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We present an open-source database
of superconducting quantum device de-
signs that may be used as the starting
point for customized devices. Each de-
sign can be generated programmatically
using the open-source Qiskit Metal pack-
age, and simulated using finite-element
electromagnetic solvers. We present a
robust workflow for achieving high accu-
racy on design simulations. Many designs
in the database are experimentally val-
idated, showing excellent agreement be-
tween simulated and measured parame-
ters. Our database includes a front-end in-
terface that allows users to generate “best-
guess” designs based on desired circuit pa-
rameters. This project lowers the bar-
rier to entry for research groups seeking
to make a new class of devices by pro-
viding them a well-characterized starting
point from which to refine their designs.

Superconducting qubits are a leading quan-
tum information technology platform. Scalable
qubit fabrication requires accurate control of the
Hamiltonian parameters most commonly used to
predict device behavior, such as qubit anhar-
monicity and qubit-resonator coupling. This in
turn requires accurate targeting of classical cir-
cuit parameters (inductances and capacitances).
These are difficult to solve for, as there are typical
no good analytical formulas (even approximate
ones) to predict circuit parameters from design
geometry. Instead, researchers must numerically
solve the Maxwell equations given their design’s
unique boundary conditions.

Finite-element simulations of the electromag-
netic field can provide reasonably accurate pre-
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dictions of circuit parameters. However, these
simulations are often time-consuming and require
extensive computing resources for all but the
most simple devices. They are also prone to mis-
leading results, sometimes missing wildly on esti-
mates of couplings between smaller features due
to non-idealities such as finite mesh size in the
solver. Even when simulations are perfectly ac-
curate, there is still an essential problem: Hamil-
tonian parameters can be calculated from a de-
vice’s design, but the inverse is not true. Design
is thus a game of “guess and check” in order to
find geometries that produce the desired Hamil-
tonian parameters.

Many resources have been developed in the
community to assist with this design problem.
Qiskit’s Metal package allows for rapid program-
matic generation of device layout [1]. Pack-
ages such as scqubits, CircuitQ, and SQcircuit
gives accurate numerical calculations of spectra,
eigenstates, and/or Hamiltonians when given a
lumped-element circuit model [2, 3, 4]. Tech-
niques have been developed for modeling quan-
tum circuits classically with lumped models such
as SPICE [5]. Researchers have combined phe-
nomenological rules with sophisticated optimiza-
tion algorithms to better target Hamiltonian pa-
rameters [6] and have even automated the search
for optimal circuit element parameters [7]. Some
best-practices guides exist for device simulation,
although they are typically not optimized for su-
perconducting qubits [8]. However, the funda-
mental problem remains that there is no easy way
to solve the problem that faces device designers:
how does one generate a physical design layout
from the target effective Hamiltonian parameters.

In this paper we present SQuADDS: a
Superconducting Qubit And Device Design and
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Simulation database. SQuADDS provides a ro-
bust workflow for generating and simulating su-
perconducting quantum device designs. Our
workflow is based on the Qiskit Metal library
and is backed by an open-source database of
well-simulated designs, including designs whose
simulations have been validated by experimen-
tal measurements. A front-end interface for our
database allows users to specify Hamiltonian pa-
rameters and rapidly generate “best-guess” de-
signs, then perform accurate simulations of these
designs to refine the design further if needed.
SQuADDS is intended to function as a com-
plement to the aforementioned circuit simula-
tion codes, providing the physical layout to go
along with the desired circuit parameters. Our
database is designed as an open-source resource
for the superconducting qubit community, with
community members submitting experimentally-
validated designs and simulation parameters.

Typically, research groups will simulate de-
signs, fabricate, test, and then iterate on the sim-
ulation parameters until the simulations converge
to experimental results. The eventual working
designs and simulation parameters are often held
as “secret sauce” and not shared with the com-
munity. This presents a major barrier to entry
for new groups, as fabrication and measurement
runs are costly and time-consuming. Even for
well-established groups it can be challenging to
move to a new device type or geometry, as sim-
ulation parameters that worked for one style of
device may not work for another. The purpose of
the SQuADDS project is to remove this barrier,
providing an open-source database pre-simulated
designs and well-qualified simulation parameters.

1 Hamiltonian and Circuit Parameters

In a typical experiment, a planar qubit is cou-
pled to a transmission line resonator for readout
or coupling to another element. Assuming a ca-
pacitive coupling and a charge type qubit, and ne-
glecting offset charges, the Hamiltonian for such

a circuit takes the familiar form

Hr = 4EC,rn2
r + 1

2ELϕ2
r (1)

Hq = 4EC,qn2
q − EJ cos ϕq (2)

Hint = 4e2 Cc

CqCr
nqnr (3)

H = Hr + Hq + Hint (4)

Here EC,i = e2/2Ci is the charging energy on
capacitor Ci, n is the charge number operator,
EL = ℏ/2eL = φ2

0/L is the inductive energy on
resonator inductor L, ϕi is the phase operator,
EJ = φ0I0 is the Josephson energy, and Cc is
the coupling capacitance between qubit and res-
onator. All of these parameters are completely
determined by the device geometry, with the ex-
ception of EJ which is set both by geometry and
fabrication parameters (i.e., tunnel barrier thick-
ness).

It is often impractical to work with such circuit-
level Hamiltonians. Following the standard quan-
tization procedures and treating the qubit as a
nonlinear oscillator (i.e., a transmon) yields the
familiar Jaynes-Cummings model (with ℏ = 1)
[9, 10],

H =ωr(a†a + 1
2) + ωqb†b + α

2 b†b(b†b − 1)

+ g(a − a†)(b − b†) (5)

Where

ωr =
√

8ELEC,r

ωq ≈
√

8EJEC,q − EC,q

α ≈ −EC,q

g ≈ Cc

Cq

√
e2ωr

Cr

(
EJ

8EC,q

)1/4

(6)

Note that these expressions are approximations
valid in the usual transmon limit EJ >> EC,q

and the weak coupling limit Cc << Cq, Cr.
The qubit frequency ωq, anharmonicity α, res-

onator frequency ωr, resonator linewidth κ, and
qubit-resonator coupling strength g are typical
parameters of interest for superconducting qubit
devices. Other parameters of interest, such as
qubit-qubit coupling or Purcell filter linewidth,
are discussed in Section 5.

Beyond these approximations, many estab-
lished resources exist in the community for nu-
merically finding the exact Hamiltonian param-
eters from circuit parameters (capacitances and
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inductances). These includes the open-source
codes scQubits, CircuitQ, and SQcircuit de-
scribed above, based on rigorous Lagrangian
analysis of the circuit [11]. However, it is still a
challenge to extract the circuit parameters them-
selves from the device design.

To extract circuit parameters, the standard
technique is to use a finite-element solver such
as COMSOL or ANSYS to simulate the electro-
magnetic field distributions. Performing accurate
simulations requires careful tuning of the simula-
tion parameters, including setting a fine enough
discrete-element mesh and ensuring accurate con-
vergence to a global minimum solution. Simu-
lations are computationally intensive, requiring
many hours or even days for larger designs even
when run on high-performance computing clus-
ters.

2 Building the database
2.1 Validated designs
The first step in building the SQuADDS database
is compiling data from experimentally-measured
devices. As an example, we show the design
and experimental data for a chip with 6 inde-
pendent xmon qubits, each coupled to its own
half-wave or quarter-wave CPW resonator. See
Fig. 1. This device is a modification of the
MIT Lincoln Laboratory “standard candle” chip
and was fabricated via the MIT-LL SQUILL
foundry program. To extract Hamiltonian pa-
rameters, we perform only two standard charac-
terization measurements: “punchout” and qubit
spectroscopy. In a punchout measurement, res-
onator spectroscopy is measured as a function of
readout power; at high powers the circuit escapes
from the Josephson energy well and is essentially
erased from the system [12]. This punched-out
resonance gives a measurement of the bare res-
onator frequency ωr and linewidth κ, while the
shift between the low-power and high-power res-
onances gives an accurate measurement of the
Lamb shift χL ≈ g2/∆−g2/Σ where ∆ ≡ ωr −ωq

is the qubit-resonator detuning and Σ ≡ ωr + ωq

is the sum frequency. We note that the Lamb
shift is typically derived in the rotating wave ap-
proximation (RWA), where the terms ab and a†b†

in Eq. 5 are neglected; in this limit χL ≈ g2/∆,
the formula typically reported in the literature.
However, this approximation will significantly un-

derestimate g if ∆ and Σ are of the same order,
which is common in weakly-coupled devices. This
is the case for the example device, with qubit
frequencies ωq ∼ 2π × 3 GHz and resonator fre-
quencies ωr ∼ 2π × 7 GHz; taking the RWA with
these parameters underestimates g by approxi-
mately 25%. In order to accurately translate be-
tween simulation and experiment, it is essential
to include non-RWA terms in the Hamiltonian. A
derivation of this Lamb shift and the dispersive
shift given in Eq. 9 is shown in Appendix A.

A qubit spectroscopy measurement gives the
qubit transition frequency ωq = ω01 and the fre-
quency of the two-photon transition to the sec-
ond excited state ω02/2. From this we extract
qubit frequency anharmonicity α = ω02 − 2ω01.
Combined with the punchout measurement, we
can extract all Hamiltonian parameters. We note
that these measurements are typically done at
the very beginning of device tuneup for all ex-
periments, and so this characterization adds no
overhead.

In the case of devices where one mode is very
lossy, spectroscopic measurements of that mode
may be impossible. This is the case for the “dissi-
pator” devices we include in the database, which
have a tuneable coupler that is deliberately made
lossy by coupling to an external feedline [13].
For these devices, we characterize the Hamil-
tonian parameters of the tunable-qubit Jaynes-
Cummings model

H =ωr(a†a + 1/2) − ωq

2 (cos2 ϕ + d2 sin2 ϕ)1/4

+ g(a + a†)σx (7)

Here ϕ = 2πΦext/Φ0 is the external bias flux
through the coupler SQUID in units of the re-
duced flux quantum, d ≡ (EJ2−EJ1)/(EJ2+EJ1)
characterizes any asymmetry between the SQUID
junctions, and we take the approximation that
the coupler is a qubit. In reality it is essentially
a transmon, but the anharmonicity is difficult to
measure in practice, and is much larger than g.
However, as we have the ability to sweep the flux
of the tunable coupler’s SQUID and thus its ωq,
we can directly measure the avoided crossing of
the coupler and resonator levels with resonator
spectroscopy. The resonator frequency as a func-
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f01
(GHz)

α/2π
(MHz)

fres
(GHz)

κ/2π
(MHz)

χL/2π
(MHz)

Extracted g/2π
(MHz)

4.216 -153 6.116 0.16672 1.56 60
3.896 -154 6.353 0.18793 1.35 66
4.451 -189 6.472 6.47625 1.97 70
3.586 -164 6.568 0.21943 1.02 66
4.101 -210 6.655 2.43003 0.82 52
3.881 -176 6.704 0.78668 0.36 37

Figure 1: (a) Design layout of a chip with 6 xmon qubits, each connected to its own quarter- or half-wave readout
resonator. The design is programmatically generated using Qiskit Metal. (b) Table showing the measured qubit
frequency, qubit anharmonicity, resonator frequency, resonator linewidths, and Lamb shift, as well as the extracted g
for a device with design similar to the one shown. All parameters are extracted from spectroscopic measurements.

tion of flux is fit to

ω′
r(ϕ) =√
(ωr + ωq(ϕ))2 + 4g2 ±

√
(ωr − ωq(ϕ))2 + 4g2

2

to extract all Hamiltonian parameters in Eq. 7
[14].

2.2 Matching Simulation to Experiment

After collecting experimentally-measured Hamil-
tonian parameters for each design, we then gen-
erate the designs programmatically using Qiskit
Metal. Occasionally this involves creating a new
design element in Metal; we have contriubed sev-
eral such elements to the Metal codebase. We
then export the design to ANSYS for EM simu-
lation using the HFSS solver. We use 2 solvers:
the Q3D solver, which gives capacitance and in-
ductance matrices for all elements, and the eigen-
modal solver, which solves for the normal modes
of the system and their quality factors. To ensure
accurate results, we set simulation hyperparame-
ters to mandate higher and higher accuracy (and
thus take longer and longer times) until further
refinement causes no significant change in the ex-
tracted Hamiltonian parameters. See Figure 2.
restrict the discrete mesh on each element to have
a maximum size of ≲ 1/3 the smallest characteris-
tic dimension (e.g., the width of a strip of ground
plane cross); in the case where a simulation uses
the eigenmodal solver, we set the mesh on any

junctions to be ≲ 1/10 the characteristic dimen-
sion to ensure accurate modeling of the junction
field. This is necessary for any future energy par-
ticipation ratio (EPR) analysis of the circuit [15],
which we employ via the pyEPR package. We
also set the convergence criteria to be a differ-
ence of less than 0.05% from one simulation re-
finement iteration to the next, and we mandate
at least 3 converged iterations. As shown in Fig-
ure 2, even the most difficult-to-simulate param-
eter κ converges to a saturating value that does
not significantly change with longer, more precise
simulations.

To extract parameters, we take the lumped-
element capacitance matrices (if using Q3D) or
the mode frequencies and quality factors (if using
eigenmodal). If using lumped-element analysis,
we plug the extracted capacitance and inductance
values into the circuit-level Hamiltonian and use
the scqubits code to extract qubit Hamiltonian
parameters. Note that for distributed-element
waveguide resonators this requires treating the
resonator capacitance as an effective lumped ca-
pacitance

Cr = π

mωrZc
(8)

where ωr is the resonant frequency, Zc is the
waveguide’s characteristic impedance (Zc = 50
Ω for all our designs), and m = 2 for a half-wave
resonator or m = 4 for a quarter-wave resonator.

If using EPR analysis, we take the self-
Kerr shifts and qubit frequency and extract the
qubit charging energy EC using scqubits (method
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(a)

(b)

Figure 2: (a) Simulated resonator linewidth κ as a func-
tion of convergence criteria, defined as the percentage
change of the resonant frequency from one simulation
pass to the next. Color indicates the time required for a
simulation. The star symbol is the value 0.05% that we
use for simulations; further refinement does not signifi-
cantly change κ but does significantly increase simula-
tion time. The dashed red line is the measured value of
κ; a small systematic error persists, which is typical for
this parameter and is likely due to impedance variations
in the experimental device’s environment. (b) κ as a
function of the minimum number of simulation passes
below the convergence criteria. Again the star indicates
the value 3 that we use for simulations.

Transmon.find_EJ_EC), as for modest EJ/EC ≲
50 the anharmonicity can diverge from EC by as
much as 10%. We likewise extract g from the
dispersive (cross-Kerr) shift that pyEPR reports
using the formula derived from second-order per-
turbation theory:

χ = 2g2
(

α

∆(∆ − α) + α

Σ(Σ + α)

)
(9)

In this definition χ is the full resonance shift
between qubit ground and excited states (some-
times defined instead as 2χ). Again we have in-
cluded terms typically ignored in the RWA, which
give the second term above. This highlights the
importance of not taking the RWA: if the RWA is

Parameter RMS Error (%)
α 4.1
κ 16.9
g 10.4
fr 3.8

Table 1: RMS errors of the simulated vs. experimentally
measured values for various Hamiltonian parameters, for
the 6 qubit-resonator combinations shown in Figure 1.

taken in the expressions for χL and χ, the χ pre-
dicted from punchout and spectroscopy can be
as much as a factor of 2 smaller than the true
value! The expressions for χL and χ are derived
from second-order perturbation theory, and are
thus subject to corrections of order g/∆, which
is often comparable to experimental precision in
any case. See Appendix A for derivations.

We iterate our simulations, refining the HFSS
parameters—mesh size, maximum tolerance, and
minimum converged iterations—until the simu-
lated Hamiltonian parameters converge to the
measured ones within reasonable tolerance. Cru-
cially, we ensure that the same HFSS parame-
ters yield simulations which are accurate for a
range of similar but not identical devices. We
have found in the past that it is possible to “over-
fit” a simulation, giving an illusion of accuracy
that correctly matches one device’s parameters
but failing on similar devices. By testing the
same simulation parameters against several de-
vices, we ensure their robustness. We achieve
good convergence with both analysis methods,
but employ lumped-element analysis whenever
possible. We make this choice so that later we can
build up our database combinatorially. We use
eigenmodal analysis only to find the frequencies
and coupled quality factor (i.e., κ) for resonators.
We then separately simulate xmons and coupling
claws using Q3D to extract capacitances, and
use lumped-element formulae and numeric cal-
culations from scqubits to find the Hamiltonian
parameters. More details of this procedure are
given below in Sec. 2.3. Using this procedure,
for the devices tested we achieve RMS errors of
4.1%, 16.9%, 10.4%, and 3.8% for anharmonicity
α, resonator linewidth κ, coupling rate g, and res-
onator frequency fr, respectively (see Table 1 and
Figure 3).

The somewhat larger error in κ is mostly driven
by devices with large linewidth (κ ≳ 2 MHz)
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(a) (b)

(c) (d)

Figure 3: (a) Extracted anharmonicity α as a function of capacitor cross length for simulated xmon devices with
various coupling claw lengths. (b) Extracted g for these same xmon devices as a function of coupling claw lengths
for a chosen resonator frequency and type. (c) Comparison of experimental measurements and simulated values for
the α and g of xmon devices from Fig. 1. (d) Comparison of experimental measurements and simulated values for
resonator frequency fr and resonator linewidth κ.

and is likely the result of impedance variations
in the experimental setup which can distort the
resonator lineshape and alter the linewidth. We
note that the simulations tend to overestimate
anharmonicity |α| and consistently overestimate
coupling strength g. We believe the former ef-
fect stems from the assumption of ideal Josephson
nonlinearity, i.e., assuming the Josephson energy
contribution is exactly EJ cos ϕ. This assumption
may not be fully valid—recent work has shown
that linear inductance in the transmon circuit and
non-ideal behavior in the junction itself can sig-
nificantly reduce the anharmonicity for a real de-
vice with a given EC [16]. The overestimation
of g is likely in part due to etch bias in the fab-
rication process, which results in metal features
which are narrower than designed. We expect
this to contribute a roughly 3% overestimate of g.

The overestimate may also be due in part to the
omission of air-bridge crossovers from our simula-
tions; these crossovers increase the total resonator
capacitance and slightly decrease the coupling ca-
pacitance, again reducing g. We omit them from
the database as their design details are propriety
and confidential to the MIT Lincoln Lab foundry
that fabricated the device.

2.3 Generating the database

Once we can be confident in the accuracy of our
simulations, we begin simulating devices similar
to the experimentally-validated designs, with a
range of variations on design geometry parame-
ters. For instance, we simulate devices based on
the xmons shown in Fig. 1 with a range of xmon
cross length, coupling claw length and width, res-
onator CPW line length, and resonator coupling

Accepted in Quantum 2024-09-05, click title to verify. Published under CC-BY 4.0. 6



element dimensions. In addition to this device,
we simulate variations on the devices shown in
[13] (with 2 qubit-cavity pairs) and [17] (with
3 qubit-cavity pairs). As we choose a very fine
mesh and a low solution tolerance in order to en-
sure good simulation accurancy, these simulations
could be quite time consuming. However, we take
advantage of the fact that lumped-element analy-
sis allows us to treat device components as mod-
ular lumped elements which can then be com-
bined together, as was done in the simulations
of experimentally-measured devices. In this way
we can simulate small components and then use
analytical formulae to calculate Hamiltonian pa-
rameters when they are combined. For instance,
we simulate relatively-compact xmon crosses and
coupling claws, which only takes a few minutes
per simulation. We then can combine these sim-
ulated elements with separately-simulated read-
out cavities, and calculate g from the analytical
formula (Eq. 6). This allows us to grow the
database combinatorially, greatly reducing both
the number of simulations required and the time
required for each simulation. We have confirmed
the accuracy of this procedure by testing with val-
idated designs and find that we match experimen-
tal parameters well, as discussed earlier. Note
that these combinatorial values depend on EJ ,
which is calculated from the user-specified target
values of ωq and α; the database may thus be seen
as a set of combinatorial circuits, whose Hamil-
tonian properties can be calculated once EJ is
specified. At present, the database has simula-
tions of 1934 cross-claw structures.

Unfortunately, simulations of distributed-
element resonators are still rather lengthy (taking
up to an hour or more when performed on a work-
station equipped with an AMD Ryzen Thread-
ripper PRO 3955WX 16-core 3.90 GHz proces-
sor and 128 GB of RAM), and parameters such
as resonator linewidth are not easily calculated
from modular component properties for all ge-
ometries of the element coupling the resonator to
its feedline. For instance, in the “parallel CPW”
coupling geometry used in 3 of the resonators
shown in Fig. 1, the coupling element is a signif-
icant fraction of the length of the resonator and
so is difficult to treat modularly [18]. For these
geometries we therefore run eigenmodal simula-
tions of the full resonator, including the element
that couples it to the feedline and a portion of

the feedline itself. The feedline is terminated
with lumped resistive elements (usually 50 Ω) to
simulate the environmental impedance. We also
include various combinations of qubit coupling
claws, as these affect both resonator frequency
and linewidth. From these simulations we di-
rectly extract both resonant frequency and ex-
ternal quality factor (i.e., linewidth). These sim-
ulations are far more time-consuming and cannot
be easily combined combinatorially. We there-
fore run them in parallel on workstations and on
a local high-performance computing cluster. At
present, the database has simulations of 693 dif-
ferent quarter-wave resonators with distributed
coupling elements. By combining with qubit
cross-claw designs, this produces 18,957 devices
(where designs are combined so that the claw ge-
ometries match).

For resonators with lumped-element capaci-
tive couplers, we first perform eigenmodal sim-
ulations of various combinations of CPW length
and qubit-coupling claw dimesions with no feed-
line coupling element to extract the uncoupled
resonant frequency ω′. From this we extract the
effective resonator capacitance Cr. We separately
perform simulations of the small coupling capac-
itor and extract its coupling to ground Ccg and
to the feedline Crf . We then calculate the cou-
pled resonant frequency ωr =

√
Cr

Cr+Crf +Ccg
ω′

and the linewidth κ = 1
2Z0ω2

r

C2
rf

Cr+Crf +Ccg
for all

combinations of coupler and CPW/claw, where
Z0 is the external environmental impedance (typ-
ically 50 or 25 Ω depending on the geometry).
In all cases we automatically extract circuit-level
Hamiltonian parameters from the simulation re-
sults and store a database entry with the geom-
etry parameters, simulation parameters, and ex-
tracted Hamiltonian parameters. We have veri-
fied that this produces results for resonator fre-
quency and linewidth that are equivalent to those
produced from a full-circuit eigenmodal analysis
to within a scatter of a few %—see Figure 4. We
expect this approach to break down when res-
onator quality factor Q drops below ∼ 1000, as
the large coupling capacitor would cause distor-
tions of the resonant mode that a lumped model
would not capture. We note that this hybrid
lumped-distributed approach is qualitatively sim-
ilar to that taken in [19], although the details of
the models differ. At present, the database has
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Figure 4: Comparison of resonator frequency and
linewidth κ values obtained via eigenmodal analysis
(blue) and via combinatorial lumped-element models
(yellow). The two are nearly indistinguishable, showing
the validity of the lumped-element approach.

simulations of 406 half-wave resonators with 430
coupling capacitors, yielding 174,580 possible res-
onator designs; combining with qubit structures
yields 4,756,660 device designs.

Fig. 3 shows how Hamiltonian parameters vary
with geometry for the xmon devices discussed
above. We achieve good agreement with ex-
perimental results and we both interpolate be-
tween and extrapolate around the experimen-
tal device designs. The largest deviation be-
tween simulation and experiment comes in the
simulation of the linewidth of devices that are
strongly coupled to the feedline, i.e., devices with
broad linewidths. We attribute this deviation to
impedance variations in the experimental envi-
ronment that distort the resonance lineshape and
modify the linewidth.

3 User Interface

The workflow from a user perspective is dia-
grammed in Fig. 5. First, the user chooses a
set of basic device characteristics, selecting which
components are coupled to each other, whether
resonators should be half-wave or quarter-wave,
what form the resonator-feedline coupling should
take, and what drive lines should be included.
They then are then queried for relevant Hamil-
tonian parameters: qubit frequency and an-
harmonicity, resonator frequency and linewidth,
qubit-resonator coupling rate, and drive-line-
limited qubit lifetime. They can optionally
choose their own cost function, selecting how to
calculate which design is the “best match” to their

target parameters, or use the default cost func-
tion (details below).When SQuADDS receives
this input it first uses scQubits to calculate the
required EJ values. It then searches the design
database for existing designs with closely match-
ing Hamiltonian parameters, and tags the closest
and next-closest designs for each parameter, as
well as the closest design overall based on the cost
function. It then interpolates device geometry
parameters to reach a “best-guess” design that has
not yet been simulated (details below). The user
is presented with this best-guess design and its es-
timated Hamiltonian parameters, including both
a .gds file and code to programmatically generate
the layout. This code also includes programmatic
launching and running of a finite-element ANSYS
HFSS simulation to extract the Hamiltonian pa-
rameters of the design. The simulation parame-
ters (such as mesh size and maximum deviation
tolerance) are matched to those that had reliably
reproduced the experimental results of the clos-
est validated design. The user is also presented
with the pre-simulated design that is closest to
their specified parameters, along with the corre-
sponding closest experimentally validated design.
An example user input and output is provided as
supplementary material.

The choice of cost function is key to finding
a suitable device. Typically a simple Euclidean
square distance measure is suitable, which com-
putes the cost of simulated Hamiltonian parame-
ters {pi} versus target parameters {Pi}:

F ({Pi}, {pi}) =
∑

i

wi
(Pi − pi)2

P 2
i

Here wi are weights which default to 1 but may
be user-defined. For instance, a user may require
tight precision of a few percent on the readout
resonator frequency ωr, while tolerating 10−20%
deviation from the target qubit frequency ωq, if
they have many readout resonators sharing the
same feedline. In this case the user should up-
weight the resonator frequency error and down-
weight the qubit frequency error in the cost func-
tion. The user can also optionally choose to in-
clude functions of the parameters, such as ∆ and
χ, in the cost function, and can ignore error in any
parameter or function by setting its weight to 0.
They can also choose different distance metrics,
and if desired can write completely custom cost
functions.
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Connect to the SQuADDS Database

Select Circuit QED Elements

Input Target
Hamiltonian Parameters

Receive Closest Presimulated Design Receive Interpolated Design
and Simulation Hyperparameters

Continue with Presimulated Design
in Qiskit Metal Simulate the Interpolated Design

Contribute the results to the
SQuADDS Database

Figure 5: Process workflow of the SQuADDS database
from a user perspective. The user selects a device type
and target parameters, and optionally defines a cost
function. SQuADDS searches the database for the clos-
est pre-simulated design and experimentally validated
design, and outputs these designs (and specified EJ val-
ues) and code to generate and simulate them. It also
interpolates a best-guess design and gives the user code
to generate and simulate it, along with estimated Hamil-
tonian parameters.

4 Design interpolation

Our goal is to provide a design database exten-
sive enough that there is always a well-simulated
design with Hamiltonian parameters close to a
user’s goal. However, even a bounded parame-
ter space for simple single-qubit devices is many-
dimensional (resonator and qubit frequency,
qubit anharmonicity, resonator linewidth, qubit-
resonator coupling, etc.) and so covering every
combination of parameters with fine resolution
is computationally challenging. Instead, we try
to cover as wide of a range of design geometry
parameters as possible with moderate parame-
ter point spacing, then interpolate between them
based on user input. This presents its own chal-
lenge, as each design geometry parameter typi-
cally influences multiple Hamiltonian parameters.
Ordinarily this would be an ideal use case for ma-
chine learning, and indeed we have had some suc-
cess with such approaches in parameter regimes
where we have good coverage. However, for the
time being our coverage of resonator parameter
space is relatively sparse, and so machine learn-
ing algorithms tend to overfit and produce inac-
curate results. We expect this issue to diminsh as
we continue to add designs to the database, and
we plan to switch the interpolation logic over to
a machine learning model soon.

In the meantime, we can use our knowledge of
the physics of the system to provide a physically-
motivated interpolation procedure:

1. From the user-input qubit type and param-
eters (frequency, anharmonicity, coupling
strength, resonator frequency and type), nu-
merically calculate the required qubit capac-
itance and coupling capacitance, as well as
EJ . If EJ/EC < 30, warn the user.

2. Search the database for the design combina-
tion of qubit capacitance and coupling ca-
pacitance that gives the best match to the
anharmonicity αtarget and coupling strength
gtarget given the specified target resonator
frequency and qubit frequency, according to
the specified cost function. Flag this design.

3. Scale the qubit capacitor and the cou-
pling capacitor area linearly by the ra-
tio αsimulated/αtarget. Then scale the cou-
pling capacitor area only by the ratio
gtarget/gsimulated.

4. From the user-input resonator type (quarter-
wave or half-wave) and target parameters
(frequency and linewidth), select the pre-
simulated resonator with the closest com-
bination of values according to the speci-
fied cost function. Include only designs with
qubit coupling claw capacitances that differ
from the value above by less than 30%. Flag
this design.

5. Take this pre-simulated resonator design and
replace its qubit coupling claw with the one
calculated in step 3. Scale the resonator
length linearly to reach the desired fre-
quency, and scale the square of the feedline
coupling element characteristic dimension
(e.g., the fingers of an interdigitated capaci-
tor) linearly to reach the desired linewidth.

6. If the resonator-feedline coupling element
(coupling capacitor or co-linear waveguide
section) has changed by more than 1% of
the total resonator capacitance (or length),
re-calculate the resonant frequency fr and
rescale the resonator length as necessary. For
Likewise if the qubit coupling claw capaci-
tance Cc has changed by more than 1 % of
Cr, rescale the resonator length to hit the
target frequency.

7. Return to the user the interpolated design,
code to generate and simulate the design,
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(a) (b)

(c)

Design ∆g(%) ∆α(%) ∆κ(%) ∆fr(%) ∆fq(%) max{ξi}(ξ, ∆ξ)
1 0.05 0.42 3.17 1.71 0.38 (fr, 6.70%)
2 0.05 0.16 5.24 0.81 0.12 (fr, 3.02%)
3 0.49 0.16 0.70 1.20 0.12 (fr, 0.89%)
4 1.27 1.87 24.78 1.96 0.04 (fr, 8.15%)
5 0.16 0.12 1.67 4.54 0.10 (κ, 20.91%)
6 0.02 0.42 1.92 2.62 0.23 (κ, 3.82%)

(d)

Figure 6: (a) Qubit anharmonicity α and qubit-resonator coupling strength g for various pre-simulated designs
with a user-specified target point (red x) and closest pre-simulated design (green square) highlighted. (b) Qubit-
resonator coupling strength (g) and qubit anharmonicity (α) with 6 target points (red crosses) compared to the best
pre-simulated points (green squares) and interpolated designs (purple circles). The interpolation improves accuracy
in all but one case (rightmost point), where the target lies outside the convex bounds of the pre-simulated space.
(c) resonator linewidth (κ) and resonant frequency (fr), again comparing the best pre-simulated designs and the
interpolated designs against the user-defined targets. Again interpolation almost always improves accuracy, although
overall accuracy suffers when the target is outside the pre-simulated convex bounds. (d) Table containing the RMS
percentage differences from the target values for the interpolated points in the g, α, κ, and fr space, demonstrating
the overall precision of the interpolation process from the SQuADDS database. In general we see excellent accuracy
of these designs across all Hamiltonian parameters, except when the target falls outside the convex bounds of the
pre-simulated parameter space (Design No. 4). The last column indicates the largest deviation of a target parameter
from the closest pre-simulated design.

and the designs and code for the closest pre-
simulated designs.

A pseudocode version of this algorithm is in-
cluded in Appendix B.

This procedure is of course not fully accurate.
Most of the scalings are not truly linear, and there
are interactions neglected. For example, changing
the qubit-resonator coupling element changes the
total qubit capacitance and thus the anharmonic-
ity, which we do not compensate for, under the
assumption that the coupling capacitance is small

compared to the total capacitance. Given that
our coverage of the parameter space with pre-
simulated designs is reasonably dense, and will
become more so as more designs are added to the
database, we expect all scaling factors to be rela-
tively close to 1. We therefore do not expect these
approximations to cause major inaccuracies.

Tests of this procedure indicate its relia-
bility within the convex bounds of the pre-
simulated parameters space. See Fig. 6. We
have selected various points in the parameter
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space and then simulated the interpolated de-
signs; on average they have rms deviation of
0.56%, 0.81%, 2.46%, 10.47%, 0.20% from the tar-
get g, α, fr, κ, and fq respectively. Almost all of
the κ error comes from one point (Design No. 4 of
table in Fig. 6(d)). where the target was far out-
side the convex bounds of the presimulated space,
and so interpolation is less reliable; we expect this
issue to diminish as we continue adding designs.
Of course, a user with simulation capability can
always simulate the design to confirm its param-
eters; we generate the code necessary to ensure
an accurate simulation as part of the output.

We note that this interpolation algorithm is
quite specific to our particular design. To perform
interpolation more generally, we are working to
implement machine learning algorithms that are
trained on our pre-simulated data sets. Prelim-
inary results are promising, but more database
coverage is required before the new interpola-
tion algorithms reach the accuracy of the current
physics-based algorithm. Adding this database
coverage and training general interpolation mod-
els are planned for the coming months.

5 Future development

The SQuADDS project currently has some limi-
tations. The database is limited in extent, with
only xmon-style transmons coupled to quarter-
and half-wave CPW resonators, all with some-
what similar dimensions. We plan to continue
adding validated designs to the database every
time a new device is measured in our group.
More importantly, the open-source nature of
the project means that users from other groups
can contribute their experimentally-measured de-
signs, thus providing a much broader dataset.
These experimentally-validated designs then pro-
vide "fixed points" in design geometry parameter
space, about which we and other contributors can
extrapolate geometries and simulate the resulting
designs. All contributed designs will be subject
to an approval process including review of raw
data, ensuring that SQuADDS remains an accu-
rate resource. Additionally, the database struc-
ture of SQuADDS makes it straighforward to in-
clude more information about validated devices,
such as fabcrication recipes, device images, ma-
terials properties, paper references, etc.

Users will also have the opportunity to con-

tribute to the SQuADDS codebase through pull
requests to the project GitHub repository [20].
A wishlist of features to add is maintained on
the repository. Features we plan to add in the
near term include functionality to calculate flux-
onium qubit parameters, multi-qubit and Purcell-
filtered designs, and functionality to compute
Hamiltonians of arbitrary circuits based on the
physical layout (by interfacing with packages such
as SQcircuits). We furthermore plan to change
Hamiltonian parameter calculation from using
analytical formulas (which are typically only ac-
curate in the limit of weak coupling) to using sc-
qubits and/or SQcircuits to numerically calculate
all parameters.

Currently the simulation workflow is based
on the proprietary ANSYS HFSS solver, which
can be quite expensive, especially for high-
performance computing licenses. This difficulty
is significant as not all groups who wish to con-
tribute may have access to HFSS, and our own
group is mostly limited to running simulations
on in-lab workstations rather than a computing
cluster. In the next update to SQuADDS, we
plan to integrate support for the AWS PALACE
open-source solver, which resolves both the acces-
sibility and cost issues [21].

In an effort to make SQuADDS a more versatile
tool for both quantum hardware developers and
machine learning (ML) researchers, we utilize the
HuggingFace platform to host our database [22].
This approach facilitates the study of our results
through ML models, akin to those documented
in references [23, 24, 25]. Having our database
accessible to train future models, we hope to aid
in the development of Electronic Design Automa-
tion (EDA) tools that can catalyze innovation in
the superconducting quantum hardware, industry
mirroring the pivotal impacts seen in the semi-
conductor field [26].

In conclusion, we have created SQuADDS, a
resource for the superconducting qubit commu-
nity that enables researchers to quickly and eas-
ily generate device designs from desired Hamil-
tonian parameters. The project is underpinned
by a database of pre-simulated designs, which
are variations on simulations that have been em-
pirically matched to experimental results. The
project’s open-source ethos invites active commu-
nity engagement to expand the database, intro-
duce new functionalities such as additional qubit
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types, novel geometric design elements, and cal-
culations of qubit-qubit and qubit-resonator cou-
plings, as well as to enhance the user interface.
Our project significantly lowers the barrier to
entry for new research groups and reduces the
startup costs for existing groups to experiment
with innovative device designs.
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A Lamb and Dispersive Shift Deriva-
tions
We begin by treating the uncoupled transmon-
resonator Hamiltonian as the unperturbed sys-
tem:

H0 = ωr(a†a+1/2)+ωqb†b+ α

2 b†b(b†b−1) (10)

with eigenstates |mn⟩ and eigenenergies E0
mn =

(m + 1
2)ωr + nωq + α

2 (n2 − n) We next introduce
the perturbation of the transmon-resonator inter-
action:

Hint ≈ g(a − a†)(b − b†) (11)

We next compute the corrections to the energies
due to Hint. There is no first-order correction,
as E1

mn = ⟨mn| Hint |mn⟩ = 0. The second-order
expression is:

E2
mn = (12)∑

m′n′̸=mn

| ⟨m′n′| g(ab − a†b − ab† + a†b†) |mn⟩ |2

E0
mn − E0

m′n′

The only terms which are nonzero are those with
(m′, n′) = {(m − 1, n − 1); (m − 1, n + 1); (m +
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1, n − 1); (m + 1, n + 1)}. These terms give:

E2
mn = g2

(
mn

Σ + (n − 1)α + m(n + 1)
∆ − nα

(13)

− (m + 1)n
∆ − (n − 1)α − (m + 1)(n + 1)

Σ + nα

)
where again the first and last term are due to
the non-RWA terms that are dropped in many
derivations, ∆ ≡ ωr − ωq, and Σ ≡ ωr + ωq.

The Lamb shift is given by χL = E2
(m+1)0 −

E2
m0—the change in resonator energy level split-

ting due to the presence of the qubit in its ground
state. This gives

χL = g2

∆ − g2

Σ (14)

as stated in the main text.
The dispersive shift is given by χ = (E2

(m+1)1 −
E2

m1)−(E2
(m+1)0 −E2

m0)—the change in resonator
energy level splitting when the qubit changes
from the ground state to the excited state. Plug-
ging in yields

χ =2g2
( 1

Σ + 1
∆ − α

− 1
∆ − 1

Σ + α

)
(15)

=2g2
(

α

∆(∆ − α) + α

Σ + α

)
as stated in the main text. The terms involv-
ing Σ come from the Hamiltonian terms that are
thrown away in the RWA, but they are often not
negligible.

B Interpolation Algorithm
Below we give a pseudocode version of the inter-
polation algorithm.

Algorithm 1: Interpolation for Qubit-
resonator Design

Input: Qubit type and parameters: ωq,
α, g, ωr, resonator_type

Output: Interpolated design and
simulation code

1. Calculate Cq, Cc, and EJ from user input

2. If EJ/EC < 30 then Warn the user

3. Select the qubit-claw design with the best
match to ωq, α, g given ωr

4. Scale the qubit-claw design by scaling the
cross length and claw length:

• lxmon → lxmon ×
(αsim

α

)
• lclaw → lclaw ×

(αsim
α

) ( g
gsim

)
5. Filter the database to include only

resonator-claw designs with Cc within 30%
of the chosen qubit-claw design

6. Select the resonator-claw design that gives
the closest match to ωr, κ given the
resonator_type

7. Update the claw length of the selected
resonator-claw design with that from step 3
and scale the resonator length linearly:

• lres → lres ×
(

ωr
ωr,target

)
8. Scale the square of the feedline coupling

element characteristic dimension of the
resonator-claw design:

• lfline → lfline ×
√

κ
κtarget

9. If Cres−fline or Cc changes exceed 1% of
total Cres then Recalculate ωr and adjust
lres

10. Return the interpolated design, code to
generate and simulate the design, and the
designs and code for the closest
pre-simulated designs

Accepted in Quantum 2024-09-05, click title to verify. Published under CC-BY 4.0. 14


	Hamiltonian and Circuit Parameters
	Building the database
	Validated designs
	Matching Simulation to Experiment
	Generating the database

	User Interface
	Design interpolation
	Future development
	Acknowledgments
	References
	Lamb and Dispersive Shift Derivations
	Interpolation Algorithm

