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Convex functions of quantum states play
a key role in quantum physics, with ex-
amples ranging from Bell inequalities to
von Neumann entropy. However, in ex-
perimental scenarios, direct measurements
of these functions are often impractical.
We address this issue by introducing two
methods for determining rigorous confi-
dence bounds for convex functions based
on informationally incomplete measure-
ments. Our approach outperforms existing
protocols by providing tighter bounds for a
fixed confidence level and number of mea-
surements. We evaluate the performance
of our methods using both numerical and
experimental data. Our findings demon-
strate the efficacy of our approach, paving
the way for improved quantum state certi-
fication in real-world applications.

1 Introduction

The value attained by a convex function of a
quantum state is generally connected to key con-
cepts in quantum physics [1]. In experimental
contexts, though, these values are often not ac-
cessible through direct measurements. Even for
a linear function of the quantum state, i.e. the
expectation value of a generic observable, mea-
surements can be challenging if the observable
is highly nonlocal (e.g., a projector on a highly
entangled subspace) or requires measurement de-
vices unavailable in experimental setups. How-
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ever, it is possible to achieve an indirect estima-
tion of these observables through the measure-
ments of other more accessible quantities. Paral-
lel measurements of local Pauli operators consti-
tute a typical example of feasible measurements
for a multiqubit system. A full and perfect to-
mographic reconstruction, ideally attainable by
means of parallel measurements, would naturally
lead to the knowledge of any function of the quan-
tum state [2, 3]. Nevertheless, this is unrealis-
tic for two main reasons. First, even considering
the case of measuring all the possible multiqubit
Pauli strings, such measurements contain an in-
herent uncertainty due to finite statistics effects,
and it is not always clear how to translate this
uncertainty to the estimation of the convex func-
tion. Second, for large systems a tomographically
complete set of measurements is exponentially
costly both in time and in experimental resources,
hence, infeasible in practice. As a result, it is of
utmost importance to be able to reliably estimate
the value of convex functions through an incom-
plete set of measurements, as, for instance, those
in compressed sensing quantum tomography [4].
That is, one aims at deriving a confidence inter-
val, i.e. determining a range of feasible values, for
the convex function value given the acquired par-
tial information on the state.
The problem, in general, is acquiring increasing
interest during the last few years as is related to
identifying confidence sets for quantum state to-
mography [5–13]. These sets are regions within
the space of density matrices that contain the ex-
perimental state with a certain confidence level.
They allow us to establish rigorous bounds for
convex functions applied to the state using con-
vex optimization techniques. However, prior re-
search primarily concentrates on scenarios that
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require informationally complete measurements,
obtainable only through a large number of mea-
surement settings.
The size of the confidence region depends on the
desired confidence level and the number of avail-
able copies of the experimental state. Since quan-
tum resources are limited, it is critical to devise
protocols that use the fewest possible copies of
the state for a given confidence level. Here, we
present a method to determine the confidence
interval of convex functions using information-
ally incomplete measurements. We demonstrate
that, with a fixed confidence level and number of
shots, our method yields tighter confidence inter-
vals compared to other previous protocols.
To achieve this objective, we present two ap-
proaches: the first is based on the knowledge of
a specific number of expectation values of Her-
mitian operators (e.g. multi-qubit Pauli opera-
tors) and assigns confidence intervals to each of
these values. The second is a joint approach that
considers general measurements, defined by posi-
tive operator-valued measures (POVM). Depend-
ing on the type of states that we are considering
one method might perform better than the other.
Both provide useful guidance for certification in
realistic experimental settings depending on the
input resources.
This article is organized as follows. In Sec. 2 we
introduce the certification scheme in the ideal
scenario and the problems arising when dealing
with experimental data. Our two methods are
presented in Sec. 3. Their performances are first
tested for Haar pure states’ data in Sec. 4 and
then for experimental data produced with the
ibm_perth quantum processor in Sec. 5. We draw
our conclusions in Sec. 6 together with possible
future developments.

2 Preliminaries

2.1 Certification in ideal scenario

We first discuss the ideal scenario, namely, in the
absence of any statistical and experimental uncer-
tainties. Then, under partial information about
the state ω given in the form of expectation values
of a set of observables I = {Oi}i, certifying that
the value of a generic real function of the system
state, F(ω), is within a certain interval can be

treated with the following optimization problem:

FLB(UB) = minρ (maxρ)F(ρ)
s.t. tr(ρ) = 1

ρ ≥ 0
tr(Oiρ) = tr(Oiω) ∀i ∈ I .

(1)

This means that any reconstruction ρ compatible
with the equality constraints identified by I will
provide a value F(ρ) which is greater (lower) or
equal than the lower (upper) bound FLB(UB) de-
termined by Problem (1). More importantly, we
are guaranteed that the performance associated
to the actual state ω, being also a feasible state,
is within such a range,

FLB ≤ F(ω) ≤ FUB . (2)

If F is linear,

Flin(ω) = tr(Lω) , (3)

with L = L†, Problem (1) consists in a semidefi-
nite program (SDP). SDPs are very practical, as
they can be efficiently solved with low computa-
tional power, and do not feature the problem of
local minima [14, 15]. However, data in (1) are
perfect, in the sense that do not contain uncer-
tainties, a situation that is unrealistic in experi-
mental scenarios.

2.2 Dealing with experimental data: relaxation
of the equality constraints
The main goal of this work is to generalize the cer-
tification scheme (1) to a generic situation where
the data come from an experiment, taking into
account statistical errors.

With the aim of relying completely on the in-
formation extracted from the experimental data,
we shall relax the equality constraints allowing
for fluctuations of the order of the standard er-
rors. As we shall see, in the experimental scenario
the range in (2) does not apply deterministically,
but, instead, holds true with a probability P for
which we derive appropriate lower bounds 1 − δ,
namely

FLB ≤ F(ω) ≤ FUB , (4)
with probability P ≥ 1 − δ .

2.3 Operator convex functions
Before presenting our methods for certification
under measurement uncertainties, a comment is
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in order. As stated below, the results are valid for
target functions F in general. However, they will
be most interesting to apply when F is an (op-
erator) convex function, since the corresponding
minimization consists in a convex optimization
problem. Convex optimization has the advantage
of providing certified lower bounds to the function
of interest, as well as that of not having local min-
ima [16]. If F is linear, then both F and −F are
convex, and both upper and lower bounds can be
efficiently and certifiably obtained. Given that
linear functions are ubiquitous in quantum me-
chanics, as they represent the expectation values
of operators, we shall apply these methods to sev-
eral linear functions F of interest. Additionally,
we will show an application to the nonlinear von
Neumann entropy (whose negative is convex).

3 Bounds for the feasible set
We now present our two methods in a general
formalism.

3.1 Individual-constraint method
Consider an unknown density operator ω describ-
ing the state of a system of dimension d. Let
Oi be a set of Hermitian operators for i ∈ I =
{1, 2, . . . ,K} with bounded outcomes in [−1, 1],
oi be the corresponding experimental averages ob-
tained with number of measurement shots Ni, and
si be the associated empirical standard deviations.
Then, if F is a function of the density matrix ρ,
and δ ∈ (0, 1], the solution to the optimization
problem

FLB(UB) = min
ρ

(max
ρ

) F(ρ)
s.t. tr(ρ) = 1

ρ ≥ 0
|tr(Oiρ) − oi| ≤ ϵi ∀i ∈ I ,

(5)

is a lower (upper) bound for F(ω) with probability
at least 1 − δ. Here

ϵi := min(ϵ(H)
i , ϵ

(EB)
i ) , (6)

ϵ
(H)
i := αK,δ√

Ni
, ϵ

(EB)
i := si

αK,δ/2√
Ni

+ 7
3
α2

K,δ/2
Ni − 1 ,(7)

where αK,δ :=
√

2 ln(2K/δ).
The proof of the above statement is based on
the application of the Hoeffding or Empirical
Bernstein bounds [17, 18], followed by the union

bound, analogously to the proof in [19]. It is re-
ported in Appendix A. Note also that outcomes
are taken in [−1, 1] without loss of generality, as
the previous result can easily be adapted to an
arbitrary bounded operator by adjusting its max-
imum and minimum eigenvalue.

Discussion.— The need to consider both Ho-
effding and Empirical Bernstein bounds, Eqs. (6)
and (7), arises because ϵ

(EB)
i allows for fluctu-

ations up to αK,δ/2 times the standard errors
si/

√
Ni, with a correction term scaling as ∼ 1/Ni.

Neglecting this correction (for sufficiently high
Ni) assumes a normal distribution for the aver-
ages, resulting in a feasible set contained within
the one defined by ϵ(H)

i for a rescaled δ. In such
cases, ϵ(EB)

i usually yields tighter results than
ϵ
(H)
i . However, this is not always the case, es-

pecially when considering the correction term.
Consequently, for not too large Ni, ϵ

(EB)
i may

lead to looser bounds than ϵ
(H)
i . To obtain a

tight general bound, we consider the minimum
ϵi = min(ϵ(H)

i , ϵ
(EB)
i ) for each constraint i, as in-

dicated in Eq. (6). For not huge numbers Ni,
we typically expect the Hoeffding bound to be
tighter for random states where most or all stan-
dard deviations si have non-zero values. How-
ever, for specifically chosen states, some of the si

can be nearly zero, making the EB bound tighter.
Furthermore, we stress that this method does not
assume statistical independence between the sev-
eral random variables oi, opening the way to a
broad spectrum of applications. We also men-
tion that, for its derivation, method (5) should be
compared with the feasible regions presented in
the Supplemental Material of [19] (that, however,
were not applied to optimization problems). By
construction, method (5) is tighter for its selec-
tive character in using either Hoeffding’s bound
or Empirical Bernstein’s bound instead of solely
Hoeffding’s bound. Remarkably, a further im-
provement of the individual-constraint method is
presented in Appendix B showing the possibility
of optimizing the step concerning the application
of the union bound.

Example.— Let us consider an n-qubit sys-
tem and let {Oi = ⊗n

j=1σij }i be a set of mul-
tiqubit Pauli operators for i ∈ I = {1, 2, . . . ,K},
K ≤ 4n − 1, oi be the experimental estimates
of tr(ωOi) (correlators for brevity) obtained with
number of measurement shots Ni and si =
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√
Ni/(Ni − 1)

√
1 − o2

i be the associated empir-
ical standard deviations.

The first consideration that comes out is the
scaling of the confidence ranges in the number of
qubits n. The functional form of αK,δ implies a
worst case scenario scaling ϵi ∼

√
n. Also,

with method (5) we account for finite statistics
effects, and, in particular, for the fact that corre-
lators that have been estimated with more preci-
sion deserve a tighter range of freedom (smaller
ϵi). In a parallel measurement framework (see
Appendix C for details) such correlators are typi-
cally the 1-body ones, for which estimations com-
ing from many different measurement settings are
typically available. On the contrary, the most im-
precise ones are typically the n-body correlators
for which only one measurement setting can pro-
vide information. In this sense, we remark that
correlators extracted from parallel measurements
are not statistically independent as the estima-
tion of two different correlators can rely on some
common shots. This happens when two correla-
tors are related through the following rule: from a
higher order correlator, e.g. the four body correla-
tor oxxz0y for a system of 5 qubits, we can obtain
a lower order correlator by “substituting” the la-
bel of one or more Pauli operators with the iden-
tity, obtaining for instance the two-body correla-
tor o0x00y. These two correlators, namely oxxz0y

and o0x00y, share some data in their estimation
and therefore are not statistically independent.

3.2 Joint-constraint method

Consider a density operator ω on a system
of dimension d. Let E = {Ei}m

i=1 define
a POVM applied to the system, with p⃗ =
(tr(ωE1), tr(ωE2), . . . , tr(ωEm)) the exact mea-
surement probabilities and q⃗ the empirical esti-
mation of p⃗ obtained by measuring E across N
copies of ω. Let F be a function of density ma-
trices, and δ ∈ (0, 1]. Then, the solution to the
optimization problem

FLB(UB) = min
ρ

(max
ρ

) F(ρ)

s.t. tr(ρ) = 1
ρ ≥ 0

m∑
i=1

|tr(Eiρ) − qi| ≤ ϵ ,

(8)

is a lower (upper) bound for F(ω) with probability
at least 1 − δ. Here

ϵ =
√

2
N

ln 2m

δ
. (9)

This result is based on the Bretag-
nolle–Huber–Carol inequality [20], that bounds
the total variation distance ∥p⃗ − q⃗∥1 between
a vector of multinomially distributed random
variables and its expected values (see Appendix
D). The total variation distance has recently
been used to define distance measures between
quantum states, measurements, and channels
based on their statistical distinguishability [21].

3.3 Comparing the two methods
With both methods (5) and (8), we will be inter-
ested in the case of the function F being linear or
convex, as they both lead to convex optimization
problems.
Let us mention a few differences between meth-
ods (5) and (8). In a typical quantum-state mea-
surement scenario, q⃗ contains information on the
counts of each possible outcome of every measure-
ment, whereas in (5), the counts are grouped into
expectation values of Hermitian operators. Then,
the dimension of q⃗ is typically larger than the
number of Hermitian operators since these oper-
ators can be chosen to avoid redundancy. For
example, measuring the 9 Pauli basis that are
informationally complete for 2 qubits gives a q⃗
of dimension 36 (we call for brevity Pauli basis
a particular choice of parallel measurement set-
ting, see Eq. (19) and related discussions in Ap-
pendix C). The same information can be grouped
into 15 Pauli operators. Another difference be-
tween the two methods is that (8) bounds the es-
timation errors jointly in a single equation, with
ϵ =

√
2
N ln 2m

δ , while the local method employs
one constraint for each Hermitian operator. As
we shall see later the two methods, beyond in
general responding to different experimental re-
quests, have different performances in terms of
tightness of the resulting bounds. However, as a
common feature, regarding the behavior in terms
of the confidence level, in both methods the errors
in the constraints in Eqs. (7) and (9) are mono-
tonically decreasing with increasing δ, as they are
proportional to

√
ln δ−1. This implies that hav-

ing a higher confidence level 1 − δ results in a
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Figure 1: Minimum preparation fidelity of 4-qubit states
as a function of the total number of shots N . The confi-
dence level is 0.997. The solid lines represent the median
value obtained from 100 Haar-random pure states us-
ing the joint-constraint method (blue dots), individual-
constraint method (green stars), method from Ref. [13]
(orange pentagons) and classical shadows (red squares),
while the shaded areas depict the interquartile ranges.
When applying our two methods we considered 16 ran-
dom measurement settings (more precisely, we draw 16
random settings for each drawn random state), while for
the method from Ref. [13] all the 81 measurement set-
tings. We remark that N is the total number of shots
in the whole simulated experiment, thus, in general, this
implies less shots per measurement setting.

decreasing (increasing) behavior for FLB(UB), i.e.
our bounds become looser but more secure.
Recently de Gois and Kleinmann proposed a
method to find confidence regions based on the
vector Bernstein inequality [13]. Those regions
can also be integrated into convex optimization
routines to find bounds for convex functions, but
require the measurement of an informationally
complete POVM. We show in what follows that
for paradigmatic figures of merit in quantum in-
formation our bounds outperform the bounds
provided by Ref. [13].

4 Numerical simulations

4.1 Certification of state preparation

The first application we discuss involves a certifi-
cation protocol for preparing quantum states. Let
us assume our goal is to prepare a pure quantum
state |ψ⟩ within a physical system, and we want
to check the quality of the preparation, in terms
of the worst-case state preparation. To achieve
this, we perform measurements on the system
and, given this information, minimize the fidelity

10−510−410−310−210−1

δ

0.82

0.84

0.86

0.88

0.90

0.92

m
in
F

Figure 2: Behaviors in terms of the confidence level.
We consider all 9 possible measurement settings for two
qubits, a number of shots N = 16379 (N ≈ 214, ≈ 1820
shots per measurement setting) and plot the median of
the minimum preparation fidelity over 100 Haar-random
pure states as function of decreasing δ. The shadowed
region indicates interquartile ranges. Different curves
and associated shadowed regions refer to different meth-
ods. Joint-constraint method (blue dots), individual-
constraint method (green stars) and method from Ref.
[13] (orange pentagons).

F (ρ) = ⟨ψ|ρ|ψ⟩ between the states ρ in the feasi-
bility set Ω, and the desired state |ψ⟩. Therefore,
for an experimental state ω, we obtain the lower
bound ⟨ψ|ω|ψ⟩ ≥ minρ∈Ω F (ρ).
We conducted numerical simulations for this pro-
tocol. Specifically, we prepared 100 Haar-random
4-qubit pure states |ψ⟩ and we measured them us-
ing 16 randomly chosen Pauli bases, evenly dis-
tributing the N copies of the state. Subsequently,
we apply our two protocols and protocol A from
Ref. [13] for a selected confidence level. In the
case of protocol A, we measure the 81 Pauli bases
that are informationally complete for 4 qubits.
Finally, we calculated the fidelity of the result-
ing states with the initially prepared states |ψ⟩.
We also applied fidelity estimation using classical
shadows with random Pauli bases [22]. The min-
imum fidelity in this case is given by f̂−ϵ′, where
f̂ is the classical shadows estimator of the fidelity
and ϵ′ = 64×44

N ln (2/δ) quantifies the error in the
estimation.

In Figure 1, fixing 1 − δ = 0.997, we show
the behavior of the minimum preparation fidelity
in terms of the number of shots. Blue dots
and green stars represent the results obtained us-
ing the joint-constraint method and individual-
constraint method, respectively, while the or-
ange pentagons correspond to the results ob-
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Figure 3: Maximum entropy of 2-qubit pure states as
a function of the total number of shots N . The confi-
dence level is 0.997. The solid lines represent the median
value obtained from 100 Haar-random pure states us-
ing the joint-constraint method (blue dots), individual-
constraint method (green stars) and method from Ref.
[13] (orange pentagons), while the shaded areas depict
the interquartile ranges. We considered all the 9 possi-
ble measurement settings.

tained with the method from Ref. [13] and the
red squares are the results using classical shad-
ows. We observe that, using the same data, both
our bounds outperform the bounds provided by
Ref. [13] and classical shadows. In particular,
the fidelity bounds are significantly tighter when
employing the joint-constraint method, which re-
quires approximately four times fewer quantum
resources than method from Ref. [13]. Also the
experimental demand is lower, since we only mea-
sure around 1/5 of the total number of settings
in our protocols.
In Fig. 2, fixing a total of 214 shots, we check the
scaling of the protocols with the confidence level
1−δ (decreasing values of δ). Also in this case our
two methods provide tighter results with respect
to the method from Ref. [13], with the results
obtained from the joint-constraint method being
the tightest and, remarkably, pretty stable with
increasing confidence level.

4.2 Certification of the maximum von Neu-
mann entropy

We now aim to determine an upper bound for
the von Neumann entropy S of a state ω. This
is a convex optimization problem, since S is a
concave function. Then, we perform measure-
ments on the system and maximize the function
S(ρ) = −tr(ρ ln ρ) over all the states ρ compati-

ble with the feasibility set Ω.
In Fig 3, we prepare 100 Haar-random pure states
of 2 qubits, and we measure them using all 9
Pauli observables {σ(1) ⊗σ(2)}, with σ = X,Y, Z.
The protocols are then applied with confidence
level 0.997. The blue dots and green stars show-
case the maximum entropy yielded by methods
(8) and (5), respectively, for different numbers of
total shots. The orange pentagons are the re-
sults using the method A from Ref. [13] with
the same data and confidence level. The con-
clusions we can draw are analogous to the ones
extracted from the previous analysis. Both our
methods provide tighter results than the method
from Ref. [13], with the best performance being
reached with the joint-constraint method.

5 Experimental results

We now present results based on actual experi-
mental data. A fundamental difference with re-
spect to the previous analysis is that the target
state (the pure state one aims to prepare) and
the actual state (the state actually produced in
the experiment) do not coincide. We performed
experiments using the ibm_perth quantum pro-
cessor. For 4 qubits, we aimed to prepare a ran-
dom product state, a tensor product of two Bell
states, and a GHZ state. We then measured each
of these states with a certain number of random
Pauli bases, using 214 shots per basis. We com-
pared the experimental state with the theoreti-
cal ones in terms of maximum and minimum fi-
delity, and we also calculated the maximum von
Neumann entropy. The results using methods (5)
and (8) are displayed in Table 1. We notice that
an analysis with the method from Ref. [13] is not
possible because the data at our disposal are in-
formationally incomplete.

In contrast to the numerical simulations of Sec.
4, the best performance is obtained here with
the individual-constraint method, i.e., it provides
tighter values for maximum and minimum prepa-
ration fidelity and maximum von Neumann en-
tropy.
On this regard, we notice that the associated tar-
get pure states (i.e. what we wanted to theoret-
ically prepare), may possess some structure, an
important difference with respect to random Haar
states. This implies that they could be described
in terms of few relevant Pauli strings. This
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Individual-constraint Joint-constraint
state minF maxF maxS minF maxF maxS

Product 0.916 0.983 0.397 0.891 0.993 0.492
Bell pair 0.747 0.862 0.986 0.681 0.879 1.102

GHZ 0.730 0.878 1.143 0.671 0.910 1.289

Table 1: Analyzing experimental data produced with ibm_perth quantum processor for 4 qubits with both individual-
constraint method and joint-constraint method for confidence level 0.997. Given a selected target state we measured
with 16 different random settings, performing N = 218 total number of shots. The target states are: Product state,
GHZ, Bell pair. We remark that being in the informationally incomplete scenario method from Ref. [13] cannot be
applied.

generally makes the individual-constraint method
more efficient for these particular states, because,
at variance with the joint-constraint method, it
bounds each Pauli string expectation value inde-
pendently.

Furthermore, additional factors should be
taken into account when examining the data pre-
sented in the table. Product states are usually
prepared with low error in superconducting plat-
forms. Then, the results for the minimum fi-
delity are comparable to the value 0.896 obtained
by numerical simulations of the joint-constraint
method assuming perfect preparation and a total
N of 218 shots. Worse performances in prepara-
tion are instead obtained in the case of entangled
target states. For this reason, when compared
with the product state, the results we obtained
for minimum and maximum fidelity are smaller
in the cases of tensor product of two Bell states
and a GHZ state, and, analogously, for maximum
von Neumann entropy the last two state prepa-
rations yield larger upper bounds.

6 Discussion and conclusions

We faced the problem of identifying a certified in-
terval for a generic function of a quantum state in
the informationally incomplete scenario and un-
der finite statistics effects, focusing on the treat-
able cases of linear functions and the more general
operator convex functions. On this regard, we in-
troduced two methods that, considering paradig-
matic figures of merit, lead to tighter bounds than
the ones extractable from the recent method pre-
sented in Ref. [13].
We remark that our schemes are general in the
sense that they enable us to find rigorous confi-
dence bounds for the experimental values of con-
vex functions of density matrices using various

types of measurements. This flexibility allows the
method to be effectively applied to a wide range
of different experimental setups, as researchers
can conveniently choose the most suitable mea-
surements for their certification task.
Analytical methods like classical shadows [22] or
direct fidelity estimation [23] often require new
calculations to obtain confidence bounds when
the function to certify or the measurements to
perform are modified. In contrast, using con-
fidence regions, convex optimization can be di-
rectly applied without the need for any additional
calculations. Then, the method can be straight-
forwardly applied to numerous other interesting
functions, including the quantum Fisher infor-
mation [24], Bell inequalities, entanglement wit-
nesses, and more. We mention that one can use
our schemes to find a compressed sensing recon-
struction by considering the argument of the min-
imization for any convex function [25], but with
rigorous and tight bounds for the constraints pro-
vided by our methods.
Furthermore, since finding the quantum state
that describes a physical system is not our pri-
mary objective, the informational completeness
of the measurements is not as crucial as in quan-
tum tomography. In principle, data from any
measurement will provide bounds for the con-
vex functions. This contrasts with other results
on confidence regions for quantum states, which
primarily focus on informationally complete mea-
surements. However, if we intend for the bounds
of our method to be non-trivial, we require a
reasonable number of settings, as in compressed
sensing tomography.
About the joint-constraint method, improve-
ments in confidence regions require tighter
bounds for the discrepancy between the experi-
mental and exact probabilities, ||p⃗ − q⃗||1. This
could be done by trying different concentration
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inequalities. Furthermore, it is worth consider-
ing that the 1-norm constraint may not always
be the best choice. Then, confidence bounds
using other p-norms could potentially yield bet-
ter results. Other concentration inequalities be-
yond Hoeffding and Empirical Bernstein bounds
can also provide improvements in the individual-
constraint method by adding their resulting er-
rors in the minimization appearing in (6).
Finally, we notice that the methods can include
the case of detection inefficiencies by modifying
the POVM elements to include an additional out-
put corresponding to non-detected events, and
they might be extended to other estimation tasks,
such as, process tomography by means of the
Choi-Jamiolkowski isomorphism, or detector to-
mography.
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A Proof of the individual-constraint method (5)
The proof follows the lines of that given in Appendix A of [19], being, however, valid not only for the
Hoeffding bound as in [19], but also for the Empirical Bernstein bound.

The trace and semipositivity conditions in (5) are always obeyed by the actual quantum state ω.
Consider Ni shots for the measurement of E(oi) = tr(Oiω) for given i ∈ {1, 2, . . . ,K}. This entails that
there are Ni real-valued i.i.d. random variables for each i. They have, for simplicity, range R = [−1, 1],
and their empirical average and standard deviation are oi and si, respectively. Given these data, the
probability for a single fluctuation to lie outside a range defined by ϵi can in general be upper bounded,

Prob(|E(oi) − oi| > ϵi) ≤ δ , (10)

where concentration inequalities [26] allow finding closed expressions for ϵi(δ). Defining αδ :=√
2 ln(2/δ), then

ϵ
(H)
i (δ) := αδ√

Ni
, (11)

ϵ
(EB)
i (δ) := si

αδ/2√
Ni

+ 7
3
α2

δ/2
Ni − 1 (12)

are eligible options, corresponding to Hoeffding’s and Empirical Bernstein’s [17, 18] inequalities, re-
spectively. This implies that to restrict the set as much as possible we can take

ϵi(δ) = min[ϵ(H)
i (δ), ϵ(EB)

i (δ)] . (13)

From the union bound, and using E(oi) = tr(Oiω),

Prob
[
∃ i s.t. |tr(Oiω) − oi| > ϵi(δ′)

]
≤

K∑
i=1

Prob[ |tr(Oiω) − oi| > ϵi(δ′)] , (14)

we obtain a bound for the violation of any of the K constraints,

Prob
[
∃ i s.t. |tr(Oiω) − oi| > ϵi(δ′)

]
≤ Kδ′ . (15)

By rescaling δ′ = δ/K, we conclude that with probability at least 1 − δ all ϵ constraints in (5) are
fulfilled by ω. As such, with probability at least 1 − δ the state ω is in the feasible space of Problem
(5). Since the minimum (maximum) FLB(UB) serves as lower (upper) bound to any state in the feasible
space, it bounds F(ω) with probability at least 1 − δ.

We remark that, as the union bound does not assume statistical independence between the several
random variables oi, this implies that the method (5) can be applied for this case too.
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B Improving the individual-constraint method (5)
We present here a more involved improved version of the Individual-constraint method (5). We start
noticing that for generic

δ⃗ = (δ1, δ2, . . . , δK)T ,
K∑

i=1
δi = δ , δi ≥ 0 , (16)

FLB(UB)(δ⃗) = min
ρ

(max
ρ

) F(ρ)
s.t. tr(ρ) = 1

ρ ≥ 0

|tr(Oiρ) − oi| ≤ min( αδi√
Ni
, si

αδi/2√
Ni

+ 7
3

α2
δi/2

Ni−1) ∀i ∈ I ,

(17)

is a lower (upper) bound for F(ω) with probability at least 1 − δ.
Method (5) sets δi = δ/K, but there are in general non-uniform choices of the vector probabilities δ⃗

for which method (17) is tighter.

C Parallel measurements and correlators
In introducing the parallel measurement framework we follow, among others, the introduction of Ref-
erence [19].

A common decomposition for the density operator ρ of an n-qubit system is in terms of Pauli
operators,

ρ = 1
2n

4n−1∑
i=0

tr(Oiρ)Oi , Oi := σi1 ⊗ σi2 ⊗ · · · ⊗ σin , (18)

with σij ∈ {12, σx, σy, σz} and where the term tr(O0ρ) = 1, as O0 := ⊗n
j=112 = 12n . This means

that, in principle, in order to unequivocally identify the quantum state, one should measure the 4n − 1
expectation values of the operators (18). However, nowadays parallel measurements are experimentally
under control. One can concurrently measure in one shot all the n qubits in different local bases,
obtaining n binary outcomes a⃗ := (a1, a2, . . . , an), where aj ∈ {−1, 1}, from a given measurement
setting

α⃗ := (α1, α2, . . . αn) , (19)

with αj ∈ {x, y, z}. Collecting the corresponding counts Na1,a2,...,an|α1,α2,...,αn
leads to the estimated

probabilities

p(a1, a2, . . . , an|α1, α2, . . . , αn) ≈
Na1,a2,...,an|α1,α2,...,αn

Nα1,α2,...,αn

(20)

of obtaining the array of outcomes (a1, a2, . . . , an) from the measurement setting (19). There are in
total 2n possible outcomes (a1, a2, . . . , an) and 3n possible measurement settings (19).

From the above counts Na1,a2,...,an|α1,α2,...,αn
one can infer the correlators tr(Oiρ), by marginalizing

the appropriate qubits. For instance, in the case of 4 qubits and from the measurement setting
(x, x, y, z), one can estimate the correlator

tr(σx ⊗ 1 ⊗ σy ⊗ σz ρ) ≈
∑

a1,a2,a3,a4

a1a3a4
Na1,a2,a3,a4|x,x,y,z

Nx,x,y,z
. (21)

More generally, a given k-body correlator (k counts how many Pauli matrices are not the identity in
the string (18)) can be estimated from several measurement settings,

tr(⊗n
j=1σij ρ) ≈ oi =

∑
α⃗|i
∑

a⃗(
∏

j|i aj)Na⃗|α⃗∑
α⃗|i
∑

a⃗Na⃗|α⃗
. (22)
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The
∑

α⃗|i means that the sum must be taken only over the measurement settings α⃗ that are “compatible”
with the correlator tr(⊗n

j=1σij ρ). More precisely, the number of settings that must be considered for
the estimation of a k-body correlator is

Nms(k) = 3n−k . (23)

Those settings are the ones that can coincide with the correlator string (i1, . . . , in) when substituting
one or more elements of the measurement setting string (α1, . . . , αn) with the identity (the latter being
identified by ij = 0). The

∏
j|i aj imposes instead to consider in the product only the locations j for

which ij ̸= 0. Hence, the denominator in (22),

Ni =
∑
α⃗|i

∑
a⃗

Na⃗|α⃗ , (24)

counts the number of shots used for the estimation of the correlator i. According to our notation, N0
coincides with the total number of measurement shots in the experiment and o0 = 1 accounts for the
normalization condition of the density matrix. Furthermore, the above formalism includes the case
where not all the settings are measured (informationally incomplete scenario), as in that case one can
set to zero the corresponding counts and apply (22) only when its denominator Ni is non-zero.

D Proof of the joint-constraint method (8)
The proof follows along the lines of Appendix A, but with a different concentration inequality. Con-
sider we have N copies of a quantum state ω and we measure them using a POVM E with m pos-
sible outcomes. With p⃗ = (tr(ωE1), tr(ωE2), ..., tr(ωEm)), let Z⃗ = (Z1, Z2, . . . , Zm) be the outcomes
(counts) of that measurement. Now, Z⃗ is a multinomially distributed random vector with parameters
(p1, p2, . . . , pm) such that

∑m
i=1 Zi = N . The Bretagnolle–Huber–Carol bound [20] holds and can be

written as:

Prob
(

m∑
i=1

∣∣∣∣∣Z(i)

N
− pi

∣∣∣∣∣ ≥ ϵ

)
≤ 2me−Nϵ2/2 =: δ , (25)

bounding the probability for the total ℓ1-norm error to be above ϵ. Identifying q⃗ = Z⃗/N and solving
for ϵ as a function of δ, we can state that, with probability at least 1 − δ,

∥p⃗− q⃗∥1 ≤ ϵ =
√

2
N

ln 2m

δ
, (26)

recovering the ϵ condition from (9). As in Appendix A, with probability 1 − δ the actual state ω is in
the feasible space and the bounds FLB(UB) hold.

E Certification of state preparation II

For sake of illustration, we present a last example concerning maximum fidelity of state preparation.
In this application, we receive copies of a quantum state ω, and we are told that this state corresponds
to a pure state |ψ⟩. We want to prove that this is false. To achieve this, we perform measurements
on the given copies and determine the maximum fidelity F (ρ) = ⟨ψ|ρ|ψ⟩ between the states ρ in the
feasibility set Ω and the reference state |ψ⟩. If the maximum fidelity differs from 1, we can conclude
that the state ω is not equal to |ψ⟩.
In Fig 4, we prepare 100 states of the form 0.9|ψ⟩⟨ψ| + 0.1

16 I, where |ψ⟩ are Haar-random pure states
of 4 qubits. We subject these states to measurements using 16 randomly chosen Pauli bases, with
varying numbers of total shots. The joint-constraint protocol is then applied with confidence level
of 0.997. Blue dots depict the fidelity between the resulting states and the reference states |ψ⟩. We
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Figure 4: Maximum fidelity between a prepared state 0.9|ψ⟩⟨ψ| + 0.1
16 I and the reference state |ψ⟩ for 4 qubits. The

solid lines represent the median value obtained from 100 Haar-random pure states using our method (blue dots) and
method from Ref. [13] (orange pentagons), while the shaded areas depict the interquartile ranges.

compare these results with those obtained using protocol A from Ref. [13], where the same confidence
level and total shot count N are used, but in this case, we measure the 81 Pauli strings that are
informationally complete for 4 qubits. Our protocol needs around 216 shots to succeed, while Protocol
A needs around 220, 16 times more shots.
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