
GraphiQ: Quantum circuit design for photonic graph states
Jie Lin∗1,2, Benjamin MacLellan∗3,4,5, Sobhan Ghanbari∗1,6, Julie Belleville5, Khuong Tran5,
Luc Robichaud1,2, Roger G. Melko3,7, Hoi-Kwong Lo1,2, and Piotr Roztocki5

1Quantum Bridge Technologies Inc., 108 College St., Toronto, ON, Canada
2Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON, Canada
3University of Waterloo, Department of Physics & Astronomy, 200 University Ave., Waterloo, ON, Canada
4Institute for Quantum Computing, 200 University Ave., Waterloo, ON, Canada
5Ki3 Photonics Technologies, 2547 Rue Sicard, Montreal, QC, Canada
6Department of Physics, University of Toronto, 60 St George St., Toronto, ON, Canada
7Perimeter Institute for Theoretical Physics, 31 Caroline St N., Waterloo, ON, Canada
Friday 23rd August, 2024

GraphiQ is a versatile open-source frame-
work for designing photonic graph state
generation schemes, with a particular em-
phasis on photon-emitter hybrid circuits.
Built in Python, GraphiQ consists of a suite
of design tools, including multiple simula-
tion backends and optimization methods.
The library supports scheme optimization
in the presence of circuit imperfections,
as well as user-defined optimization goals.
Our framework thus represents a valu-
able tool for the development of practi-
cal schemes adhering to experimentally-
relevant constraints. As graph states are a
key resource for measurement-based quan-
tum computing, all-photonic quantum re-
peaters, and robust quantum metrology,
among others, we envision GraphiQ’s broad
impact for advancing quantum technolo-
gies.

1 Introduction
GraphiQ is an open-source software framework
for the design of photonic quantum circuits,
with a particular focus on the realistic genera-
tion of entangled graph states in hybrid photon-
emitter platforms. Graph states, a family of en-
tangled quantum states, are a key resource in
a variety of quantum information applications,
including entanglement distribution and quan-
tum networking [1, 2], quantum error correction
[3, 4], measurement-based quantum computing

*These authors contributed equally to this work

[5–7], fusion-based quantum computing [8–10],
and quantum metrology [11]. Among the various
platforms leveraged for quantum technologies,
photonics has unique advantages towards graph
state generation, such as qubits with long coher-
ence times, compatibility with well-developed in-
tegrated and fiber optic infrastructures, and the
ability to be distributed spatially (e.g., between
different network nodes).

Generating photonic graph states can be re-
alized with two main approaches: probabilis-
tic and deterministic. In the probabilistic case,
fusion gates [12, 13], implemented with linear
optics, detectors and post-selection, are used
to build up graph states from small entangled
states. However, given the probabilistic nature
of the fusion, the resources required scale ex-
ponentially with the graph state size [14]. On
the other hand, deterministic approaches lever-
age entanglement operations between emitters,
such as quantum dots, trapped ions or nitrogen-
vacancy centers in diamond [15], for direct graph
state generation without the need for probabilis-
tic fusion. Recent experimental demonstrations
using such architectures [16] have reached im-
pressive milestones, e.g., the generation of 10-
qubit linear cluster states [17, 18] and 14-qubit
Greenberger–Horne–Zeilinger (GHZ) states [19].
There are also various theoretical proposals on
quantum-emitter-based methods for the genera-
tion of 2-dimensional graph states [15, 20–22].
Due to limitations on the coherence time of quan-
tum emitters and challenges in their coupling,
graph states generated by such approaches are
still too small to be useful for many practical ap-

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

40
2.

09
28

5v
2

 [
qu

an
t-

ph
]

 2
3

A
ug

 2
02

4

https://quantum-journal.org/?s=GraphiQ:%20Quantum%20circuit%20design%20for%20photonic%20graph%20states&reason=title-click
https://orcid.org/0000-0003-1750-2659
https://orcid.org/0000-0001-7576-8020
https://orcid.org/0009-0004-0318-4914
https://orcid.org/0000-0001-8974-0504
https://orcid.org/0000-0002-5505-8176
https://orcid.org/0000-0002-0340-4989
https://orcid.org/0000-0002-1068-6355

XZZZ
ZXIZ
ZZXZ
ZIZX

1. simulate 2. evaluate

photons

emitters

• photon-emitter
hybrid circuits

• multiple state
representations

• noise processes

• state-to-circuit
mappings

• circuit performance

• circuit resources

• photon emission
ordering

• local Clifford
equivalence

• optimize circuit
resources

3. explore
density
matrix

stabilizer

graph LC equiv.

relabel

1 12 4

3 24 3

Figure 1: GraphiQ software framework and its three core use cases: the simulation, evaluation, and exploration of
quantum circuits that generate photonic graph states.

plications. Searching for resource-efficient gener-
ation schemes obeying realistic experimental con-
straints is thus an active goal for the research
community.

Nevertheless, designing the quantum circuit(s)
appropriate for the generation of a particular
graph state is a non-trivial task, especially as the
size of the graph state grows. This is in part due
to the lack of usable photon-photon interactions;
using linear optics and post-selection to perform
entangling operations, after photon emission, is
impractical due to the rapid scaling in the number
of required components and the drastic decrease
in success probability. Rather, entanglement can
be created through interactions between emitter
qubits, and subsequently transferred to photonic
qubits through the emission process (represented
as a CNOT gate between emitter and photon)
[15]. However, identifying the required sequence
of quantum operations, for both the emitter and
photonic qubits, to realize a particular entangled
state is challenging.

In recent years, a rich ecosystem of software
packages for simulating and designing quantum
circuits has been developed [23–28]. Such open-
source toolboxes have been central to progress in
quantum information science, allowing a broad
research community to use and collaborate us-
ing a common set of tool-chains. While these
toolboxes may have similar basic components for
simulating quantum circuits and quantum states,
they typically focus on specific qubit architec-
tures or computation models. For example, Pen-
nyLane [23] is for differential programming of
quantum computers and its core feature is to
compute gradients of variational quantum cir-
cuits; Quimb [24] is designed for quantum in-
formation and many-body calculations; Straw-

berry Fields [25] focuses on continuous-variable
systems; Perceval [28] is for discrete-variable pho-
tonic quantum computing, focusing on quan-
tum circuit simulation. No packages thus far
have been tailored to designing and optimizing
hybrid photonic quantum circuits for photonic
graph state generation. Very recently, there is
some recent progress in optimizing protocols for
graph state generation [29, 30]. Ref. [30] in-
troduces OptGraphState, a Python software to
study fusion-based graph state generation. In
terms of deterministic approaches, Ref. [29] un-
covers a method for constructing circuits that
minimize the number of required emitter qubits.
It should be noted that further optimizations are
still possible to address different experimental
challenges. Nevertheless, the task of designing
optimized photon-emitter circuits remains chal-
lenging, especially if the constraints of real ex-
perimental devices (e.g., photon loss, noise) are
to be considered. In this paper, we focus on the
deterministic approaches.

Here, we introduce GraphiQ1, an open-source
toolbox for hybrid photon-emitter schemes, im-
plemented in Python, particularly suited for the
study and design of practical graph state gener-
ation circuits. The framework (Figure 1) com-
prises a suite of tools towards this end, centered
on three main use-cases:

• Simulation of photon-emitter quantum cir-
cuits, with multiple backend representations
for quantum states (density matrix, stabi-
lizer, and graph);

• Evaluation of circuit performance and re-
quired resources, alongside benchmarking
tools;

1This paper refers to GraphiQ version 0.1.0.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 2

• Exploration and optimization of photonic
circuits, governed by experimental con-
straints, user-defined metrics, and target ap-
plications.

Our use of the framework for investigating cir-
cuit optimization via local operations [31] has
yielded significant improvements in generation
scheme designs for the photonic-emitter platform.
The package is, moreover, readily adaptable to
new hardware platforms, applications, and opti-
mization methods.

The remainder of this paper is outlined be-
low. In Section 2, we summarize the architec-
ture of GraphiQ and its key features. We then
discuss the circuit simulation module of GraphiQ
in Section 3. In Section 4, we discuss evaluating
the performance of a given quantum circuit using
various circuit- and graph-based metrics. In Sec-
tion 5, we present optimization schemes currently
implemented in GraphiQ. Lastly, we provide con-
cluding remarks in Section 6. Additional back-
ground and implementation details are provided
in Appendix A for reference. We include exam-
ples accomplished using GraphiQ in Appendix B.

2 Overview of GraphiQ

Figure 2 gives an overview of the package inter-
face and highlights its main classes and modules.
The development of GraphiQ is focused on four
design pillars:

• Versatility: Support for a broad range of
tasks related to circuit design, spanning sim-
ulation through to visualization and bench-
marking;

• Accuracy: Experimental realism is upheld by
an extensive library of circuit noise models,
as well as by imposing hardware constraints
on designed circuits;

• Modularity: Module independence enables
fast tailoring of software for custom use
cases;

• Extensibility: Users can rapidly prototype
and include new, custom optimization al-
gorithms, physical circuit constraints, and
state/circuit metrics.

What can GraphiQ do?

• Simulate the output of noisy quantum cir-
cuits, with emitted quantum states rep-
resented as density matrices, stabilizer
tableaux, or graphs. See Section 3.

• Convert quantum states from one repre-
sentation to another.

• Find quantum circuits that produce a tar-
get graph state and optimize them with
respect to custom state/circuit perfor-
mance metrics. A set of physical rules and
experimental constraints can be imposed
on the resultant circuits. See Section 5.

• Find alternative circuits for the genera-
tion of the same target graph state and/or
the graphs isomorphic to it.

• Check for the local Clifford equivalency of
graph states.

• Find the local Clifford equivalency class
(LC orbit) for a given graph.

• Evaluate state, graph theoretical, and cir-
cuit metrics.

• Visualize quantum states and circuits.

A Circuit specifies the
sequence of quantum
operations on the emitters
and photons.

Circuit
 Operations

H, CZ, MeasureZ, etc.
 NoiseChannel

A QuantumState
represents the state of
the quantum system, in
multiple formalisms.

QuantumState
DensityMatrix

 Stabilizer
 Graph

A Metric evaluates an
objective function of
the state or circuit.

Metric
Infidelity

 CircuitDepth
 CircuitEmitterCount

Backends evaluate the
quantum state generated
by a circuit.

Solvers identify circuits
which generate a target
state.

• state conversion
• graph orbits
• photon relabelling

utility modules:
• visualizers
• benchmarking

Figure 2: GraphiQ interface overview. It consists of
several modules including state/circuit representation,
noise simulation, metric evaluation and various utility
modules in addition to optimization solvers.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 3

Tutorials and examples of GraphiQ are
available on https://github.com/graphiq-
dev/graphiq. More information about the
full documentation can be found in https:
//graphiq.readthedocs.io/en/latest/.

3 Simulation of quantum circuits

Simulating the quantum state produced by a
given circuit is prerequisite to its optimization.
GraphiQ’s simulation modules comprise represen-
tations of quantum states, circuits, and noise.

3.1 States

The underlying quantum state of emitters and
photons, represented by the evolution of an ini-
tial state through the circuit, can be modelled
with different classical simulation techniques.
GraphiQ supports multiple state representations,
providing flexibility for different use cases. The
state representation module comes with a wrap-
per class QuantumState that acts as a com-
mon application programming interface (API) for
users. Currently it supports several backends:
density matrix, stabilizer, mixed stabilizer, or
graph. Codeblock 1 shows one way to initialize
QuantumState objects for initial data in the form
of a Graph object from the NetworkX package.

1 data = networkx.Graph([(0,1),(1,2)])
2 state_dm = QuantumState(data,"dm")
3 state_graph = QuantumState(data,"g")

Codeblock 1: Using a NetworkX graph to initialize
two QuantumState objects: one with the density matrix
backend and the other with the graph backend.

We discuss briefly each representation, their
use cases, and limitations below.

A quantum state in a finite-dimensional Hilbert
space can be represented as a positive semi-
definite matrix with unit trace. The density ma-
trix ρ of an n-qubit state is an element of C2n×2n

(see Ref. [32, Section 2.4] for review). The den-
sity matrix formalism captures all information
about the underlying quantum state and enables
the state to evolve under arbitrary unitary opera-
tions, quantum measurements, and general noise
processes. However, due to the exponential scal-
ing of the size of the density matrix with the
number of qubits, it becomes an impractical rep-
resentation to describe large states as both the

memory storage and running time for state simu-
lations scale as O(2n). Consequently, the density
matrix backend is only suitable for states with a
small number of qubits (e.g., n ≤ 10).

In turn, the stabilizer formalism [33, 34] en-
ables the efficient representation of so-called sta-
bilizer states, a subset of quantum states. As
graph states form a subset of stabilizer states,
this representation is suitable for their study.
An n-qubit stabilizer state is uniquely defined
by its stabilizer group which has n independent
generators. More background information about
the stabilizer formalism can be found in Ap-
pendix A.2. See also Refs. [34, 35]. In partic-
ular, GraphiQ adopts the formalism in Ref. [34],
keeping in memory the stabilizer and destabilizer
generators2 of the n-qubit stabilizer state, as an
2n× 2n binary matrix, which scales much better
relative to density matrices. For each generator,
GraphiQ also uses 2 bits to keep track of four
possible phases. We note that generators corre-
sponding to the stabilizer part can take only ± 1
phases, while the destabilizer generators can take
on both ± 1 and ± i phases.

Graph states are, by construction, defined by
a graph where the nodes represent qubits and
the connecting edges represent entanglement be-
tween the qubits. In this representation, graph
states correspond to simple, undirected graphs,
which can be stored in memory as adjacency ma-
trices, or node and edge sets. As the size of node-
edge sets grows with the connectivity of the graph
while adjacency matrices remain constant in size
for a given qubit number, node-edge sets are more
favorable for graphs with low connectivity, while
adjacency matrices are more favorable for high
connectivity cases.

Given that the graph representation is very vi-
sual, it is useful for understanding the entangle-
ment structure of a given state, which is not al-
ways so obvious in the case of the density matrix
or stabilizer representations. A graph representa-
tion also makes it more intuitive to look at graph
actions like local complementation. The action
of local complementation on a graph corresponds
to local Clifford operations on the corresponding
graph state (see Appendix A).

2As defined in [34], destabilizer generators are Pauli
operators such that destabilizer and stabilizer generators
together generate the entire n-qubit Pauli group up to four
global phases ±1, ±i.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 4

https://github.com/graphiq-dev/graphiq
https://github.com/graphiq-dev/graphiq
https://graphiq.readthedocs.io/en/latest/
https://graphiq.readthedocs.io/en/latest/

Since graph states form a proper subset of sta-
bilizer states, to empower this representation to
represent all stabilizer states, it is necessary to
amend this representation. As any stabilizer state
can be converted to a graph state by local Clif-
ford operations [36], GraphiQ accomplishes this
task by including a record of required local Clif-
ford operations in each node of the graph.

It is worth noting that the stabilizer and graph
representations discussed so far can represent
only pure states. However, when noise is present,
it is usually necessary to consider mixed states.
Unlike the density matrix representation, which
can naturally represent mixed states, the stabi-
lizer and graph representations must be amended
to support mixed states. A simple approach, im-
plemented in GraphiQ, is to keep track of an en-
semble of pure states that can form the mixed
state of interest.

GraphiQ also offers functions to convert differ-
ent state representations. More information can
be found in Appendix A.3.

3.2 Circuits
Quantum circuits describe a sequence of opera-
tions applied to qubits. GraphiQ is developed
with a particular focus on emitter-photonic hy-
brid circuits, meaning that circuits are com-
posed of three register blocks: emitter qubits,
photonic qubits, and classical bits. For exam-
ple, Figure 3(b) illustrates an emitter-photonic
circuit that produces the 3-qubit linear cluster
state shown in Figure 3(a). In GraphiQ, the
CircuitDAG class can be used to store a quan-
tum circuit (internally represented as a directed
acyclic graph, or DAG), enabling easy modifica-
tion. Codeblock 2 demonstrates how quantum
gates can be added into a circuit one by one. See
Appendix B.1 for further code examples, includ-
ing circuit simulation.

1 c = CircuitDAG(n_emitter=1, n_photon=1)
2 c.add(Hadamard(register=0, reg_type="e"))
3 c.add(CNOT(control=0, control_type="e",

target=0, target_type="p"))↪→

Codeblock 2: Construction of a quantum circuit by
adding gates.

Additionally, users can also insert, remove, or
replace a quantum gate at a specified location.
In addition to direct manipulation of quantum
circuits, it is also possible to import a quantum

0 1 2

(a)

(b)

Figure 3: (a) Graph representation for a 3-qubit linear
cluster, where each node represents a qubit initialized in
a |+⟩ state, and each edge represents a CZ gate. Each
node is assigned a unique ID. (b) A quantum circuit that
generates the above cluster state by using one emitter.
p0-p2 represent 3 photonic qubits corresponding to those
in (a), e0 represents the emitter qubit, and c0 represents
a classical bit.

circuit from Open Quantum Assembly Language
(OpenQASM) files [37]. Likewise, GraphiQ cir-
cuit objects can be serialized to OpenQASM files
for export to other toolchains, such as external
visualizers and simulators [27].

3.3 Noise simulation
In practice, noise and experimental imperfections
affect all quantum information tasks. The capac-
ity to simulate noise is prerequisite to modeling
schemes resembling true experimental conditions.

GraphiQ is flexible in its modeling, allowing
users to simulate noise within and/or between
quantum gates. This respectively corresponds to
replacing circuit gates with their noisy versions,
or to inserting noise before/after quantum gates
(i.e., noise between operations, like during photon
propagation or storage).

The software presently supports noise types
common and relevant to photonic graph state
generation, e.g., depolarizing noise and photon
loss. Codeblock 3 illustrates an example of ap-
plying photon loss and depolarizing noise to a
state.

1 import graphiq.noise.noise_models as nm
2 # create a photon loss with loss

probability = 0.1↪→

3 loss = nm.PhotonLoss(0.1)
4 # create a depolarizing noise with error

probability = 0.02↪→

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 5

5 noise = nm.DepolarizingNoise(0.02)
6 # apply the loss and depolarizing noise to

the first qubit (index 0) of a 2-qubit
state

↪→

↪→

7 loss.apply(state_dm, 2, 0)
8 noise.apply(state_dm, 2, 0)

Codeblock 3: Applying photon loss with a loss prob-
ability of 0.1 to the first qubit of a 2-qubit state and
then applying a depolarizing channel with a depolarizing
probability of 0.02 to the same qubit.

Moreover, the included noise models can be
readily extended and customized to account for
user-specific hardware considerations. Extended
discussion and specific examples on noise simula-
tion in GraphiQ can be found in Appendix A.4.

4 Evaluation of circuits

When optimizing a quantum circuit for the gener-
ation of a target graph state, it is important to be
able to quantify the circuit performance using ex-
perimentally relevant figures of merit, which are
often specific to the user hardware.

GraphiQ enables great flexibility in evaluating
circuits with figures of merit (defined by the user)
that can be based on the output quantum state
and/or the circuit itself. The software also allows
defining a weighted average of a list of metrics
or custom functions. Below, we discuss already-
implemented metrics based on quantum circuits
and output states, as well as the algorithms that
leverage them to converge on performant genera-
tion schemes for targeted graph states (i.e., state-
to-circuit mappings).

4.1 Circuit metrics

Reducing the total number of gates or the longest
path in a circuit (i.e., the circuit depth) is of
general interest as it corresponds to a reduction
in experimental complexity and cost. However,
one may care about reducing specific gate types
due to the experimental difficulty of implement-
ing them. For example, in the context of generat-
ing photonic graph states using solid-state emit-
ters, operations on emitter qubits are typically
more challenging to realize in practice. Photonic-
emitter circuit designers may thus want to min-
imize the circuit depth on emitter qubits, the
number of CNOT between emitter qubits, as well
as the number of emitter qubits, among others.

GraphiQ thus supports circuit metrics such as:

• Total number of unitaries,

• Number of emitter qubits,

• Total number of emitter-emitter CNOT
gates,

• Circuit depth: the length of the longest path
in the quantum circuit,

• Emitter depth: the maximum number of
gates applied on an emitter in the circuit be-
tween two consecutive resets of that emitter,

• Emitter history: the maximum number of
gates applied on a single emitter.

The implementation of custom user-defined met-
rics of the generation circuit is supported in
GraphiQ and straightforward.

Codeblock 4 shows an example of evaluating a
metric, which has a common interface for both
circuit and state metrics.

1 metric = CircuitMaxEmitDepth()
2 metric.evaluate(state, circuit)

Codeblock 4: Creating and evaluating the maximum
emitter depth metric on a circuit.

4.2 State metrics
Fidelity quantifies how alike two quantum states
are to one another. Thus, for the task of design-
ing circuits that output a specific target quantum
state, circuit performance can effectively be quan-
tified by comparing the actual versus targeted
output state via fidelity.

For two states ρo and ρt, corresponding here
to the output and target states respectively, the
fidelity is defined as

F (ρo, ρt) = tr
(√√

ρoρt
√
ρo

)2
. (1)

As it is natural to minimize a cost function in an
optimization algorithm rather than maximizing,
GraphiQ implements infidelity as one of its state
metrics, defined as 1 − F (ρo, ρt). While calculat-
ing fidelity is straightforward in the density ma-
trix representation, it is more complicated to do
so in the stabilizer representation. Here, GraphiQ
leverages an algorithm based on the one presented
in Ref. [38].

Other state metrics such as the trace distance
are also included in GraphiQ.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 6

4.3 State-to-circuit mapping

In GraphiQ, a solver is an algorithm that maps a
user-defined graph state to a circuit that can gen-
erate it, with its performance assessed by a cost
function also chosen by the user. The cost func-
tion can be composed of state and circuit metrics,
e.g., maximizing the output graph state fidelity
or minimizing the number of CNOT gates in the
circuit. Additionally, each solver accounts for
physical/platform constraints to guarantee that
any output quantum circuit is realizable. For
photonic-emitter circuits, the main constraints
relate to the lack of photon-photon interactions;
entanglement between photons is generated indi-
rectly by entangling emitter qubits and emitting
the photons, creating photon-emitter entangle-
ment. This means that any two-qubit gates (ex-
cept CNOT gates used to model photon emission)
are only allowed between two emitter qubits.

To use a solver, a user specifies the target graph
state, cost function, as well as the preferred state
representation/compiler. The solver outputs a
list of potential quantum circuits, ranked by cost
function value. In other words, each solver gives a
state-to-circuit mapping for a given choice of cost
function. The quality of the mapping will depend
on the choice of solver and cost function. From
a given state-to-circuit mapping, additional tech-
niques can be applied to derive more advanced
solvers; we discuss these further in Section 5 and
demonstrate an application in Ref. [31].

The current version of GraphiQ has multi-
ple solvers implemented. Solvers can loosely
be grouped into probabilistic, deterministic, or
hybrid approaches. Probabilistic approaches
are based on random perturbations to suc-
cessive generations of quantum circuits, e.g.,
EvolutionarySolver, which leverages evolution-
ary algorithms. In turn, deterministic approaches
execute rule sets without randomness. An exam-
ple of this is TimeReversedSolver, which deter-
ministically finds a quantum circuit for a target
graph state. This solver is based on the method
of Li et al. presented in Ref. [29]. It uses time-
reversed processes to fully disentangle the tar-
get graph state with the aid of so-called height
function to guide the optimization. The resulting
quantum circuit is obtained by the inverse order-
ing of gates found in this process. Noteworthily,
for a given photon emission ordering, it outputs
a single unique circuit which uses the minimum

number of quantum emitters required to gener-
ate said graph state (making it a great basis for
further exploration/optimization, see Section 5).
Finally, hybrid approaches use a combination of
deterministic and probabilistic algorithms, e.g.,
using deterministic solver outputs as a starting
point for random perturbations.

In terms of probabilistic solvers, GraphiQ
currently has RandomSearchSolver and
EvolutionarySolver, which are suitable
for exploring graph states of small size. They
are based on applying random operations (which
includes addition, removal, or replacement of
a quantum gate) to a population of candidate
circuits, evaluating the relevant metrics to assign
a score to each circuit, and selecting circuits
with the highest scores in each iteration. Deter-
ministic solvers include TimeReversedSolver,
which is the implementation of Ref. [29]’s
algorithm that allows the use of minimal number
of emitters. HybridEvolutionarySolver is
an example of a hybrid solver, which uses the
resulting circuit from a deterministic solver
(e.g. TimeReversedSolver) as a seed, and
then applies the evolutionary algorithm similar
to EvolutionarySolver. Finally, there is
AlternateTargetSolver that we will discuss in
Section 5. More details about each solver can
be found in the documentation. Community
contributions are welcome in GraphiQ to central-
ize more sophisticated solver algorithms as they
develop.

5 Exploration and optimization of
quantum circuits

The circuits that generate a target graph state
are generally not unique, with many potentially
suited for the task to varying degree. Users of-
ten aim to simultaneously satisfy several objec-
tives within a design: experimental platform con-
straints, performance for a specific application,
noise robustness, cost of the realization, among
others. A central goal of GraphiQ is enabling ex-
ploration across the space of candidate circuits
towards practical and optimized designs. The
framework includes several tools to support this
search including modules for photon emission re-
ordering and local Clifford equivalency, as well
as solvers that integrate such modules into opti-
mization workflows.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 7

5.1 Photon emission ordering

If the photons of a graph can be considered in-
distinguishable, it becomes possible to consider
different ways to label the photons in the graph.
The nodes are numerically labeled, correspond-
ing to the order of photon emission, with different
photon emission orderings naturally correspond-
ing to different quantum circuits that produce
states with the same entanglement structure [29].
For applications that are not sensitive to photon
emission ordering, it is thus possible to utilize this
degree of freedom for exploration and optimiza-
tion.

GraphiQ provides users with the option to au-
tomatically consider emission reordering in the
search for suitable circuits, generally leading to
more circuit candidates for users to rank and
choose from. Further details on the emission or-
dering module can be found in Appendix A.5.

5.2 Local Clifford equivalency

Local Clifford gates are tensor products of one-
qubit Clifford gates and are typically easy and
inexpensive to apply experimentally. Interest-
ingly, applying local Clifford gates to a graph
state is closely related to local complementation
actions on the corresponding graph [36]. By ap-
plying local Clifford operations onto it, a target
graph state can be made to span a larger space of
states. These additional target states differ, but
are locally equivalent to the original target graph
state via local Clifford operations. As these can
be efficiently transformed into the original target
state through single-qubit gates on the photons,
the overhead to consider the alternative graphs is
minimal. However, using local Clifford equivalent
graph states as targets may lead some solvers to
produce alternative quantum circuits, useful for
optimization.

GraphiQ includes modules for exploring local
Clifford equivalency to complement the search for
quantum circuits, also appending the necessary
local Clifford gates. Further details on the mod-
ule can be found in Appendix A.6.

5.3 Optimization workflows

GraphiQ supports user-defined optimization
workflows built up of the solvers and tools de-
scribed in the preceding sections, as well as those

added by users. In particular, as discussed in Sec-
tion 4.3, existing solvers can be used as a build-
ing block for more advanced exploration and op-
timization algorithms.

As an example, we describe
AlternateTargetSolver, available in GraphiQ,
which leverages photon emission ordering,
local Clifford equivalency, and deterministic
state-to-circuit mapping to generate an array of
circuit candidates. Users can then rank these
candidate circuits by their preferred metric and
select the best one to use. The workflow of
this solver is shown in Figure 4. First, emission
reordering and local Clifford complementation
are used to create a list of alternatives to the
initial target graph state. A deterministic solver
like TimeReversedSolver is then used as a
state-to-circuit mapping to run a noise-free
optimization, outputting a set of alternative
circuits. The local Clifford gates necessary
to complete the quantum circuits (to produce
the original target state) are then found. A
post-selection procedure eliminates redundant
circuits from the set. Finally, circuit noise is
simulated prior to a final evaluation of the
circuits’ performance metrics and ranking. An
example based on AlternateTargetSolver is
showcased in Appendix B.2.3, demonstrating
its ability to produce alternative target graph
generating circuits. A more detailed study can
also be found in [31].

The tools in GraphiQ are well suited to user-
customized workflows allowing, as in the case
of AlternateTargetSolver, to explore and con-
verge on experimentally-practical circuit candi-
dates.

5.4 Runtime

The runtime of AlternateTargetSolver de-
pends on a few choices made by a user. For ex-
ample, the number of all possible photon emis-
sion orderings and the number of local Clifford
equivalent graphs can grow exponentially as the
number of photons in general. If one attempts
to explore every possibility exhaustively, the run-
time can scale exponentially. If the user sets a
maximum number of alternative graphs for the
solver to consider, the runtime will mainly de-
pend on the runtime of the selected state-to-
circuit mapping. On the other hand, if a spe-
cific family of graphs exhibit certain symmetries,

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 8

Postselection:
unique?

Postselection:
unique?Evaluation

Solver settings

Photon emission
reordering

Parameters,
flags

Parameters,
flags

Noise
simulation

Target
graph state

Output
quantum circuits

Local Clifford
complementation

Alternative
graphs

Undo local
Cliffords

State-to-circuit
mapping

Yes

Yes

Figure 4: Workflow of AlternateTargetSolver. After a target state is provided, photon emission ordering and
local Clifford equivalency modules are used to create alternative graph targets. A state-to-circuit mapping algorithm
is used to then obtain a set of candidate quantum circuits. These circuits are post-selected to remove redundancy,
simulated with user-specified noise sources, and evaluated in performance by user-defined metrics to identify the best
circuits.

the number of alternative graphs may have a bet-
ter scaling (e.g. it can grow polynomially with
the number of photons). In Figure 5, we demon-
strate the scaling of AlternateTargetSolver’s
runtime (with TimeReversedSolver as the state-
to-circuit mapping) for linear cluster states and
repeater graph states when an exhaustive search
of orbits is employed. In this case, the runtime of
linear cluster states exhibits exponential scaling,
whereas that of repeater graph states scales poly-
nomially due to the symmetry of repeater graph
states. It is also possible to use other methods to
search local Clifford equivalent graph states. We
refer to [31] for a correlation-assisted method that
avoids the potentially poor scaling of an exhaus-
tive search and achieves performance (in terms of
circuit metrics) similar to that of the exhaustive
search.

(a) Linear cluster state

(b) Repeater graph state

Figure 5: Runtime of AlternateTargetSolver ver-
sus the number of photons for (a) linear cluster state
(in semi-log scale for y-axis) and (b) repeater graph
state (in log-log scale) using an exhaustive search of
the graph orbit. A linear line in the semi-log plot in-
dicates the runtime of linear cluster states scales expo-
nentially, whereas a linear line in the log-log plot shows
the runtime for repeater graph states scales polyno-
mially. TimeReversedSolver is used as the state-to-
circuit mapping in the AlternateTargetSolver.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 9

6 Conclusion
GraphiQ is a user-friendly Python framework for
optimizing photonic graph state generation cir-
cuits. It supports circuit simulation and opti-
mization in the presence of imperfections/noise,
flexible cost function definition, and tools for pro-
ducing several circuits per target output state.
Easily extended and customised, GraphiQ can
thus be a valuable tool for researchers study-
ing graph state generation schemes obeying
experimentally-relevant constraints. Further in-
formation is available in the Appendices as well
as GraphiQ’s documentation.

Code availability
GraphiQ is available on https://github.com/
graphiq-dev/graphiq under Apache 2.0 license.
The full documentation can be found in https:
//graphiq.readthedocs.io/en/latest/.

Acknowledgement
We thank Stefania Sciara for helpful discussions.
We thank Kai Sum Chan and Aayush Soni for
discussions and their help in code refactoring.
This work is supported by MITACS, the National
Research Council of Canada under NRC-CSTIP
QSP-081-1, the Vanier CGS Program, and the
Air Force Office of Scientific Research (AFOSR)
under Grant FA9550-22-1-0062. R.G.M. ac-
knowledges financial support from NSERC. H.-K.
Lo acknowledges financial support from NSERC,
CFI Operating Fund, and Innovative Solutions
Canada.

A Background and implementation
details
In this appendix, we provide a short theoreti-
cal background on graph states, the stabilizer
formalism, conversion between state representa-
tions, noise models, photon emission ordering,
and local complementation on graphs,.

A.1 Graph state
A graph state can be represented by a graph
G = (V,E) consisting of the vertex set V and
the edge set E. Each vertex (or node) in V

represents a qubit in the |+⟩ := 1√
2(|0⟩ + |1⟩)

state. Each edge between two vertices represents
a Controlled-Z (CZ) gate acting on those two
qubits. From a given graph, it is easy to write
down the corresponding graph state |ψ⟩ as

|ψ⟩ =
∏

(i,j)∈E

CZi,j |+⟩⊗|V | , (2)

where CZi,j denotes the CZ gate with the control
qubit indexed by i and the target qubit indexed
by j.

A.2 Stabilizer formalism

A.2.1 Stabilizer group and symplectic representa-
tion

A stabilizer group S on n qubits is a subgroup
of the n-qubit Pauli group, Pn, such that it is
Abelian and it does not contain −I. An n-
qubit stabilizer state |ψ⟩ is defined as a simultane-
ous eigenvector with eigenvalue 1 of a stabilizer
group, S. The number of independent genera-
tors in the stabilizer group corresponding to an
n-qubit stabilizer state is equal to n.

The binary symplectic representation of each
Pauli operator is listed in Table 1. The set of n
generators for the stabilizer group is then trans-
lated to two n×n matrices, one to represent Pauli
X matrix components and the other to represent
Pauli Z matrix components. The first digit in
the translation becomes an entry in the X com-
ponent matrix and the second digit becomes an
entry in the Z component matrix.

Pauli operator Binary representation

I 00
X 10
Y 11
Z 01

Table 1: Translation between Pauli operators and their
binary symplectic representation.

The stabilizer formalism allows us to efficiently
represent so-called stabilizer states, a subset of
quantum states, by tracking the generators of
the stabilizer group that stabilizes the quantum
state [34, 35]. As GraphiQ is tailored for photonic
graph state generation and graph states form a
subset of stabilizer states, it is natural to consider

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 10

https://github.com/graphiq-dev/graphiq
https://github.com/graphiq-dev/graphiq
https://graphiq.readthedocs.io/en/latest/
https://graphiq.readthedocs.io/en/latest/

the stabilizer formalism. The number of genera-
tors needed to represent a stabilizer state grows
linearly with the number of qubits, n. Since each
generator consists of n Pauli operators, a stabi-
lizer state can be represented by writing down
n2 Pauli operators. This stabilizer representation
scales well with the number of qubits, making it
more efficient for the study of large systems rel-
ative to the density matrix formalism. In prac-
tice, we adopt a binary symplectic representation
to the stabilizer tableau. Specifically, we adopt
the formalism in Ref. [34] to improve the effi-
ciency of simulating measurements at a cost of
doubling the size of the tableau. We keep track
of destabilizer generators in addition to stabilizer
generators. Destabilizer generators are Pauli op-
erators such that destabilizer and stabilizer gen-
erators together generate the entire n-qubit Pauli
group (modular four phases).

A.2.2 Tableau

In the CliffordTableau class implemented in
GraphiQ, for an n-qubit stabilizer state, the state
is represented by an 2n × 2n binary matrix as
below:

x11 . . . x1n
...

. . .
...

xn1 . . . xnn

z11 . . . z1n
...

. . .
...

zn1 . . . znn

x(n+1)1 . . . x(n+1)n
...

. . .
...

x(2n)1 . . . x(2n)n

z(n+1)1 . . . z(n+1)n
...

. . .
...

z(2n)1 . . . z(2n)n

where rows 1 to n represent the destabilizer gen-
erators, and rows n + 1 to 2n represent the sta-
bilizer generators. Two additional binary vectors
(each of size 2n) are used represent the phases (1
out of 4 possible values in the set {±1,±i}) of
those 2n generators:

r1
...
rn

rn+1
...
r2n

,

i1
...
in
in+1

...
i2n

.

We remark that the second phase vector is needed
to properly handle all Clifford gates in the cir-
cuit simulation. While the phases for stabilizer

generators can be either 1 or −1, the destabi-
lizer generators can take ±i phases in addition
to ±1 phases. Due to the need to keep track of
the phases of destabilizer generators to guarantee
the correct simulation of measurement gates, we
choose to include this second phase vector. As
such, it is different from Ref. [34] in this aspect.

As an example, the tableau for |0⟩⊗n is(
In 0n

0n In

)
, (3)

where In is n × n identity matrix and 0n is the
n×nmatrix with all zeros. The two phase vectors
of this state are initialized to all zeros.

A.2.3 Mixed stabilizer

The stabilizer formalism is suitable for graph
state generation since graph states can be gen-
erated with only Clifford operations. However,
only a subset of quantum operations can be effi-
ciently simulated within the stabilizer represen-
tation, limiting the scope for circuit optimiza-
tion, especially when noise sources are included.
This poses the challenge that this representation
is unsuited for the simulation of noise without
judicious changes to the formalism. We amend
this representation with a couple of approaches
to handle mixed states.

A mixed state can be written as an ensemble of
pure states. To handle mixed states in the stabi-
lizer representation, one idea is to keep track of all
pure states in the ensemble with their associated
probability distribution. The MixedStabilizer
class implements this idea. This representation is
suitable when the number of pure states in the en-
semble is relatively small. In the simulation, each
tableau needs to be updated independently and
thus the running time of the simulation also grows
with the number of pure states in the ensemble.
In practice, if the number of possible events can
grow fast when considering a noise model that in-
troduces probabilistic noises (e.g. a depolarizing
noise), the memory requirement and the simula-
tion running time for this representation can be
very demanding. However, it is not always nec-
essary to keep track of all possible events. For
example, if one is interested in a bound on a
given metric instead of a precise value, ignor-
ing states with very low probabilities does not
loosen the bound significantly while saving sub-
stantial computational resources. For this reason,

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 11

the MixedStabilizer class allows the probabil-
ity distribution to be subnormalized, that is, the
sum of all probabilities is smaller or equal to 1.

A.3 Conversion between state representations

Given the clear advantages and disadvantages of
various state representations, it is useful to be
able to convert one representation to another as
necessary. As the set of all graph states is a
proper subset of stabilizer states, and the set of
all stabilizer states is a proper subset of all quan-
tum states representable by density matrices, it
is expected that not all conversions are allowed.
Here, we restrict to the cases where a given state
is a stabilizer state or a probabilistic mixture of
stabilizer states.

Conversion between representations is mostly
straightforward with the exception of converting
a density matrix representation to a graph repre-
sentation.

From a graph G = (V,E) whose adjacency
matrix is θ, the stabilizer generators Rj ’s corre-
sponding to the graph state are given by

Rj = Xj

n∏
k=1

Z
θkj

k , (4)

for j = 1, . . . , n, where Xj is the Pauli X oper-
ator acting on the j-th qubit, Zk is the Pauli Z
operator acting on the k-th qubit and θkj is the
(k, j)-entry of the adjacency matrix θ.

From the set of generators {Rj : j = 1, . . . , n},
one can construct the density matrix ρ of the sta-
bilizer state by

ρ = 1
2n

n∏
j=1

(In +Rj). (5)

From a graph G = (V,E), it is straightforward
to write down the corresponding density matrix
ρ := |ψ⟩ ⟨ψ|, where ψ is given in Eq. (2). From the
graph, the stabilizer generators can be found by
Eq. (2). In our stabilizer representation, we also
need to find destabilizer generators. GraphiQ in-
cludes a function to find gates that can disentan-
gle an n-qubit stabilizer state into |0⟩⊗n. As the
CliffordTableau for |0⟩⊗n is given in Eq. (3),
one can construct the CliffordTableau for the
stabilizer state by applying those gates in the re-
versed order. The conversion from a stabilizer for-
malism to a density matrix simply follows Eq. (5).

A less straightforward conversion is from a den-
sity matrix representation to a graph representa-
tion. For this conversion, we have developed a
procedure that constructs an adjacency matrix
from a density matrix. To construct the graph,
we must verify the existence of an edge between
each pair of qubits in the state. To do so, we
apply Pauli Z measurements to all qubits except
those indexed by i and j. All these measurements
effectively disentangle all other qubits and keep
these two qubits indexed by i and j. After ob-
taining the reduced density matrix of these two
remaining qubits, we calculate the negativity of
the reduced density matrix [17, 39] to verify if
an edge exists between these two qubits. Since
the space is reduced to two qubits, the negativity
serves as an accurate entanglement metric and
gives a positive value when two nodes are con-
nected [40, 41]. By applying this procedure to
every pair of nodes, we can construct the adja-
cency matrix from the density matrix. We note
that this procedure works under the assumption
that our state is a graph state.

Algorithm 1 Converting the density matrix of a
graph state to its adjacency matrix graph
representation.
Inputs:
ρ A density matrix that corresponds

to an n-qubit graph state
δ ∈ [0.49, 0.5] A threshold for negativity

Output:
θ An adjacency matrix

Algorithm:

1. Initialize θ := 0n;

2. for i = 1 to n− 1:
for j = i+ 1 to n:

(a) Obtain ρ(i,j) by measuring all qubits,
except qubits indexed by i, j, in the Z
basis;

(b) Calculate negativity of the two qubit
system ρ(i,j);

(c) If ρ(i,j) ≥ δ, set θ(i, j) = θ(j, i) = 1.

3. Return θ.

We note that one approach to translate a den-
sity matrix ρ = |ψ⟩ ⟨ψ| corresponding to a pure

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 12

stabilizer state to a stabilizer representation is as
follows. First, we find the stabilizer group cor-
responding to the stabilizer state |ψ⟩ by iterat-
ing through each element M in the n-qubit Pauli
group and recording M if it stabilizes the state
|ψ⟩, that is, M |ψ⟩ = |ψ⟩. After obtaining the sta-
bilizer group, we can find a set of generators that
generate the whole group. Then, using that set
of generators, we can write down the binary sym-
plectic representation. While this procedure can
return a correct answer, it is very inefficient due
to the size of the n-qubit Pauli group. As we have
an efficient (O(n2)) approach to convert a den-
sity matrix to the graph representation and also
an efficient way to convert a graph representa-
tion to the stabilizer representation, we can com-
bine these two methods to move from the density
matrix to the stabilizer representation for graph
stabilizer states.

A.4 Noise models

In GraphiQ, we allow for the flexible placement
of noise. A noise source can arise before or after
a quantum gate. It can also replace a gate with
another gate. The noise models presently imple-
mented in GraphiQ focus on common noise types
for photonic graph state generation, particularly,
depolarizing noise and photon loss. We also in-
clude additional noise models that can be useful
for versatile circuit simulation purposes.

As discussed before, each state representation
has a varying capacity for representing mixed
states. Since noise sources often turn pure states
into mixed states, each state representation will
have a different ability to handle noise. Both the
density matrix and stabilizer backends support
depolarizing noise and photon loss as well as Pauli
errors. The density matrix backend also supports
arbitrary unitary or mixed unitary errors.

We discuss depolarizing noise and photon loss
below.

A.4.1 Depolarizing noise

Depolarizing noise is often used to model qubit
errors. A depolarizing channel acting on a density
matrix ρ is defined as

Dp(ρ) = (1 − p)ρ+ p

3(XρX + Y ρY + ZρZ),
(6)

where X,Y, Z are Pauli matrices, and p is the de-
polarizing probability. The resulting state Dp(ρ)
is in general a mixed state. The density ma-
trix is the most versatile as it can inherently
and easily include any type of noise. However,
it soon becomes impractical when the number of
qubits increases. The stabilizer formalism works
well for pure states but cannot directly repre-
sent mixed states. To handle noises like depo-
larizing noise in the stabilizer representation, it
is necessary to extend the representation, as in
the mixed stabilizer representation implemented
in the MixedStabilizer class. Alternatively, one
may also consider Monte Carlo simulation to sim-
ulate noisy events. GraphiQ has an implementa-
tion of Monte Carlo simulation for this purpose.
Another approach is to keep track of the most
probable event(s) using the MixedStabilizer
class.

A.4.2 Photon loss

When a photon is lost, the corresponding qubit
moves outside the computational space. One ap-
proach to represent photon loss is to use a qutrit
description where the first two dimensions are the
original qubit space and the third dimension rep-
resents the vacuum state. This extension nat-
urally allows the density matrix representation
to handle loss. Another approach is to calculate
the probability of the event where no photon is
lost. Arguably, this event is the event of interest
for photonic graph state generation. Metrics like
fidelity dismiss all other events since the target
state has zero overlap with any state that loses
one or more photons. In GraphiQ, we thus imple-
ment the latter idea.

We remark that it is possible to make a pro-
tocol loss-tolerant by applying some quantum er-
ror correction code to protect logical qubits [7].
The present version of GraphiQ (version 0.1.0)
is restricted to the case where no such encoding
is performed. However, we expect to implement
an error correction module in future versions of
GraphiQ.

A.5 Photon emission ordering

As multiple photons in a graph state can be
emitted by one common quantum emitter, it is
important to consider in what order these pho-
tons should be emitted. Different emission or-

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 13

derings are likely to lead to different quantum
circuits since the local entanglement structures
might be quite different for different photons.
Consequently, the user needs to specify the pho-
ton emission ordering in the target graph state,
which we use to number the graph nodes, i.e, we
label nodes numerically where a smaller number
means an earlier time slot in the emission process.

As discussed in Ref. [29], different emission
orderings require different minimal numbers of
quantum emitters to generate the graph state de-
terministically. However, the task of finding op-
timal photon emission orderings for an arbitrary
graph is an NP-hard problem [29]. Nevertheless,
GraphiQ provides the users with the option to
automatically consider different permutations of
the emission ordering while solving for a generat-
ing circuit. This search can be either exhaustive
or driven by the random sampling of all possible
n! permutations. Note, however, that not every
permutation yields a distinct new graph since a
subset of permutations result in graph automor-
phisms. GraphiQ’s relabelling module removes
the automorphic cases so that the returned set of
graphs are all distinguishable. A user can specify
parameters to choose how many different emis-
sion orderings to consider and how to generate a
selective subset of orderings.

A.6 Local Clifford and local complementation
For a graph G = (V,E), a local complementa-
tion on a node v ∈ V corresponds to applying
the complementation to a subgraph consisting of
all neighbors of v. Let N(v) denote all the neigh-
boring nodes of v (i.e., w ∈ V is in N(v) if and

only if (v, w) ∈ E.) Applying the local comple-
mentation on the node v generates another graph
G′ = (V,E′) where for each pair of u,w ∈ N(v),
if (u,w) ∈ E, then (u,w) ̸∈ E′; if (u,w) ̸∈ E,
then (u,w) ∈ E′; all other edges in E are also in
E′. Figure 6 shows an example of applying local
complementation on node 1.

The relation between local complementation
actions on a graph and local Clifford gates applied
to the corresponding graph state is discussed in
Ref. [36]. Each local complementation action
corresponds to a sequence of local Clifford gates.
If a graph can be transformed into another graph
via local complementation actions, then the cor-
responding graph states are local Clifford equiva-
lent. An efficient algorithm to find local Clifford

0 1

23

(a) Initial graph

0 1

23

(b) Apply local
complementation on
node 1

Figure 6: Illustration of local complementation. By
applying the local complementation operation on node
1, neighbors of node 1 that were connected to each other
in the initial graph are now disconnected and those that
were disconnected are now connected.

operations between two local Clifford equivalent
states is given in Ref. [42]. The overall complex-
ity of this algorithm is O(n4).

B Examples

B.1 Code examples

Codeblock 5 demonstrates an example of simulating a quantum circuit that generates a photonic
3-qubit linear cluster using the density matrix backend.

1 from graphiq.circuit.circuit_dag import CircuitDAG
2 from graphiq.circuit.ops import Hadamard, CNOT, MeasurementCNOTandReset
3 from graphiq.backends.density_matrix.compiler import DensityMatrixCompiler
4

5 # initialize a quantum circuit with 1 emitter and 3 photonic qubits
6 circuit = CircuitDAG(n_emitter=1, n_photon=3)
7

8 circuit.add(Hadamard(register=0, reg_type="e"))
9 circuit.add(CNOT(control=0, control_type="e", target=0, target_type="p"))

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 14

10 circuit.add(Hadamard(register=0, reg_type="e"))
11 circuit.add(CNOT(control=0, control_type="e", target=1, target_type="p"))
12 circuit.add(CNOT(control=0, control_type="e", target=2, target_type="p"))
13 circuit.add(Hadamard(register=2, reg_type="p"))
14 circuit.add(Hadamard(register=0, reg_type="e"))
15 circuit.add(
16 MeasurementCNOTandReset(control=0, control_type="e", target=2, target_type="p")
17)
18

19 # plot the circuit as a directed, acyclic graph
20 circuit.draw_circuit()
21

22 # simulate the circuit with density matrix compiler
23 compiler = DensityMatrixCompiler()
24 state = compiler.compile(circuit)
25

26 # trace out the emitter qubit
27 state.partial_trace(keep=(0, 1, 2), dims=4 * [2])

Codeblock 5: Simulating a quantum circuit that produces the three-qubit linear cluster state in Figure 3(a) using
the density matrix backend.

Codeblock 6 presents an example of evaluating the quantum circuit found by TimeReversedSolver
using the infidelity and the circuit depth metrics.

1 import networkx as nx
2 from graphiq.backends.stabilizer.compiler import StabilizerCompiler
3 from graphiq.metrics import Infidelity, CircuitDepth
4 from graphiq.solvers.time_reversed_solver import TimeReversedSolver
5 from graphiq.state import QuantumState
6

7 # a 3-qubit linear cluster state as the target
8 graph = nx.Graph([(0, 1), (1, 2)])
9 target = QuantumState(graph, rep_type="graph")

10

11 # use the infidelity as the metric
12 metric = Infidelity(target)
13

14 # use the stabilizer backend
15 compiler = StabilizerCompiler()
16

17 # use the time reversed solver by Li et al.
18 solver = TimeReversedSolver(
19 target=target,
20 metric=metric,
21 compiler=compiler,
22)
23

24 solver.solve()
25 score, circuit = solver.result
26 print(f"The fidelity between the target and generated states is {1 - score}")
27 depth = CircuitDepth()
28 print(f"Circuit depth is {depth.evaluate(state=None, circuit=circuit)}")
29 circuit.draw_circuit()

Codeblock 6: Using the TimeReversedSolver to find a quantum circuit that generates the 3-qubit linear cluster
state, followed by evaluating the output state’s infidelity and circuit depth.

Codeblock 7 presents an example of using AlternateTargetSolver. This example uses the stabilizer

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 15

backend for the noise-free simulation and uses the density matrix backend for the noise simulation.
The noise model used is depolarizing channels. More examples can be found in the Jupyter notebooks
in the GraphiQ’s code repository.

1 from graphiq.solvers.alternate_target_solver import AlternateTargetSolver,
AlternateTargetSolverSetting↪→

2 from graphiq.backends.stabilizer.compiler import StabilizerCompiler
3 from graphiq.backends.density_matrix.compiler import DensityMatrixCompiler
4 from graphiq.metrics import Infidelity
5

6 # assume target_graph is a valid QuantumState object
7 setting = AlternateTargetSolverSetting()
8 solver = AlternateTargetSolver(
9 target=target_graph, solver_setting=setting, noise_model_mapping="depolarizing"

10)
11

12 # solver options
13 solver.metric = Infidelity
14 solver.compiler = StabilizerCompiler()
15 solver.noise_compiler = DensityMatrixCompiler()
16 solver.io = None
17 solver.noise_simulation = True
18 solver.seed = 1
19

20 # obtain results
21 results = solver.solve()

Codeblock 7: Using the AlternateTargetSolver to find quantum circuits that generate a target graph state.

B.2 Sample results using GraphiQ

B.2.1 3-qubit linear cluster state

Figure 7 shows an example of finding alternative quantum circuits for the three-qubit linear cluster
state using our probabilistic solvers, compared against the output of the deterministic solver based on
Ref. [29]. We see that our probabilistic solvers can potentially produce quantum circuits with reduced
circuit depth.

(a) Using TimeReversedSolver (b) Using EvolutionarySolver

Figure 7: Optimal circuits for generating the three-qubit linear cluster state when the cost function is the infidelity
function, using (a) the TimeReversedSolver based on Ref. [29] and (b) using EvolutionarySolver with the
random search option.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 16

B.2.2 Improving fidelity

0

1

2 3

4

(a) original

0

1

2 3

4

(b) alternative

Figure 8: Original target graph and its alternative, locally equivalent shape found using the
AlternateTargetSolver.

Using the graph shown in Figure 8(a) as the target graph for AlternateTargetSolver, we search
for a generation circuit that offers a better fidelity for the final state with respect to when the circuit
is obtained using the TimeReversedSolver.

p0 :

p1 :

p2 : X P H P H

p3 : H X

p4 : H X

e0 : P H P H • • X • X P H P H • X • H |0⟩
e1 : P H P H • H • X P H P H • X P H P H • H |0⟩
c0 : /

1
0

�� •
0x1 0

�� •
0x1

p0 : P H P

p1 : P H P

p2 : H P

p3 : H X P

p4 : H X Z

e0 : H • • X • H |0⟩
e1 : H • H • H • • H |0⟩
c0 : /

1
0

�� •
0x1 0

�� •
0x1

Figure 9: The original (top) and alternative (bottom) circuits, corresponding to the use of TimeReversedSolver
and AlternateTargetSolver respectively.

The circuits for the original graph (found via TimeReversedSolver) and the alternative graph (found
via AlternateTargetSolver) are depicted in Figure 9. When applying a depolarizing noise model
on the emitter gates with a 0.01 depolarization rate, the fidelity is increased from 0.66 to 0.81 for the
alternative case. The reduction in the size of the circuit is also evident in Figure 9.

B.2.3 3D cluster state 2 × 2 × 3

This example demonstrates the application of AlternateTargetSolver to explore different generation
circuits using the local Clifford equivalency orbit of a 3D cluster state (Figure 10). Table 2 shows the
range of values for a set of circuit metrics, encompassing the total number of unitary gates, the number
of CNOT gates between emitters, and the circuit depth, across all available options.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 17

0

4

2

1 3

5

6

7

8

9

10

11

Figure 10: A 12-qubit 2 × 2 × 3 3D cluster state.

Metrics Unitaries CNOTs Depth
Best case 46 12 16
Worst case 203 28 59

Table 2: The best and worst values for a set of circuit metrics over 5160 members of the LC equivalency class of
a three-dimensional (2 × 2 × 3) cluster state. The metrics correspond to the number of unitary gates, number of
emitter-emitter CNOT gates, and the depth of the corresponding quantum circuits.

References

[1] K. Azuma, K. Tamaki, and H.-K. Lo. All-photonic quantum repeaters. Nature Communications,
6(1):6787, 2015. DOI: https://doi.org/10.1038/ncomms7787.

[2] P. Hilaire, E. Barnes, and S. E. Economou. Resource requirements for efficient quantum com-
munication using all-photonic graph states generated from a few matter qubits. Quantum, 5:397,
2021. DOI: https://doi.org/10.22331/q-2021-02-15-397. arXiv:2005.07198.

[3] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths. Quantum-error-correcting
codes using qudit graph states. Phys. Rev. A, 78(4):042303, 2008. DOI:
https://doi.org/10.1103/PhysRevA.78.042303.

[4] B. A. Bell, D. A. Herrera-Martí, M. S. Tame, D. Markham, W. J. Wadsworth, and J. G. Rarity.
Experimental demonstration of a graph state quantum error-correction code. Nature Communi-
cations, 5(1):3658, 2014. DOI: https://doi.org/10.1038/ncomms4658.

[5] R. Raussendorf and H. J. Briegel. A One-Way Quantum Computer. Phys. Rev. Lett., 86(22):
5188–5191, 2001. DOI: https://doi.org/10.1103/PhysRevLett.86.5188.

[6] R. Raussendorf, E. D. Browne, and H. J. Briegel. Measurement-based quan-
tum computation on cluster states. Phys. Rev. A, 68(2):022312, 2003. DOI:
https://doi.org/10.1103/PhysRevA.68.022312.

[7] M. Varnava, D. E. Browne, and T. Rudolph. Loss tolerance in one-way quantum com-
putation via counterfactual error correction. Phys. Rev. Lett., 97:120501, 2006. DOI:
https://doi.org/10.1103/PhysRevLett.97.120501.

[8] M. A. Nielsen. Optical quantum computation using cluster states. Phys. Rev. Lett., 93:040503,
2004. DOI: https://doi.org/10.1103/PhysRevLett.93.040503.

[9] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph. From three-photon greenberger-
horne-zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett., 115:020502,
2015. DOI: https://doi.org/10.1103/PhysRevLett.115.020502.

[10] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston,
K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, and C. Sparrow. Fusion-based quan-
tum computation. Nature Communications, 19:912, 2023. DOI: https://doi.org/10.1038/s41467-
023-36493-1.

[11] N. Shettell and D. Markham. Graph States as a Resource for Quantum Metrology. Phys. Rev.
Letters, 124(11):110502, 2020. DOI: https://doi.org/10.1103/PhysRevLett.124.110502.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 18

https://doi.org/https://doi.org/10.1038/ncomms7787
https://doi.org/https://doi.org/10.22331/q-2021-02-15-397
https://doi.org/https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/https://doi.org/10.1038/ncomms4658
https://doi.org/https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/https://doi.org/10.1103/PhysRevLett.97.120501
https://doi.org/https://doi.org/10.1103/PhysRevLett.97.120501
https://doi.org/https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/https://doi.org/10.1103/PhysRevLett.115.020502
https://doi.org/https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/https://doi.org/10.1103/PhysRevLett.124.110502

[12] D. E. Browne and T. Rudolph. Resource-Efficient Linear Optical Quantum Computation. Phys.
Rev. Lett., 95(1):010501, 2005. DOI: https://doi.org/10.1103/PhysRevLett.95.010501.

[13] F. Ewert and P. van Loock. 3/4-efficient bell measurement with passive lin-
ear optics and unentangled ancillae. Phys. Rev. Lett., 113:140403, 2014. DOI:
https://doi.org/10.1103/PhysRevLett.113.140403.

[14] M. Pant, H. Krovi, D. Englund, and S. Guha. Rate-distance tradeoff and re-
source costs for all-optical quantum repeaters. Phys. Rev. A, 95:012304, 2017. DOI:
https://doi.org/10.1103/PhysRevA.95.012304.

[15] A. Russo, E. Barnes, and S. E. Economou. Generation of arbitrary all-photonic graph
states from quantum emitters. New Journal of Physics, 21(5):055002, 2019. DOI:
https://doi.org/10.1088/1367-2630/ab193d.

[16] N. H. Lindner and T. Rudolph. Proposal for pulsed on-demand sources of
photonic cluster state strings. Phys. Rev. Lett., 103(11):113602, 2009. DOI:
https://doi.org/10.1103/PhysRevLett.103.113602.

[17] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and
D. Gershoni. Deterministic generation of a cluster state of entangled photons. Science, 354(6311):
434–437, 2016. DOI: https://doi.org/10.1126/science.aah4758.

[18] D. Cogan, Z.-E. Su, O. Kenneth, and D. Gershoni. Deterministic source of indistinguishable pho-
tons in a cluster state. Nat. Photon., pages 324–329, 2023. DOI: https://doi.org/10.1038/s41566-
022-01152-2.

[19] P. Thomas, L. Ruscio, O. Morin, and G. Rempe. Efficient generation of entangled
multiphoton graph states from a single atom. Nature, 608(7924):677–681, 2022. DOI:
https://doi.org/10.1038/s41586-022-04987-5.

[20] S. E. Economou, N. Lindner, and T. Rudolph. Optically generated 2-dimensional pho-
tonic cluster state from coupled quantum dots. Phys. Rev. Lett., 105:093601, 2010. DOI:
https://doi.org/10.1103/PhysRevLett.105.093601.

[21] D. Buterakos, E. Barnes, and S. E. Economou. Deterministic generation of all-photonic
quantum repeaters from solid-state emitters. Phys. Rev. X, 7:041023, 2017. DOI:
https://doi.org/10.1103/PhysRevX.7.041023.

[22] M. Gimeno-Segovia, T. Rudolph, and S. E. Economou. Deterministic generation of large-scale
entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett., 123:070501,
2019. DOI: https://doi.org/10.1103/PhysRevLett.123.070501.

[23] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-
Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning, C. Blank, T. R.
Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D. Matteo, A. Dusko, T. Garg, D. Guala,
A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal,
K. Kottmann, R. A. Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-
Barrera, R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko,
N. Quesada, C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni,
A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber, D. Wierichs,
R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran. Pennylane: Automatic dif-
ferentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968v4, 2018.
DOI: https://doi.org/10.48550/arXiv.1811.04968.

[24] J. Gray. quimb: A python package for quantum information and many-body calculations. The
Journal of Open Source Software, 3(29):819, 2018. DOI: https://doi.org/10.21105/joss.00819.

[25] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook. Strawberry
fields: A software platform for photonic quantum computing. Quantum, 3:129, 2019. DOI:
https://doi.org/10.22331/q-2019-03-11-129.

[26] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang. Yao.jl: Extensible, efficient framework for quantum
algorithm design. Quantum, 4:341, 2020. DOI: https://doi.org/10.22331/q-2020-10-11-341.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 19

https://doi.org/https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/https://doi.org/10.1103/PhysRevLett.113.140403
https://doi.org/https://doi.org/10.1103/PhysRevLett.113.140403
https://doi.org/https://doi.org/10.1103/PhysRevA.95.012304
https://doi.org/https://doi.org/10.1103/PhysRevA.95.012304
https://doi.org/https://doi.org/10.1088/1367-2630/ab193d
https://doi.org/https://doi.org/10.1088/1367-2630/ab193d
https://doi.org/https://doi.org/10.1103/PhysRevLett.103.113602
https://doi.org/https://doi.org/10.1103/PhysRevLett.103.113602
https://doi.org/https://doi.org/10.1126/science.aah4758
https://doi.org/https://doi.org/10.1038/s41566-022-01152-2
https://doi.org/https://doi.org/10.1038/s41566-022-01152-2
https://doi.org/https://doi.org/10.1038/s41586-022-04987-5
https://doi.org/https://doi.org/10.1038/s41586-022-04987-5
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.093601
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.093601
https://doi.org/https://doi.org/10.1103/PhysRevX.7.041023
https://doi.org/https://doi.org/10.1103/PhysRevX.7.041023
https://doi.org/https://doi.org/10.1103/PhysRevLett.123.070501
https://doi.org/https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/https://doi.org/10.21105/joss.00819
https://doi.org/https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/https://doi.org/10.22331/q-2020-10-11-341

[27] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S. Martiel, P. D.
Nation, L. S. Bishop, A. W. Cross, B. R. Johnson, and J. M. Gambetta. Quantum computing with
Qiskit. arXiv preprint arXiv:2405.08810, 2024. DOI: https://doi.org/10.48550/arXiv.2405.08810.

[28] N. Heurtel, A. Fyrillas, G. de Gliniasty, R. L. Bihan, S. Malherbe, M. Pailhas, E. Bertasi, B. Bour-
doncle, P.-E. Emeriau, R. Mezher, L. Music, N. Belabas, B. Valiron, P. Senellart, S. Mansfield, and
J. Senellart. Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing.
Quantum, 7:931, 2023. DOI: https://doi.org/10.22331/q-2023-02-21-931.

[29] B. Li, S. E. Economou, and E. Barnes. Photonic resource state generation from a min-
imal number of quantum emitters. npj. Quantum Information, 8(11):1–7, 2022. DOI:
https://doi.org/10.1038/s41534-022-00522-6.

[30] S.-H. Lee and H. Jeong. Graph-theoretical optimization of fusion-based graph state generation.
Quantum, 7:1212, 2023. DOI: https://doi.org/10.22331/q-2023-12-20-1212.

[31] S. Ghanbari, J. Lin, B. MacLellan, L. Robichaud, P. Roztocki, and H.-K. Lo. Optimization of de-
terministic photonic graph state generation via local operations. arXiv preprint arXiv:2401.00635,
2024. DOI: https://doi.org/10.48550/arXiv.2401.00635.

[32] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010. DOI:
https://doi.org/10.1017/CBO9780511976667.

[33] D. Gottesman. Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-
ph/9705052, 1997. DOI: https://doi.org/10.48550/arXiv.quant-ph/9705052.

[34] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70(5):
052328, 2004. DOI: https://doi.org/10.1103/PhysRevA.70.052328.

[35] K. M. R. Audenaert and M. B. Plenio. Entanglement on mixed stabilizer states: normal forms
and reduction procedures. New Journal of Physics, 7(1):170, 2005. ISSN 1367-2630. DOI:
https://doi.org/10.1088/1367-2630/7/1/170.

[36] M. Van den Nest, J. Dehaene, and B. De Moor. Graphical description of the action of
local Clifford transformations on graph states. Phys. Rev. A, 69(2):022316, 2004. DOI:
https://doi.org/10.1103/PhysRevA.69.022316.

[37] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly Lan-
guage. arXiv preprint arXiv:1707.03429, 2017. DOI: https://doi.org/10.48550/arXiv.1707.03429.
arXiv:1707.03429.

[38] H. J. Garcia, I. L. Markov, and A. W. Cross. Efficient inner-product algorithm for stabilizer
states. arXiv preprint arXiv:1210.6646, 2012. DOI: https://doi.org/10.48550/arXiv.1210.6646.

[39] M. B. Plenio and S. Virmani. An introduction to entanglement measures. Quantum Inf. Comput.,
7(1):1–51, 2007. DOI: https://doi.org/10.5555/2011706.2011707.

[40] A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413–1415, 1996. DOI:
https://doi.org/10.1103/PhysRevLett.77.1413.

[41] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: necessary and
sufficient conditions. Physics Letters A, 223(1):1–8, 1996. DOI: https://doi.org/10.1016/S0375-
9601(96)00706-2.

[42] M. Van den Nest, J. Dehaene, and B. De Moor. Efficient algorithm to recognize the
local Clifford equivalence of graph states. Phys. Rev. A, 70(3):034302, 2004. DOI:
https://doi.org/10.1103/PhysRevA.70.034302.

Accepted in Quantum 2024-08-18, click title to verify. Published under CC-BY 4.0. 20

https://doi.org/https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/https://doi.org/10.1038/s41534-022-00522-6
https://doi.org/https://doi.org/10.1038/s41534-022-00522-6
https://doi.org/https://doi.org/10.22331/q-2023-12-20-1212
https://doi.org/https://doi.org/10.48550/arXiv.2401.00635
https://doi.org/https://doi.org/10.1017/CBO9780511976667
https://doi.org/https://doi.org/10.1017/CBO9780511976667
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/9705052
https://doi.org/https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/https://doi.org/10.1088/1367-2630/7/1/170
https://doi.org/https://doi.org/10.1088/1367-2630/7/1/170
https://doi.org/https://doi.org/10.1103/PhysRevA.69.022316
https://doi.org/https://doi.org/10.1103/PhysRevA.69.022316
https://doi.org/https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/https://doi.org/10.48550/arXiv.1210.6646
https://doi.org/https://doi.org/10.5555/2011706.2011707
https://doi.org/https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/https://doi.org/10.1103/PhysRevA.70.034302
https://doi.org/https://doi.org/10.1103/PhysRevA.70.034302

	Introduction
	Overview of GraphiQ
	Simulation of quantum circuits
	States
	Circuits
	Noise simulation

	Evaluation of circuits
	Circuit metrics
	State metrics
	State-to-circuit mapping

	Exploration and optimization of quantum circuits
	Photon emission ordering
	Local Clifford equivalency
	Optimization workflows
	Runtime

	Conclusion
	Code availability
	Acknowledgement
	Background and implementation details
	Graph state
	Stabilizer formalism
	Stabilizer group and symplectic representation
	Tableau
	Mixed stabilizer

	Conversion between state representations
	Noise models
	Depolarizing noise
	Photon loss

	Photon emission ordering
	Local Clifford and local complementation

	Examples
	Code examples
	Sample results using GraphiQ
	3-qubit linear cluster state
	Improving fidelity
	3D cluster state 223

	References

