, x2) +

+ qs(2,1)(x1, x2) + s(2,2)(x1, x2). (50)

The IR characters s(2,1) and s(2,2) that are not fermionic
nor bosonic type show-up in the decomposition. This is

a typical feature that appears for any higher-order statis-
tics. In turn, finding Fock space’s decomposition for gen-
eral dmodes, such as one provided for order-one statistics
in (31)-(32), is more difficult. Next, the dimension of the
single-mode Fock space is q+2, and the maximal occupa-
tion number is p = q+1. The solution to the single-mode
character equation (25)

xf0 + · · ·+ xfq+1 = 1 + qx+ x2 (51)

is f0 = 0 and fq+1 = 2, while fn = 1 for n = 1, . . . , q. Re-
call that these are the eigenvalues of the excitation opera-
tor Ñ in (10), and as we see, we have three distinct values
k = 0, 1, 2. Again, we have degeneration of the spectrum,
but resolving it is a more delicate issue than for the case
of order-one statistics we have presented in Section V.
This is partially because a clear interpretation is miss-
ing. For example, we may try to label the single-mode
Fock states with two quantum numbers, k = 0, 1, 2 (for
excitations), and one auxiliary number zk, to account for

degeneracy. As before, we have Ñ |k + zk⟩ = k |k + zk⟩,
with zk = 0 for k = 0, 2, while for k = 1 we have
zk = 0, . . . , q. This appears paradoxical because degener-
acy is present for one excitation but disappears for two.
From this example, we see the analysis of degeneracy and
categorization of hidden quantum numbers becomes sig-
nificantly more complicated due to the involvement of
‘non-standard’ IRs.

Let’s take a look at the general case of [1, q1, . . . , qm]±,
where Q±(x) =

∏m
s=1(1 ± αkx) with αs > 0 and m =

deg[Q±] representing the degree of statistics. Given the
Cauchy identities [69]

d∏
k=1

m∏
s=1

(1 + αsxk) = Σl(λ)≤msλ(x1, ..., xd)sλ(α1, ..., αm), (52)

d∏
k=1

m∏
s=1

1

1− αsxk
= Σl(λ)≤msλ(x1, ..., xd)sλ(α1, ..., αm), (53)

where l(λ) is the length of the diagram (number of rows),
and l(λ′) is the conjugate partition of λ, we that the mul-
tiplicity in the Fock space decomposition (16) are given
by Schur polynomials evaluated at the parameters αs,
i.e. a(λ) = sλ(α1, ..., αm). This multiplicity coefficient
can be simplified using the so-called Kostka numbers [69],
but we leave this for further consideration due to the in-
volvement of non-trivial combinatorics.

On the other hand, thermodynamic considerations are
simpler due to the product nature of the single-mode
character. In the general case [1, q1, . . . , qm]± the grand

canonical partition function (46) becomes

Zd =

d∏
k=1

m∏
s=1

(
1∓ e−β(ϵk−µ)

)∓1

. (54)

In complete analogy to the derivation of (47), we get the
mean particle number as

nk =

m∑
s=1

1
1
αs
eβ(ϵk−µ) ∓ 1

, (55)

where m is the degree of statistics. This expression re-
duces to the Fermi-Dirac and Bose-Einstein distributions
for m = 1 and α1 = 1. For transfermions, equation
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(55) reduces to nk = m θ(µ − ϵk) at zero tempera-
ture. As expected, m (degree of statistics) trasnfermions
can occupy the same energy level at T = 0 as a conse-
quence of the generalized Pauli exclusion principle. For
N particles, transfermions will form the analogon of the
Fermi sea at zero temperature. On the other hand, we
have for transbosons, the mean number diverging at the
values of energy ϵ = µ + 1

β logαmax when the Bose-

Einstein condensation occurs. In the classical limit of
β(ϵ − µ) ≫ 1, the formula (55) reduces to the standard
Maxwell-Boltzmann distribution, i.e., nk ≈ qe−β(ϵk−µ),
where the factor q =

∑
s αs(βs) appears as the degener-

acy factor.

B. ’Negative occupation’ numbers, exceptional
statistics and extension to an infinite number of

modes

So far, we have discussed only the case of non-negative
eigenvalues of U(1) generators, i.e., the generalized ex-
citation operator as defined in Section (II B) and eq.

(13) satisfying Ñ ≥ 0. Here, we will discuss the ex-

tensions to ’negative occupations’, allowing Ñ to have
negative eigenvalues, which encounters the most gen-
eral U(1) generator. On the physical side, such a situ-
ation is particularly relevant for the theory of antipar-
ticles introduced for ordinary statistics by Dirac [70].
To do so, we shall extend the single-mode character in
(11) to a (formal) Laurent series χ1(x) =

∑
s∈Z asx

s,
with as integer coefficients, such that the overall product

χd(x⃗) =
∏d

k=1 χ1(xk) is a valid U(d)-character. In such
case, χd(x⃗) decomposes over Laurent-Schur polynomials
of the form (x1 . . . xd)

−ksλ(x1, . . . , xd), with k ∈ N0, en-
compassing the most general irreducible representations
of U(d) [69]. Details are provided in the Appendix VIB,
where we prove the following classification theorem:

Theorem 3. General U(1)-character (under conditions
previously discussed) is one of the following forms

1) transtatistical type, i.e. either xkχ1(x) or
xkχ1(1/x), where χ1(x) is the character classified
by the Theorem 1 and k ∈ Z, or

2) exceptional type a
∑

s∈Z ρ
sxs, with a, ρ ∈ N0.

This concludes the classification in the most general
case. For the trastatistical types, the factor xk builds to
(x1 . . . xd)

k = (det(g))k for the case of d modes, which
corresponds to the determinant representation. Thus,
representations can be constructed from representations
obtained for transtatistics wired with the determinant
representation (power k). Note that χ1(1/x) = χ1(x)

∗,
because x = eiφ, thus this character is associated with
the conjugate representation. Finally, the exceptional
character is of a fundamentally different form and essen-
tially comes from exceptional totally-positive sequences
(see Appendix VIB for details). This is a very inter-

esting case in which generalized number operator Ñ is

unbounded both from below and above, which is not the
case for transtatistical types of statistics.

Finally, we will conclude this section with a brief com-
ment on the generalization to the infinite set of modes
when d = ∞. This is particularly relevant for investigat-
ing the algebra of creation and annihilation operators for
transtatiscics field theory. In this respect, establishing a
relation to the existing results on U(∞) representations
and extreme characters theory [71–73] is very promising.
In particular, striking similarities are found in the gener-
ating functions of the so-called “extreme characters” and
our principal decomposition given in Theorem 1.

C. Relation to other generalized statistics

An obvious question is if and how our statistics classi-
fied in (24) differs from other generalized statistics pre-
sented in the literature. Of course, we are not able to
exhaustively compare but rather analyze the most com-
mon cases. The first remark is that the main difference
is due to the underlying symmetries. Our classification
relies on the U(d) group, while in most of the cases, other
generalized statistics is based on a different group. Take
an example of fractal statistics [5, 7] where topological
defects and representation of braid groups [74] play the
central role. We can have, for example, the action of
2π-rotation, leaving a non-trivial phase. This contrasts
the 2π-periodicity, essential to derive the integer spec-
trum for the excitation operator in our equation (10).
This suggests that we speak of different kinds of particle
statistics due to the involvement of different symmetry
groups. On the other hand, the recent work of [75]
suggests that fractal statistics can be phrased in terms
of Jack polynomials, which generalize Schur polynomials
(our primary tool to classify statistics). This relationship
is worth looking into in the future.

Very similar holds for many generalized statistics re-
lated to deformed canonical commutation relations. Take
an example of q-deformations (quons) with aia

†
j−qa

†
jai =

δij11 [14]. However, q-deformations introduce new sym-
metries even at the level of a single particle, i.e., q-
deformed U(d) [76] group, while our statistics is directly
paired to the U(d) symmetry. Still, some comparison
might be possible for the order-one statistics, where our
ansatz of Section V provides the means to construct the
algebra of creation and annihilation operators and eval-
uate the corresponding commutation relations.

Finally, the question is how our generalization is re-
lated to parastatistics [13]. As already pointed out, the
group behind the parastatistics is different [61, 62]. This
leads to the different Fock space decomposition, i.e., for
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parastatistics of order p, we have [77, 78]

Fparab =
⊕

l(λ)≤p

Vλ (56)

Fparaf =
⊕

l(λ′)≤p

Vλ, (57)

where the sum runs over Young diagrams λ (parabose
case) or λ′ (parafermi case) of the length l(λ) (number
of rows). Here λ′ is the conjugated diagram of λ and
Vλ is an U(d)-IR associated to λ. This decomposition
contains no multiplicities and thus is compatible with
our classification only for the case of ordinary statistics.

D. Some open questions and applications

The broad range of possibilities for generalized statis-
tics introduced here leaves many interesting open ques-
tions and potential for applications. Firstly, an open
question is what is more on the physical side (compared
to new effects already discussed) that tanstatistics brings.
As we already discussed, there are technical difficulties
with higher-order statistics, mainly in the context of hid-
den quantum numbers. Nevertheless, we may study ther-
modynamics directly by the ansatz defined in section
VD. One has to calculate partition functions given in
(45) for more general characters. In this case, a simple
shift of the chemical potential in (48) will not reduce ther-
modynamical quantities to ones given by ordinary statis-
tics as it happens for order-one statistics. Given this, we
can expect other novel physical effects to appear.

The next exciting point to analyze is the application
of our method to diagonalize solid-state Hamiltonians,
such as it is done for spin-chains via spin-fermion map-
ping (Jordan-Wigner transformation) [56]. For example,
the transfermionic Fock space for [1, α]+ is isomorphic to
(C(α+1))⊗d which is suitable to study higher dimensional
spin chains. In complete analogy to the spin-fermion
mapping, one can expect to find other integrable many-
body Hamiltonians that reduce to our non-interacting
model.

An interesting point to be analyzed is the question of
entanglement in transtatistics. This question has raised

a long-standing debate in the community regarding the
case of bosons and fermions due to the apparent entangle-
ment present in the first quantized picture, which comes
solely from the (anti) symmetrization of the wave func-
tion. It is accepted nowadays that such “kinematic” en-
tanglement is physical [79, 80]. In the case of transtatis-
tics, the starting point is different as we do not know
if the first-quantized picture for such generalized statis-
tics exists; thus, the situation is less clear. However, one
can try to put transtatistics in the context of quantum-
information processing and protocols designed to study
the entanglement of standard indistinguishable particles
(see [80] and references therein). This shall provide a
more clear view of the relation between entanglement
and indistinguishability in this case. Along these lines,
an exciting perspective on our results comes from the
quantum computational complexity of quantum statis-
tics. Namely, it is well-known that the non-interacting
bosons are computationally hard to simulate [57], while
non-interacting fermions are not [81]. One can ask a simi-
lar question here, i.e., what is the computational power of
the non-interacting model for transtatistics? Any answer
to it is relevant and may find applications in quantum
computing.
Finally, on the speculative side, an interesting idea of

applying generalized statistics in the context of dark-
matter modeling was recently presented [82]. The main
point is to study thermodynamics and the effects of the
negative relation between pressure and energy density,
emphasized in many existent dark energy candidates.
Our methods provide a direct way to calculate thermo-
dynamical properties of transtatistics and thus might be
worthy of investigating relations to dark-matter models.
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for their helpful comments. This research was funded in
whole, or in part, by the Austrian Science Fund (FWF)
[10.55776/F71], [10.55776/P36994] and [10.55776/COE1]
and the European Union – NextGenerationEU. For open
access purposes, the author(s) has applied a CC BY pub-
lic copyright license to any author accepted manuscript
version arising from this submission.

[1] J. W. Gibbs, Elementary Principles in Statistical Me-
chanics: Developed with Especial Reference to the Ratio-
nal Foundation of Thermodynamics, Cambridge Library
Collection - Mathematics (Cambridge University Press,
2010).

[2] Bose, Zeitschrift für Physik 26, 178 (1924).
[3] P. A. M. Dirac and R. H. Fowler, Proceedings of the

Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character 112, 661 (1926).

[4] W. Heisenberg, Zeitschrift für Physik 38, 411 (1926).

[5] J. M. Leinaas and J. Myrheim, Il Nuovo Cimento B Series
11 37, 1–23 (1977).

[6] M. G. G. Laidlaw and C. M. DeWitt, Phys. Rev. D 3,
1375 (1971).

[7] F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
[8] S. Weinberg, The quantum theory of fields, Vol. 2 (Cam-

bridge University Press, 1995).
[9] A. M. L. Messiah and O. W. Greenberg, Phys. Rev. 136,

B248 (1964).
[10] R. Mirman, Experimental meaning of the concept of iden-

http://dx.doi.org/10.1017/CBO9780511686948
http://dx.doi.org/10.1017/CBO9780511686948
http://dx.doi.org/10.1017/CBO9780511686948
http://dx.doi.org/10.1007/BF01327326
http://dx.doi.org/10.1098/rspa.1926.0133
http://dx.doi.org/10.1098/rspa.1926.0133
http://dx.doi.org/10.1098/rspa.1926.0133
http://dx.doi.org/10.1007/BF01397160
http://dx.doi.org/10.1007/bf02727953
http://dx.doi.org/10.1007/bf02727953
http://dx.doi.org/10.1103/PhysRevD.3.1375
http://dx.doi.org/10.1103/PhysRevD.3.1375
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/https://doi.org/10.1017/cbo9781139644174
http://dx.doi.org/10.1103/PhysRev.136.B248
http://dx.doi.org/10.1103/PhysRev.136.B248


14

tical particles, Tech. Rep. (Long Island Univ., Greenvale,
NY, 1973).

[11] S. J. van Enk, “Exchanging identical particles and topo-
logical quantum computing,” (2019), arXiv:1810.05208
[quant-ph].

[12] G. Gentile j., Il Nuovo Cimento (1924-1942) 17, 493
(1940).

[13] H. S. Green, Phys. Rev. 90, 270 (1953).
[14] O. W. Greenberg, Phys. Rev. D 43, 4111 (1991).
[15] O. W. Greenberg, “Small violations of statistics,” (1999),

arXiv:quant-ph/9903069 [quant-ph].
[16] A. Lavagno and P. Narayana Swamy, Physica A: Statis-

tical Mechanics and its Applications 389, 993 (2010).
[17] D. I. Fivel, Phys. Rev. Lett. 65, 3361 (1990).
[18] O. W. Greenberg, Phys. Rev. Lett. 64, 705 (1990).
[19] M. V. Medvedev, Phys. Rev. Lett. 78, 4147 (1997).
[20] W. CHEN, Y. J. NG, and H. V. DAM, Modern Physics

Letters A 11, 795 (1996).
[21] A. P. Polychronakos, “Generalized statistics in one di-

mension,” (1999), arXiv:hep-th/9902157 [hep-th].
[22] M. Cattani and J. M. F. Bassalo, “Intermediate statis-

tics, parastatistics, fractionary statistics and gentileonic
statistics,” (2009), arXiv:0903.4773 [cond-mat.stat-
mech].

[23] S. Surya, Journal of Mathematical Physics 45, 2515
(2004).

[24] M. Hoyuelos and P. Sisterna, Phys. Rev. E 94, 062115
(2016).

[25] J. Swain, International Journal of Modern Physics D 17,
2475 (2008).

[26] A. Balachandran, E. Batista, I. Costa e Silva, and
P. TEOTONIO-SOBRINHO, Modern Physics Letters A
16, 1335 (2001).

[27] J. C. Baez, D. K. Wise, and A. S. Crans, “Exotic
statistics for strings in 4d bf theory,” (2006), arXiv:gr-
qc/0603085 [gr-qc].

[28] M. Arzano and D. Benedetti, International Journal of
Modern Physics A 24, 4623 (2009).

[29] V. P. Maslov, Theoretical and Mathematical Physics
159, 684 (2009).

[30] D. A. Trifonov, “Pseudo-boson coherent and fock states,”
(2009), arXiv:0902.3744 [quant-ph].

[31] F. Bagarello, Reports on Mathematical Physics 68, 175
(2011).

[32] R. K. Niven and M. Grendar, Physics Letters A 373, 621
(2009).

[33] A. S. Wightman, Il Nuovo Cimento B (1971-1996) 110,
751 (1995).

[34] M. Johansson, “Comment on ’reasonable fermionic quan-
tum information theories require relativity’,” (2016),
arXiv:1610.00539 [quant-ph].

[35] G. Ghirardi, in Advances in Quantum Mechanics, edited
by P. Bracken (IntechOpen, Rijeka, 2013) Chap. 24.

[36] L. Hardy, arXiv preprint quant-ph/0101012 (2001),
https://doi.org/10.48550/arXiv.quant-ph/0101012.
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[40] B. Dakić and Č. Brukner, “The classical limit of a physi-
cal theory and the dimensionality of space,” in Quantum
Theory: Informational Foundations and Foils, edited by
G. Chiribella and R. W. Spekkens (Springer Netherlands,
Dordrecht, 2016) pp. 249–282.
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Appendix A: Schur polynomials

The linear representations of the general linear group GL(n,C) and its maximally compact subgroup U(n) are
unambiguously identified by Schur polynomials as their characters [59]. These families of polynomials appear in
different regions of mathematics, from pure combinatorics to algebraic geometry. This is why several standard
definitions exist depending on the specific context they are discussed. Here we present them in the combinatorial
definition to emphasize the combinatorial of our operational reconstruction of particle statistics. Other methods, such
as the classical (determinant) definition, are standardly found in the literature [69].

Let λ = (λ1, λ2, . . . ) be an integer partition with λ1 ≥ λ2 ≥ . . . , usually represented with a Young diagram (see
Figure 4). The total number of boxes in a diagram is denoted by |λ| = λ1 + λ2 + . . . , and the partition length (the
number of rows) is labeled by l(λ).

FIG. 4. Young diagram for λ = (6, 3, 1). The filling of the diagram defines one SSYT.

The semistandard Young tableau (SSYT) of shape λ is a filling of the boxes in the Young diagram with positive
integers such that the entries weakly increase along each row and strictly increase down each column. For given a
SSYT T , we define the type of T , i.e., α(T ) = (α1, α2, . . . ) with αi(T ) being the number of repetitions of the number
i in T . For example, for the SSYT given in Fig. 4, we have α(T ) = (1, 4, 3, 2). For a set of variables x1, x2, . . . we
define

xT ≡ x
α1(T )
1 x

α2(T )
2 . . . . (A1)

Definition 1. Let λ be a partition. The Schur function sλ(x1, . . . , xd) in d ≥ l(λ) variables associated with λ is a
homogeneous symmetric polynomial of degree |λ| defined as:

sλ(x) =
∑

T∈SSYTλ(d)

xT , (A2)

where the sum runs over all semistandard Young tableaux (SSYTs) of shape λ with the filling from the set {1, . . . , d}.
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The common examples are the bosonic Schur functions (homogeneous symmetric polynomials)

s(n,0,...,0)(x1, . . . , xd) =
∑

k1+···+kd=n

xk1
1 . . . xkd

d , ks = 0 . . . d, (A3)

associated with partitions having a single row of size n (n-particle sector), and the fermionic Schur functions (elemen-
tary symmetric polynomials)

s(1,...,1,0,...,0)(x1, . . . , xd) =
∑

1≤i1<i2···<in≤d

xi1xi2 . . . xin , (A4)

associated with partitions having a single column of size n (n-particle sector). Notably, these bosonic and fermionic
partitions are conjugate to each other. Two partitions are said to be conjugate if they can be obtained from each
other by interchanging rows and columns in their Young diagrams.

Appendix B: Proof of main (partition) theorem

Before proceeding with the proof, we must introduce some basic definitions and important known theorems.

Definition 2. We call f(x) =
∑

n anx
n the generating function of sequence {an}.

Definition 3. A matrix (Aij)i,j∈I is called Töplitz if Ai,j = ai−j.

Definition 4. A sequence of real numbers {an}n∈Z is totally positive if and only if all the minors of the Töplitz matrix
(ai−j)i,j∈Z are non-negative. For sequences defined only on non-negative integers {an}n∈N0

, we assume the extension
an = 0 for n < 0. Generating function f(x) =

∑
n anx

n is called totally positive if and only if {an} is totally positive.

Proposition 1 ([49]). Let f(x) =
∑

n anx
n and Dλ,µ

d−1(f) = det(aλi−µj−i+j)1≤i,j≤d with λ and µ being a pair of

partitions of possibly different integers. Then every Töplitz minor of matrix (ai−j)i,j∈Z is of the form Dλ,µ
d−1(f).

Furthermore, we have

Dλ,µ
d−1(f) =

∫
U(d)

Φn,f (g)sλ(g)sµ(g)dg (B1)

with Φd,f = f(x1)...f(xd) where x1, ..., xd are the eigenvalues of g, and
∫
U(d)

. . . dg is the Haar measure integral.

Proposition 2 ([50]). The sequence {an}n∈N0
with a0 = 1 is totally positive if and only if it is generated by a function

f(x) of the form

f(x) = eγx
Πi(1 + αix)

Πi(1− βix)
(B2)

with α, β, γ ≥ 0 and
∑
αi,
∑
βi convergent.

The last proposition is the most prominent result for characterizing totally-positive sequences. We can prove now
the following simple lemma (an almost equivalent statement was presented in [51, 52]).

Lemma 1. An integral series f(x) =
∑∞

n=0 anx
n with a0 > 0 is totally positive if and only if it is of the form

f(x) =
g(x)

h(x)
, (B3)

for some integral polynomials g(x) and h(x) with h(0) = 1, such that all complex roots of g(x) are negative and all
those of h(x) are positive real numbers.

Proof. A sequence {an}N0
is totally positive if and only if {ran}N0

is totally positive for r > 0. We set r = 1/a0 and
by the Proposition 2, we get that

f(x) = a0e
γxΠi(1 + αix)

Πi(1− βix)
(B4)

Because
∑

i(αi + βi) < +∞, the function f is meromorphic in |x| ≤ 1 with a finite number of poles and zeros inside
the unit disc. By the theorem of Salem [83], this function is rational, i.e., of the form g(x)/h(x). It is not difficult to
show that for rational function g(x)/h(x) =

∑
n∈N0

anx
n with an integers, polynomials g(x) and h(x) are relatively

prime with h(0) = 1 (see exercise 2(a) in Chapter 4 of [84]).
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Having these in mind, we can write down the proof of the Partition theorem 1. For clarity, we repeat the statement.

Theorem 1 (Partition). For χ1(x) =
∑

s∈N0
asx

s with a0 > 0, a symmetric function
∏d

k=1 χ1(xk) is a U(d) character
for all d ∈ N if and only if the generating function is of the form

χ1(x) =
Q−(x)

Q+(x)
, (B5)

where Q±(x) is an integral polynomial with all positive (negative) roots. Furthermore Q+(0) = 1.

Proof. Clearly {an} is integral because χ1(x) is a character of U(1). The character χd(x1, ..., xd) =
∏d

k=1 χ1(xk) is a
class function over U(d) and x1, ..., xd are variables on the maximal torus in U(d), i.e., xk = eiθk . For any symmetric
function f(x1, ..., xd), the notation f(g) assumes f being evaluated at eigenvalues x1, . . . , xd of matrix g ∈ U(d).
Now, as a consequence of the Littlewood-Richardson rule, the symmetric function χd(x1, ..., xd) is Schur-positive
(expands in non-negative coefficients over Schur polynomials) if and only if the product sµ(x1, ..., xd)χd(x1, .., xd) is
also Schur-positive. Using this, we expand sµ(x1, ..., xd)χ(x1, ..., xd) in Schur polynomials as

sµ(x1, ..., xd)χd(x1, ..., xd) =
∑
λ

cµλsλ(x1, ..., xd) (B6)

where the sum runs over Young diagrams λ and cµλ ≥ 0. Since Schur polynomials are orthogonal under the Haar
measure

⟨sλ, sµ⟩ =
∫
U(d)

sλ(g)sµ(g)dg = δλ,µ, (B7)

we get the expression

cµλ =

∫
U(d)

χd(g)sλ(g)sµ(g)dg (B8)

Using the fact that character is of factorization form χd(x1, . . . , xd) =
∏d

k=1 χ1(xk), the conditions of the Proposition
1 are met and we can rewrite the previous expression as

cµλ = det(aλi−µj−i+j)1≤i,j≤d = Dλ,µ
d−1(χ1), (B9)

where {an} is a sequence that generates the single-mode character χ1(x). Schur-positivity cµλ ≥ 0 thus reads

Dλ,µ
d−1(χ1) = det(aλi−µj−i+j)1≤i,j≤d ≥ 0, (B10)

which is by Proposition 1 equivalent to the condition that all minors of the Töplitz matrix (ai−j)i,j∈Z are non-negative.
This means {an} is totally positive. {an} is also an integral sequence with a0 > 0, therefore the main result follows
by Lemma 1.

Appendix C: Fock space decomposition for order-one statistics

Suppose two sets of variables x1, ..., xn and y1, ..., ym with m ≤ n. The Cauchy identities [69] are the following

n∏
i=1

m∏
j=1

(1 + xiyj) = Σl(λ)≤msλ(x1, ..., xn)sλ(y1, ..., ym), (C1)

n∏
i=1

m∏
j=1

1

1− xiyj
= Σl(λ)≤msλ(x1, ..., xn)sλ(y1, ..., ym) (C2)

where l(λ) is the length of the diagram (number of rows), and λ′ is the conjugate partition of λ. Using these identities,
the proof of Theorem 2 is as follows.
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Proof. For statistics [1, α]− and [1, β]+ we have the following d-mode characters (defined in (9))

χ−
d (x⃗) =

d∏
i=1

(1 + αxi), (C3)

χ+
d (x⃗) =

d∏
i=1

1

1− βxi
. (C4)

Now, we apply the first Cauchy identity by setting m = 1 and α = y1 and we get

χ−
d (x⃗) = Σl(λ)≤1sλ(α)sλ′(x1, ..., xd) (C5)

= Σl(λ)≤1α
|λ|sλ′(x1, ..., xd). (C6)

Similarly, we apply the second Cauchy identity by setting m = 1 and β = y1 and we get

χ+
d (x⃗) = Σl(λ)≤1sλ(β)sλ(x1, ..., xd) (C7)

= Σl(λ)≤1β
|λ|sλ(x1, ..., xd). (C8)

Appendix D: Negative occupations and general character

We set the most general U(1) character as a formal Laurent series

χ1(x) =
∑
s∈Z

asx
s, (D1)

with integral coefficients, i.e. as ∈ N0. For the set of d modes, the character decomposes as

χd(x1, . . . , xd) =

d∏
s=1

χ1(xs) =
∑
k,λ

c
(k)
λ s

(k)
λ (x⃗), (D2)

with c
(k)
λ ∈ N0 and irreducible factors being Laurent-Schur polynomials of the form

s
(k)
λ (x1, . . . , xd) = (x1 . . . xd)

−ksλ(x1, . . . , xd), k ∈ N0. (D3)

These are associated with the (rational) irreducible representations of U(d) [69]. The factor (x1 . . . xd)
−k = (detg)−k

corresponds to the determinant representation, while sλ(x1, . . . , xd) is the standard Schur polynomial.
Before proceeding further, a few comments are needed. Firstly, we adopt the notation of kd = (k, k, . . . , k) being

the partition of length d, and we define λ + kd = (l1 + k, . . . , λd + k). Now, note that indexing of Laurent-Schur

polynomials in (D3) with a pair (k, λ) is not unique, i.e., s
(k)
λ (x⃗) = s

(l)
µ (x⃗) holds whenever λ + ld = µ + kd. This is

because sλ+kd(x⃗) = (x1 . . . xd)
ksλ(x⃗) [85]. In the expansion (D2) we implicitly assume summation over different s

(k)
λ s

only, although we write explicitly summation over pairs (k, λ) to simplify the notation. Next, functions in (D3) are
orthogonal under Haar measure, i.e.,

⟨s(k)λ , s(l)µ ⟩ =
∫
U(d)

(detg)ksλ(g)(detg)
−lsµ(g)dg =

∫
U(d)

sλ+ld(g)sµ+kd(g)dg = δλ+ld,µ+kd , (D4)

With this, the proof of the main theorem B and equations (B7)-(B10) trivially modify by changing Schur polynomials

sλ with s
(k)
λ , and we easily conclude that the generating sequence of (D1) has to be totally-positive. Edrei has provided

their full classification:

Proposition 3 ([86]). Let {as}s∈Z be a totally-positive sequence and the Laurent series∑
s∈Z

asx
s (D5)
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associated with it. If the sequence does not coincide with a sequence of the form

{aρs}s∈Z (a, ρ > 0), (D6)

then the Laurent series (D5) converges in some ring

r1 < |x| < r2 (0 ≤ r1 < r2), (D7)

and the analytic continuation of (D5) is of the form

f(x) = Cxkec1x+c−1x
−1 Πs∈N(1 + αsx)

Πs∈N(1− βsx)

Πs∈N(1 + γsx
−1)

Πs∈N(1− δsx−1)
, (D8)

with k ∈ Z, C, c1, c−1, α, β, γ, δ ≥ 0, and
∑

s∈N αs + βs + γs + δs < +∞.

Now, we are ready to prove the following statement:

Proposition 4. Let {as}s∈Z be an integral (as ∈ N0) totally-positive sequence which is not of the form (D6). Then
this sequence cannot extend to double infinity, i.e., there exists k ∈ Z such that ak = 0 either for s < k or s > k.

Proof. Suppose by contradiction that as is non-zero at both ±∞. We divide the associated Laurent series (D5) into

the positive S+(x) =
∑+∞

s=1 asx
s and negative S−(x) =

∑0
s=−∞ asx

s parts. Because as is non-zero (integer) at infinity,
the series S+ converges at best within the unit radius, i.e., |x| < r ≤ 1. Similarly, S− converges within the radius
1/|x| < R ≤ 1. These two convergence conditions are compatible only for |x| = 1. Since limn→±∞ asx

s ̸= 0 (or does
not exist) for |x| = 1, we conclude (D5) converges nowhere. This contradicts Proposition 3 because of (D7).

From the last proposition, it follows that the general single-mode character (D1) is either of the form χ1(x) =
xk
∑

s≥0 csx
s or χ1(x) = xk(

∑
s≥0 csx

s)∗ for some k ∈ Z, where ∗ denotes complex conjugate (note that x∗ = 1/x

because x = eiφ). The factor xk builds into (x1 . . . xd)
k for dmodes and corresponds to the determinant representations

(power k). Our main theorem 1 applies directly to the factor
∑

s≥0 csx
s. As follows from Proposition 3, the only

exceptional case is the character generated by the sequence (D6) with a, ρ ∈ N0.
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