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We analyze the efficiency of protocols for
adiabatic quantum state transfer assisted by
an engineered reservoir. The target dynamics
is a quantum trajectory in the Hilbert space
and is a fixed point of a time-dependent mas-
ter equation in the limit of adiabatic dynam-
ics. We specialize to quantum state transfer
in a qubit and determine the optimal schedule
for a class of time-dependent Lindblad equa-
tions. The speed limit on state transfer is ex-
tracted from a physical model of a qubit cou-
pled to a reservoir, from which the Lindblad
equation is derived in the Born-Markov limit.
Our analysis shows that the resulting efficiency
is comparable to the efficiency of the optimal
unitary dynamics. Numerical studies indicate
that reservoir-engineered protocols could out-
perform unitary protocols outside the regime
of the Born-Markov master equation, namely,
when correlations between the qubit and reser-
voir become relevant. Our study contributes
to the theory of shortcuts to adiabaticity for
open quantum systems and to the toolbox of
protocols of the NISQ era.

1 Introduction
Widely employed strategies in quantum technologies
make use of adiabatically steering the trajectory of a
quantum system in the Hilbert space [1–3]. In fact,
adiabatic processes posses an inherent robustness to
parameter variations, provided the control parame-
ters of the system are varied sufficiently slowly to sat-
isfy the adiabaticity constraint. Adhering to this con-
straint, however, comes at the expense of long opera-
tion times, during which the system is susceptible to
accumulated effects of decoherence, excitation transi-
tions and particle loss. For this reason, the character-
istic timescale associated with these stochastic pro-
cesses, typically referred to as noise, sets a bound on
the operation time of the adiabatic protocol, and thus
on the maximal fidelity that can be achieved [4, 5].

This stumbling block might be overcome with
shortcuts to adiabaticity (STA) [6, 7]. STA is a
class of methods and concepts that aim to find fast

routes to the final results of slow, adiabatic protocols,
thereby also reducing the detrimental impact of de-
coherence. This promotes a positive step towards the
realization of fast and accurate quantum processes.
STA relates to and overlaps partially with optimal
control theory [6, 8–10]. The minimal time needed for
implementing the protocol is bound by the quantum
speed limit intrinsic to the system’s dynamics [11, 12].
Following a somewhat different approach, strategies
based on quantum reservoir engineering [13] make use
of non-unitary, completely positive and trace preserv-
ing (CPTP) maps, which are tailored such that the
target state is a fixed point [14, 15]. These maps are
generated by master equations, with the non-unitary
features giving rise to an arrow of time. The char-
acteristic timescale of the corresponding protocol is
bound by a quantum speed limit determined by the
interplay between coherent and incoherent dynamics
[16–18].

Quantum reservoir engineering has been discussed
for a variety of applications, from quantum state
preparation [13, 19–22] to quantum computing [23, 24]
and quantum communication [25, 26]. Recent works
developed a general framework for achieving shortcuts
to adiabaticity assisted by quantum reservoir engi-
neering, which we here dub by the acronym STARE.
These protocols consist in using non-unitary, time-
dependent Lindblad dynamics in order to suppress di-
abatic transitions [27, 28]. In this spirit, Ref. [29] pro-
posed a protocol that achieves a shortcut to adiabatic-
ity in a Landau-Zener model by means of a quantum
auxiliary system (meter), performing projective mea-
surements into the target adiabatic trajectory. Using
this scheme, the probability of a diabatic transition
in a given time can be reduced by up to one order
of magnitude with respect to the Landau-Zener tran-
sition. This result makes this protocol interesting
for applications to quantum technologies, for quan-
tum state preparation in quantum simulators [30] and
prominently for quantum computing, where adiabatic
transfer in a qubit is quintessential for the adiabatic
quantum search [31]. In order to assess its potential, it
is necessary to identify the ultimate speed limit when
compared to the speed limit of the protocol based on
the coherent dynamics [32].

In this work we assess the speed limit of STARE
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protocols for a qubit based on the time-dependent
Born-Markov Lindblad master equation of Refs. [29,
33]. Our analysis allows us to identify the optimal
schedule and, subsequently, the lower bound on the
transfer time that this type of STARE protocol can
achieve.
The paper is organized as follows. In Sec. 2 we

summarize the basic idea of the STARE protocol con-
sidered here. In Sec. 3 we establish the foundation of
STARE for quantum state transfer in a qubit: We
first review the unitary adiabatic dynamics, and then
identify the requirements for its extension to the set-
ting of open quantum systems. In Sec. 4 we consider
a specific class of Lindblad master equations fulfill-
ing the requirements of Sec. 3, and derive the optimal
schedule for the adiabatic transfer. The comparison
between the maximum efficiency of the unitary and
STARE protocols is performed in Sec. 5. In Sec. 6 we
assess the ultimate speed limit of the STARE proto-
col based on the Born-Markov Lindblad master equa-
tion by means of a microscopic model, from which
the applicable master equation can be derived. We
use this model to numerically explore the efficiency in
the regime beyond the Born-Markov limit for specific
implementations of experimental relevance. The con-
clusions are drawn in Sec. 7. The appendices provide
details of the derivations in Sections 4 and 6.

2 Quantum reservoir engineering for
adiabatic transfer
Approaches based on quantum reservoir engineering
design CPTP maps M for which the target density
operator ϱT is a fixed point: MϱT = ϱT . This is
often implemented by means of a master equation of
Lindblad form for the density operator ϱ,

∂tϱ = Lϱ , (1)

with L a Liouville superoperator (Lindbladian) which
generates the desired map, such that ϱ(t) = etLϱ(0)
[14, 22, 34]. By ensuring that ϱT is the unique station-
ary state, namely, LϱT = 0, the system will dynami-
cally be steered towards the target state. The advan-
tage of protocols based on non-unitary maps generally
derive from their relative robustness against param-
eter fluctuations. Moreover, since the target state is
the stationary state, the required fidelity is reached on
a timescale set by the relaxation of the system, thus
negating the need for precise control of the evolution
time. Finally, the impact of undesired, incoherent dy-
namics can, at least partially, be compensated for by
the designed Lindbladian.
The STARE protocol we consider extends this ap-

proach to designing quantum trajectories by identify-
ing time-dependent non-unitary dynamics L(t) such
that the solution of the master equation tends to the
target trajectory ϱT (t) in the adiabatic limit. To this

end, we generalize the condition of quantum coherent
adiabatic dynamics and require that the quantum sys-
tem is adiabatically transported along the trajectory
ϱT (t) satisfying the equation [34]

L(t)ϱT (t) = 0 (2)

at each instant of time. The target trajectory is there-
fore the instantaneous right eigenvector of L(t) with
eigenvalue zero. In this work we verify the conditions
on the schedule for which ϱT (t) is a solution of the
master equation. We identify the optimal schedule
of a class of Lindbladian for a paradigmatic problem,
namely, adiabatic transfer in a two-level system (a
qubit). This permits us to benchmark the efficiency of
the STARE protocol with respect to protocols based
on unitary adiabatic transport.

3 Adiabatic transfer in a qubit
A two-level quantum system is arguably the simplest
non-trivial object in quantum theory, and is of great
practical importance. Indeed, the Hamiltonian dy-
namics of adiabatic quantum state transfer in a two-
level system is a paradigmatic model for the descrip-
tion of state preparation of a qubit, and adiabatic
quantum searches in a database [1, 31]. In this sec-
tion, we review the basics of adiabatic transfer be-
tween two orthogonal states of a qubit, and high-
light an optimized schedule for this process. We then
lay the foundation for the identification of the corre-
sponding STARE protocol. While the results of this
section are widely available in the literature, the nota-
tion and context established here underpin our main
results on the optimization of the non-unitary dynam-
ics in Sec. 4.

3.1 Unitary dynamics
Definitions. We begin with a brief overview of the
unitary dynamics of a qubit, generated by a time-
dependent Hamiltonian H(t). Here the evolution
of ϱ(t) is governed by the von Neumann equation
∂tϱ(t) = L(t)ϱ(t) = [H(t), ϱ(t)]/i (with the conven-
tion ℏ = 1). This dynamics preserves the purity of
ϱ(t), and, for pure initial states, the state of the qubit
is therefore described by a vector |ψ(t)⟩ in the sys-
tem’s two-dimensional Hilbert space H. Choosing as
a basis for H the eigenstates |↑⟩ and |↓⟩ of the Pauli
matrix σ̂z, for which σ̂z |↑⟩ = + |↑⟩ and σ̂z |↓⟩ = − |↓⟩,
we write the qubit’s state as

|ψ(t)⟩ = c↑(t) |↑⟩ + c↓(t) |↓⟩ , (3)

where cj(t) = ⟨j|ψ(t)⟩ with j = ↑, ↓ are expansion
coefficients satisfying |c↑(t)|2 + |c↓(t)|2 = 1. Turning
now to the Hamiltonian, we first consider the general
form

H(t) = a0(t)I + a⃗(t) · σ⃗ , (4)
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(a) (b)

Figure 1: (a) Illustration of the Bloch sphere in R3, with the
eigenstates of the Pauli matrix σ̂z indicated by |↑⟩ and |↓⟩ at
the z-axis poles. The unit vector e⃗n represents a pure state
and is parameterized by the polar angle θ and the azimuthal
angle ϕ. (b) The optimal quantum trajectory |ψ(t)⟩T of
Eq. (11) connecting the states |ψ(ti)⟩T = |↑⟩ and the target
state |ψ(tf )⟩T = |↓⟩ with the minimal infidelity for a fixed
transfer time.

where a⃗(t) = (ax(t), ay(t), az(t))T ∈ R3 and σ⃗ =
(σ̂x, σ̂y, σ̂z)T is the Pauli-matrix vector operator.
The unit direction vector e⃗n(t) = a⃗(t)/|⃗a(t)| may be
identified with a point on the Bloch sphere, and pa-
rameterized by the angles θ ∈ [0, π) and ϕ ∈ [0, 2π)
as e⃗n = (sin θ cosϕ, sin θ sinϕ, cos θ)T. See Fig. 1(a)
for an illustration of these notations. The Hamilto-
nian (4) is then diagonal in the eigenbasis

|+⟩t = + cos[θ(t)/2] |↑⟩ + eiϕ sin[θ(t)/2] |↓⟩ , (5a)
|−⟩t = − sin[θ(t)/2] |↑⟩ + eiϕ cos[θ(t)/2] |↓⟩ , (5b)

with tan[θ(t)] =
√
a2

x(t) + a2
y(t)/az(t) and tan[ϕ(t)] =

ay(t)/ax(t). The associated eigenenergies are

E±(t) = a0(t) ± |⃗a(t)| . (6)

We denote the instantaneous gap in the spectrum of
H(t) by ∆(t) ≡ E+(t) − E−(t). With our notation,
∆(t) = 2|⃗a(t)|. As will be seen, the minimum value
∆min of this gap is instrumental in bounding the
accuracy and speed of adiabatic transfer in this
system.

The quantum trajectory. Now consider the uni-
tary adiabatic transfer of the qubit’s state along a
smoothly varying target trajectory |ψ(t)⟩T which con-
nects the states |ψ(ti)⟩T = |↑⟩ and |ψ(tf )⟩T = |↓⟩
over a time interval [ti, tf ]. To realize this transfer,
we must identify a quantum evolution

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ , (7)

for which |ψ(t)⟩T is an instantaneous eigenstate
of H(t), satisfying H(t) |ψ(t)⟩T = E(t) |ψ(t)⟩T for
all t ∈ [ti, tf ]. Taking the initial qubit state as
|ψ(ti)⟩ = |↑⟩, the evolution of |ψ(t)⟩ will then tend to
the target trajectory |ψ(t)⟩T in the limit of vanishing
rate of variation of H(t) [35, 36].

Now, we turn our attention to identifying a suit-
able Hamiltonian in Eq. (7). We choose a0 = 0 and
a⃗(t) = (g0/2, 0, s(t)/2)T in Eq. (4), which yields

H(t) = s(t)
2 σ̂z + g0

2 σ̂x , (8)

with s(t) a monotonically increasing function of
time, and g0 > 0. By taking s(ti) < 0 < s(tf ) and
|s(ti)|, |s(tf )| ≫ g0, the instantaneous ground state
|−⟩t in Eq. (5) will satisfy |−⟩ti

≈ |↑⟩ and |−⟩tf
≈ |↓⟩,

and thereby provide a realization of the desired target
trajectory. We refer to s(t) as the sweep function,
since it controls the sweeping rate of the Hamiltonian.
Here g0 couples the |↓⟩ and |↑⟩ states, and determines
the minimal gap ∆min = g0 by lifting the degeneracy
at the avoided level-crossing at t = 0. See Fig. 2(a)
and 2(b) for the instantaneous eigenenergies and
occupation probabilities, respectively, and for two
different sweep functions s(t).

Adiabaticity. The rate of variation of s(t), and how
this rate compares to the minimal gap ∆min = g0, will
determine the adiabaticity of the dynamics generated
by H(t) in Eq. (8), and therefore the extent to which
|ψ(t)⟩ ”follows” the target trajectory |ψ(t)⟩T . This
directly impacts the efficiency of the transfer protocol.
We will assess the latter by means of the infidelity I,
which is the probability that the upper energy branch
is populated at the end of the process,

I(ti, tf ) = | tf
⟨+| Û(ti, tf ) |−⟩ti

|2 , (9)

where Û(ti, tf ) is the unitary operator evolving the
system according to Eq. (7).
For a linear sweep at constant rate ϵ, s(t) = ϵt, the

dynamics is that of the paradigmatic Landau-Zener
problem. In the limits ti → −∞ and tf → +∞, the
infidelity is then given by the analytic expression [37–
39]

ILZ = lim
ti→−∞
tf→+∞

I(ti, tf ) = e−πg2
0/(2ϵ) , (10)

see [40] for a detailed analysis of the tunneling
timescale. The competition between the square of
the minimal energy gap g0 and the sweep rate ϵ is
apparent in the expression above. Adiabatic dynam-
ics occurs when g0 ≫

√
ϵ, when the minimum energy

gap g0 is then sufficiently large to suppress transitions
out of the instantaneous ground state. We remark
that for finite transfer times (T = tf − ti) and sym-
metric sweeps (tf = −ti), the asymptotic behavior of
the infidelity scales as ILZ ∼ g2

0/(ϵ4T 6) for sufficiently
small ϵ [41].
Roland and Cerf [32] derived an optimal protocol

which minimizes the infidelity for a given transfer time
or, equivalently, decreases the transfer time for a given
infidelity. The sweep function is

s(t) = g0 tan
[

2t
T

arctan
(
ϵT

2g0

)]
, (11)
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Figure 2: (a) The instantaneous eigenenergies E±(t) and (b) the occupation probabilities |⟨↑ |±⟩|2 of the instantaneous
eigenstates |±⟩t of the two-level Hamiltonian in Eq. (8) as a function of the rescaled time g0t and for two different sweep
functions: the linear sweep function (LZ) with s(t) = ϵt (solid line) and the optimal sweep function of Eq. (11) (dashed
line). The dotted vertical line indicates the time t = 0 where the energy gap is minimum. Subplot (c) displays the functional
dependence of the two sweep functions on time.

which satisfies s(tf ) = ϵT/2 and s(ti) = −ϵT/2. The
target trajectory on the Bloch sphere is displayed
in Fig. 1(b), and the functional behavior of the
schedule with time is shown in Fig. 2(c). One can
observe that s(t) now varies slowly in the vicinity of
the avoided level-crossing at s(0) = 0. Meanwhile,
away from this crossing, the gradient of s rapidly
increases, facilitating faster adiabatic transfer. The
Roland and Cerf protocol, together with the linear
Landau-Zener protocol, have been experimentally
studied in Refs. [42, 43]. These works also discuss
extensions to transitionless driving protocols and
their robustness against parameter variations.

Dimensionless parameters. In order to quantify the
regime of adiabatic dynamics, we introduce the adia-
baticity parameter

a = g0T . (12)

If the start and end points |ψ(ti)⟩T and |ψ(tf )⟩T of the
target trajectory, and therefore the values of s(ti) and
s(tf ) in Eq. (8), are held fixed, the adiabatic regime
requires a ≫ 1. In fact, an expansion of |ψ(t)⟩ in
orders of 1/a will yield, at leading order, the target
trajectory |ψ(t)⟩T , with non-adiabatic corrections at
higher orders [36, 41]. The adiabaticity parameter
also appears naturally in the Schrödinger equation
upon rescaling energies by g0 and time by T . In terms
of the dimensionless time

τ = (t− ti)/T ; τ ∈ [0, 1], (13)

the dynamics of the qubit state |ψ(τ)⟩ is then gov-
erned by the Hamiltonian

Hq(τ) = a

2 [d(τ)σ̂z + σ̂x] , (14)

where d(τ) = s(t)/g0. We define the shorthand
di = s(ti)/g0 and df = s(tf )/g0. It will be convenient
to write d(τ) in the form

d(τ) = q(τ)df + [1 − q(τ)]di , (15)

where the schedule q(τ) is monotonically increasing,
and satisfies q(0) = 0 and q(1) = 1. The sweep func-
tion of Eq. (11) is then equivalent to the choice of
schedule

qRC(τ) = tan [τ arctan df + (1 − τ) arctan di] − di

df − di
.

(16)
It turns out that for the linear Landau-Zener sweep a
different choice of the dimensionless adiabaticity pa-
rameter is more appropriate. This choice also enables
one to identify the scaling of the transfer time with
the minimum gap g0. We report these considerations
in Appendix A. Before concluding, we emphasize that
with this choice of the dimensionless variables, and by
keeping di and df constant, the transfer time T now
determines the speed of the transformation: Increas-
ing T implies decreasing the speed of the sweep.

3.2 Incoherent dynamics
We now turn to the task of adapting the formalism
of the previous section to the setting of non-unitary
dynamics, where the target trajectory corresponds
to a density operator ϱT (t). In accordance with the
discussion in Section 2, we need to design a Liouville
superoperator fulfilling the condition L(t)ϱT (t) = 0.

The Liouville superoperator. Let us consider a Lind-
blad superoperator of the general form [44]

L(t)ϱ(t) = −i[H(t), ϱ(t)] (17)

+
∑

α

γα(t)
(
[Lα(t), ϱ(t)L†α(t)] + [Lα(t)ϱ(t), L†α(t)]

)
,

with Lα(t) a time-dependent jump operator over a
finite-dimensional Hilbert space H and where γα(t)
is real and positive. In order to fulfil Eq. (2), we
require that the Hamiltonian and the jump operators
commute with the target trajectory ϱT (t), such that

[H(t), ϱT (t)] = 0 and [Lα(t), ϱT (t)] = 0 (18)

hold for all t ∈ [ti, tf ]. These restrictions, together
with requiring the hermiticity of the jump opera-

Accepted in Quantum 2024-07-04, click title to verify. Published under CC-BY 4.0. 4



tors Lα, are sufficient to ensure that the condition
L(t)ϱT (t) = 0 is satisfied. In what follows we denote
the Lindbladian of Eq. (17) whose jump operators ful-
fil the condition of Eq. (18) by STARE Lindbladian.
Its action is an effective dephasing that suppresses
transitions out of the target trajectory, see Fig. 1(b).
For a qubit, the STARE Lindbladian takes the form

L(t)ϱ(t) = −i[H(t), ϱ(t)] (19)
+ γ(t) ([Πz(t), ϱ(t)Πz(t)] + [Πz(t)ϱ(t),Πz(t)]) ,

with Πz(t) = (P+(t) − P−(t))/2 and where
P±(t) = |±⟩t⟨±| (5) are the projectors onto the in-
stantaneous excited and ground state of H(t) (8). Ex-
panding the commutators in Eq. (19) and simplifying,
L(t) reduces to the form

L(t)ϱ(t) = −i[H(t), ϱ(t)] − γ(t)D(t)ϱ(t) , (20)
D(t)ϱ(t) = [P+(t)ϱ(t)P−(t) + P−(t)ϱ(t)P+(t)] .

The incoherent dynamics suppresses transitions
between the instantaneous eigenstates of the Hamil-
tonian, therefore stabilizing the adiabatic trajectory.

Dimensionless parameters. For later analysis it is use-
ful to rewrite the master equation in a dimensionless
form. The incoherent dynamics introduces the de-
phasing rate γ(t), which gives rise to an additional
dimensionless parameter

b(τ) = γ(τ)T , (21)

which serves as a measure of the strength of the inco-
herent dynamics. The master equation based on the
STARE Lindbladian (20) may be recast as

∂τϱ(τ) = −i [Hq(τ), ϱ(τ)] − b(τ)D[q(τ)]ϱ(τ) , (22)

withHq(τ) as given in Eq. (14). Note that the explicit
dependence on the dimensionless time τ = (t− ti)/T
enters on the right-hand side of the master equa-
tion (22) only through the schedule q(τ).
Adiabatic transport by means of Lindbladian (20)

has been extensively studied in Refs. [33, 45]. In what
follows, we identify a schedule that optimizes this dy-
namics. Thereby, we determine the speed limit of
adiabatic transfer. To this end, in the next section we
review the theory of adiabatic transport by Avron and
collaborators [33, 45, 46]. We then apply it to derive
the optimal schedule in the limit where the incoherent
contribution to the dynamics is dominant.

4 Adiabatic Lindblad dynamics
In this section, we present results of an analytic analy-
sis of the adiabatic transport generated by the STARE
Lindbladian of Eq. (20). Specifically, we perform an
adiabatic expansion of the density matrix ϱ(t) evolv-
ing according to Eq. (22). The leading-order term

in this expansion is precisely the desired target tra-
jectory ϱT (t), while the higher-order terms introduce
non-adiabatic corrections. From this result we then
derive an analogous expansion for the infidelity, which
we use to determine the optimal schedule for adiabatic
transfer with the STARE Lindbladian.

4.1 The parallel transport propagator
Our expansion of the density matrix is based on the
adiabatic theory for Lindblad generators developed
in Refs. [47, 48], see also Ref. [49]. As set out in
Section 3.2, we have in mind the target trajectory
ϱT (τ) = P−(τ), which connects the ground states of
the Hamiltonian in Eq. (14) between τ = 0 (t = ti)
and τ = 1 (t = tf ), with the initial condition ϱ(0) =
P−(0). For this purpose, we introduce the instanta-
neous right eigenvectors of the STARE Lindbladian
L as Sij = |i⟩⟨j|, i, j ∈ {+,−}. The operators Sij

include the projectors Pj = Sjj , and satisfy the eigen-
value equation LSij = λijSij , where λij is the corre-
sponding instantaneous eigenvalue with λij = 0 for
i = j. Note that these right eigenvectors form a basis
for the Banach space B of operators on the system’s
Hilbert space H. With this, the kernel (nullspace) of
L, defined as ker(L) = {S ∈ B | LS = 0} ⊂ B, is
spanned by Sii = Pi, with i = ± [48]. Meanwhile,
the range (image) of L, namely ran(L) = {LS |S ∈
B} ⊂ B, is spanned by Sij for i ̸= j [48]. In our case,
B = ker(L) ⊕ ran(L) and the relevant superoperator
projections on B are

Pϱ =
∑
j=±

PjϱPj , Qϱ =
∑
j ̸=k

j,k=±

PjϱPk , P + Q = I .

(23)
Here P projects onto the time-dependent manifold of
stationary states, ker(L). A system evolving adiabat-
ically will remain in the manifold, i.e. there are no
transitions from the family of projections P ∈ P to
the bundle of complementary projections Q [48], and
P is said to undergo parallel transport [48, 50]. This
dynamics is the solution to the evolution equation [51]

∂

∂τ
W (τ, τ ′) =

[
Ṗ(τ),P(τ)

]
W (τ, τ ′), W (τ ′, τ ′) = I ,

(24)
where the projection P(τ) is defined in Eq. (23), and
the dot indicates the derivative with respect to τ .
The parallel transport propagator W introduced in
Eq. (24) is provided in Ref. [44] and reads

W (τ, τ ′) = T← exp
(∫ τ

τ ′
ds
[
Ṗ(s),P(s)

])
, (25)

with T← the Dyson time-ordering operator and[
Ṗ(s),P(s)

]
the generator of the evolution. For

the qubit system under consideration in this work,
the generator in Eq. (25) reduces to

[
Ṗ−(τ), P−(τ)

]
,

where P−(τ) is an element of the set of projectors
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{P+, P−} ⊂ ker(L) for the STARE Lindbladian (20).
As shown rigorously in Ref. [51], W (τ, τ ′)P−(τ ′) =
P−(τ). In the next section, the propagator W (τ, τ ′),
with the adiabatic generator

[
Ṗ−(τ), P−(τ)

]
, will en-

ter via the coefficients of the adiabatic power series
expansion.

4.2 Power series expansion
Using Poincaré’s definition of asymptotic power se-
ries, it is possible to express the solution of the
STARE master equation in terms of a recursive re-
lation that encodes the adiabatic theorem [52]. The
adiabatic trajectory, in fact, can be identified with the
dynamics at lowest order in an expansion in the rate
of variation of the Liouvillian. Recall that T is the
total transfer time, with its inverse 1/T loosely inter-
preted as the average rate of variation of the Hamil-
tonian. At finite T , corrections scale with the small
parameter 1/λ0 where λ0 ∝ T . The quantity 1/λ0
plays the role of an adiabaticity parameter. For uni-
tary dynamics, λ0 ≥ g0T , where g0 is the smallest
gap of the instantaneous energy spectrum. In the
presence of non-unitary Lindblad dynamics, the adi-
abatic theorem can then be extended to compare the
spectral gap of the Lindbladian [53],

√
g2

0 + γ2, with
the characteristic time of the transfer T , such that
λ0 ≡ T

√
g2

0 + γ2 ≫ 1 determines the adiabaticity pa-
rameter 1/λ0 for the STARE Lindbladian.

Now assuming that the Lindbladian spectrum is
gapped, as is here the case, we can write the density
matrix as [48]

ϱ(τ) =
N∑

n=0
[an(τ) + bn(τ)] + λ−N−1

0 rN (T, τ) , (26)

where an(τ) ∈ ker(L(τ)) and bn(τ) ∈ ran(L(τ)) are
the expansion coefficients at n-th order in 1/λ0. These
coefficients are determined by the following recurrence
relations [48]

b0(τ) = 0 , (27)

an(τ) = W (τ, 0)an(0) +
∫ τ

0
dτ ′W (τ, τ ′)Ṗ(τ ′)bn(τ ′) ,

bn+1(τ) = L−1(τ)Ṗ(τ)an(τ) + L−1(τ)Q(τ)ḃn(τ) ,

where W is the parallel transport propagator of
Eq. (25), P and Q are the superprojectors defined
in Eq. (23), and L−1 is the inverse of the STARE
Lindbladian, defined on ran(L). The remainder term
rN in Eq. (26) is determined using Duhamel’s princi-
ple and is given explicitly in Refs. [48, 50]. For our
purposes, we will only consider an expansion of the
density matrix ϱ to O(λ−3

0 ), such that

ϱ(τ) = a0(τ) + [a1(τ) + b1(τ)] (28)
+ [a2(τ) + b2(τ)] + O(λ−3

0 ) .

In Appendix B we derive the explicit form of the co-
efficients using relation (27) and obtain:

a0(τ) = P−(τ) , (29)
a1(τ) = (P−(τ) − P+(τ))J (τ) ,
b1(τ) = P+(τ)Ṗ−(τ)/λ+ + Ṗ−(τ)P+(τ)/λ− ,
a2(τ) = (P−(τ) − P+(τ))

×
∫ τ

0
dτ̄ Tr

{
P+(τ̄)[Ṗ−(τ̄)]2

} (
x1(τ̄) + x2(τ̄)

)
,

b2(τ) =
(
x1(τ)P+(τ)Ṗ−(τ) + x2(τ)Ṗ−(τ)P+(τ)

)
,

where we have introduced

J (τ) =
∫ τ

0
dτ ′

2Re[λ−(τ ′)]
|λ−(τ ′)|2 Tr

{
P+(τ ′)[Ṗ−(τ ′)]2

}
,

(30)
which is negative, J (τ) ≤ 0. Moreover,

x1(τ) =
(

2J (τ)
λ+(τ) − λ̇+(τ)

λ3
+(τ) +

d
dτ (τ ⟨+|−̇⟩τ )
λ2

+(τ) τ ⟨+|−̇⟩τ

)
,

x2(τ) =
(

2J (τ)
λ−(τ) − λ̇−(τ)

λ3
−(τ) +

d
dτ (τ ⟨−̇|+⟩τ )
λ2
−(τ) τ ⟨−̇|+⟩τ

)
.

In the above expressions the dot indicates a derivative
with respect to τ , while

λ±(τ) = [−γ(τ) ± i∆(τ)]T (31)

are (dimensionless) eigenvalues of the STARE Lind-
bladian (20). The real part of λ±(τ) is determined
by the dephasing rate γ(τ), while the imaginary
part depends on the gap ∆(τ) = E+(τ) − E−(τ) of
the isolated two-level system, see Eq. (6). Indeed,
λ0 = |λ±(1/2)| is the rescaled spectral gap. We re-
mark that the adiabatic power series expansion is also
valid for the unitary dynamics. In this case, the Liou-
villian is the von-Neumann equation, the eigenvalues
λ± are imaginary and the coefficient a1, being pro-
portional to the real part of λ−, vanishes identically.

In the following, we use the expansion (28) to ob-
tain an analytic form for the infidelity and optimal
schedule of the STARE Lindbladian.

4.3 The infidelity
To assess the efficiency of the adiabatic transfer for
the STARE protocol, we again consider the infidelity

I = 1 − Tr{P−(1)ϱ(1)} . (32)

Upon inserting ϱ(1) from the expansion in Eq. (28) we
obtain, to order 1/λ2

0 in the adiabaticity parameter,

I(a, b, di, df ) = 2
∫ 1

0
dτ M(q)

(
dq

dτ

)2
+ C , (33)

where, as shown in Appendix C,

M(q) = b(df − di)2

4 (d(q)2 + 1)2 (a2 (d(q)2 + 1) + b2)
≥ 0 .

(34)
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On the right-hand side of the expression above, the
sweep function d, Eq. (15), and the dephasing rate
b of Eq. (21) are functions of the schedule q = q(τ).
The expression for the infidelity (33) holds when the
instantaneous spectrum is gapped at every instant
of time. This is the case for the dynamics we con-
sider, where the gap is bound from below by g0. The
leading-order term in Eq. (33) was first derived, also
in a more general setting, in Ref. [33].
The quadratic-order contribution to the infi-

delity (33) is contained in C, which takes the form

C(a, b, di, df ) = 2
∫ 1

0
dτ q̇2M(q)

[
2J (τ) − d(df − di)

×q̇

(
3a4 (d2 + 1

)2 − 3a2b2 (d2 + 1
)

− 2b4
)

b (d2 + 1) (a2 (d2 + 1) + b2)2

 (35)

when b, and therefore the dephasing rate γ, are con-
stant.
For unitary dynamics, b = 0, the terms containing

J (τ) are identically zero, and the leading-order con-
tribution to the infidelity (33) is solely given by C. In
this case, the infidelity I ∼ q̇3/(a2(d2 + 1)2) scales
with the time derivative of the Hamiltonian schedule,
and the optimal protocol can be found following the
treatment of Ref. [32]. Focusing on the opposite limit,
in which b ≫ a, the dominant contribution comes
from the leading-order term of Eq. (33), and scales as
I ∼ q̇2/b for constant dephasing rates. Evidently, the
infidelity strongly depends on the interplay between
the parameters a and b.

In what follows, we consider the regime where b ≫
a2. For the linear schedule, for instance, this corre-
sponds to γT ≫ ϵ4T 6/g2

0 and establishes the strictest
lower bound on the dephasing rate b to ensure the
dominance of the first term in Eq. (33). Crucially,
this permits the treatment of C as a correction term,
as we will show in the next section.

4.4 Optimal schedule
The infidelity in Eq. (33) can be regarded as a func-
tional of the schedule q(τ), which controls how both
the Hamiltonian and projectors in the STARE mas-
ter equation (22) vary in time. In this section we
search for a choice of this schedule which minimizes
the infidelity. We neglect the correction C in this min-
imization procedure, since it will be seen to make a
negligible contribution to the infidelity in the regime
where b ≫ a2.
The leading-order term in Eq. (33) can be

viewed as an action functional with Lagrangian
L(τ, q(τ), q̇(τ)) = 2M(q)q̇2 and a q-dependent ‘mass’
function M(q) [33]. Importantly, this Lagrangian
does not depend on τ explicitly, and so its value re-
mains constant along a minimizing orbit. The evo-
lution schedule qOS minimizing the functional is then

0.00 0.25 0.50 0.75 1.00
τ

0.00

0.25

0.50

0.75

1.00

Sc
he

du
le

 q
(τ

)

qOS, b= 10
qOS, b= 30
qRC

Figure 3: The optimal schedule qOS(τ) of Eq. (39) as a
function of the dimensionless time τ . Results are shown for
b = 10, 30, which scales the incoherent dynamics. For ref-
erence, the schedule qRC (16) of unitary dynamics is shown.
All curves have been calculated taking a symmetric sweep
with df = −di = 8 and a = 10.

determined from the optimal speed along the mini-
mizing path [33]

dqOS

dτ
=

√
ξ

M(qOS) , (36)

where the constant ξ is to be fixed by the boundary
conditions qOS(0) = 0 and qOS(1) = 1. From its form
in Eq. (34),M(q) is seen to be a decreasing function of
d(q)2, and is therefore maximal at the avoided level-
crossing where d = 0. See also Eqs. (14) and (15).
Integrating Eq. (36) leads to expressions for ξ and
qOS(τ) in terms of

x(d) ≡ bd√
a2 (d2 + 1) + b2

, (37)

and

θi = arctan x(di) and θf = arctan x(df ) . (38)

We find that ξ = (θf − θi)2/(4γ), while the optimal
schedule reads

qOS(τ) = (a2 + b2)1/2 tan [τ(θf − θi) + θi]
(df − di)

(
b2 − a2 tan2 [τ(θf − θi) + θi]

)1/2

− di

df − di
. (39)

Interestingly, for b ≫ a, the schedule qOS exhibits the
same functional dependence on time as the optimized
schedule qRC for purely coherent dynamics, Eq. (16),
see Fig. 3. The lowest attainable infidelity Imin for
b ≫ a2 is found by inserting Eq. (39) into Eq. (33).
After integrating, we obtain

Imin = 1
2b (θf − θi)2 , (40)
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which is valid up to order O(λ−1
0 ). Assuming

|df |, |di| ≫ 1, the minimum infidelity of Eq. (40) re-
duces to the form

Imin ≈ 2 arctan2 (b/a)
b

. (41)

For b ≫ a, corresponding to γ ≫ g0, the leading-order
contribution to the infidelity therefore scales with the
inverse of the dephasing rate as Imin ≈ π2/(2b).
We also computed the first higher-order correction

C (35) for q = qOS:

C = −I2
min − Imin

b

[
5 ln

(
dfx(di)
dix(df )

)
− ln

(
d2

f + 1
d2

i + 1

)

+2
(
x2(df )
d2

f

− x2(di)
d2

i

)]
. (42)

Note that the second term of Eq. (42) is zero for a
symmetric sweep function, for which C = −I2

min. Ev-
idently, in the parameter regime of interest, where
Imin ≪ 1, the contribution of this correction to the
infidelity is negligible.

5 Efficiency of the noise-assisted pro-
tocols
Now we analyze the efficiency of adiabatic transfer
based on the STARE Lindbladian of Eq. (20), and
investigate its potentially advantageous impact for
reducing the infidelity or, equivalently, speeding up
the transfer. We then perform a comparison with
the optimized coherent protocol implemented under
ideal conditions, namely, in the absence of noise and
dissipation. From this comparison, we identify the
parameter regime in which the incoherent dynamics
governed by the STARE Lindbladian outperforms the
optimal coherent protocol of Ref. [32].

5.1 Infidelity of adiabatic transfer
We assess the efficiency of the STARE protocol by
comparing the infidelity for the optimal schedule
qOS(τ) (39) with the one of the unitary dynamics us-
ing the optimal schedule qRC(τ) (16). For these proto-
cols, the infidelity of the solutions to the master equa-
tion (22) are naturally functions of the dimensionless
parameters a and b, Eqs. (12) and (21), as well as di

and df from Eq. (14). In particular, a ∼ 1 separates
the adiabatic from the non-adiabatic regime of the co-
herent dynamics. The variable b, in turn, quantifies
the strength of the dephasing processes induced by the
STARE Lindbladian, such that for b ≫ 1 they become
significant. We choose di, df such that |df |, |di| ≫ 1.
In fact, it is found that already for |df |, |di| ≳ 10 the
infidelity I has essentially reached its limiting value.
For symmetric schedules, we therefore conveniently

0.005

0.0100.0150.020

0.025

0.030

0.035

0.045

0.070

>0.1

Figure 4: The minimum attainable infidelity Imin (40) as a
function of the dimensionless adiabaticity parameter a and
the dephasing strength b. Solid contours are obtained by nu-
merically integrating the STARE master equation (22) using
the optimal schedule in Eq. (39). The dashed contours dis-
play the analytic results, given by Eq. (40). For reference,
we indicate the numeric value of the infidelity along several
contours, with the white region in the lower left corner cor-
responding to Imin > 0.1. The inset shows the minimum
infidelity of the STARE protocol as a function of b and for
a = 2. The analytic result (dashed) approximates the ex-
act numeric result (solid) well. The dotted line indicates the
minimal infidelity achieved by the optimal unitary dynamics
for the same transfer time. We set df = −di = 100.

study the infidelity (40) as a function solely of two
variables, Imin(a, b).
Figure 4 displays a contour plot of the infidelity of

the STARE protocol as a function of the adiabaticity
and dephasing parameters, a and b, at fixed transfer
time T . Horizontal slices through the figure depict
the monotonically decreasing behavior of the infidelity
with increasing a, confirming that slower evolution
(being ‘more adiabatic’) has the tendency to suppress
transitions of the system out of its ground state. The
behavior of Imin with b depends non-trivially on a.
At small a but b ≫ 1, the infidelity is inversely pro-
portional to the dephasing rate, Imin ∼ 1/b.
In Fig. 5 we assess when the STARE protocol with

its optimal schedule, Eq. (39), outperforms the op-
timal coherent protocol, Eq. (16), implemented un-
der ideal conditions. For this purpose, we display
the difference between the corresponding infidelities,
δI = Ieng − Iuni, where Iuni and Ieng are the in-
fidelities achieved for the purely coherent dynamics
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Figure 5: Contour plot of the difference δI = Ieng − Iuni
between the minimum infidelity Iuni attained at the end of
the transfer time using the unitary dynamics with the opti-
mal schedule, Eq. (16), and the infidelity Ieng achieved with
the STARE Liouvillian (20) using the STARE schedule of
Eq. (39). The difference is shown in the a–b plane. The uni-
tary dynamics outperforms the STARE dynamics in the adi-
abatic regime. Meanwhile, negative values of δI, observed
for non-adiabatic dynamics, signify better state transfer when
implementing the STARE protocol. The inset shows the re-
gion where a ≤ 10 and b ≤ 20 in more detail. Contours
provide the exact numerical values of Ieng in the a–b plane;
see Fig. 4. Here, df = −di = 10.

and STARE Lindbladian, respectively. A positive
value here corresponds to a lower infidelity (higher
efficiency) of the unitary adiabatic transfer with the
optimal protocol by Roland and Cerf [32], Eq. (16).
A negative value indicates that the STARE adiabatic
transfer is more efficient. This occurs at small values
of a, in the non-adiabatic regime, and for large de-
phasing rates b. Note that this region corresponds to
an area satisfying b ≫ a2, see Sec. 4.3.

We close this section with a discussion on the sched-
ule and infidelity in the two most representative lim-
iting cases. When the dephasing rate is very weak,
with b → 0, we find that the optimal schedule is that
of the purely unitary dynamics (16). This schedule
will lead to the smallest possible infidelities in a fixed
transfer time T [32]. The infidelity then decreases
with the transfer time, that is fixed by the adiabatic-
ity parameter a. In the opposite limit, b → ∞, the
dynamics is governed by the dissipator term D(t)ϱ(t)
of the STARE Lindbladian (20). The strong dephas-
ing mechanism results in the suppression of transi-

tions out of one of the branches, thereby stabilizing
the target trajectory. This dynamics is reminiscent of
the quantum Zeno effect [29, 54, 55]. For this case,
it is best to use the optimal schedule of Eq. (39) that
is tailored for open-system dynamics. Both schedules
maximize the time spent in the region where the dy-
namics crosses the minimal gap. In the limit b ≫ a2,
however, the characteristic timescale is set by the de-
phasing rate γ. In the next section we discuss the
implications on the optimal transfer time.

5.2 Optimal transfer time
Next, we discuss the minimum transfer time that the
STARE protocol can achieve. In fact, from Eq. (40)
it is possible to derive an expression for the minimum
transfer time Tmin as a function of the infidelity I.
This task is simplified by noting that the dependence
on T on the right of x(d) in Eq. (37) cancels, rendering
x(d) a function only of d and γ/g0. The minimum
transfer time is then found to be

Tmin = 2ξ
I

= 1
2γI

[arctan x(df ) − arctan x(di)]2 .

(43)
As expected, achieving low infidelities comes at the
expense of longer transfer times. Interestingly, at
strong dephasing, Tmin scales with the inverse of the
dephasing rate. By way of illustration, examine the
behavior of the infidelity Imin along a vertical axis
in Fig. 4 where a < 50. This seems to suggest that,
by increasing the dephasing rate γ, faster transfers
can be achieved. This is in contrast with the scaling
of the transfer time when implementing the protocol
by Roland and Cerf [32], which is bound by the in-
verse value of the gap 1/g0. Thus, for values γ ≫ g0
(corresponding to b ≫ a), the protocol based on engi-
neered dephasing predicts a shortcut to adiabaticity
that can significantly exceed the efficiency of the op-
timal, unitary dynamics. In Sec. 6 we unravel this
behavior with a detailed study of the regimes of va-
lidity of the STARE Lindblad master equation (22)
and specifically of the associated speed limit.

6 Speed limit
In the previous section we showed that, in the strong
dephasing regime, the lower bound on the transfer
time of the STARE protocol, Tmin (43), is set by
the inverse of the dephasing rate. This rate scales
a time-dependent Lindbladian, whose jump operators
are the projectors onto the instantaneous eigenstate
of the Hamiltonian, see Eq. (20). Therefore, the re-
quirement γ ≫ g0 for observing a significant shortcut
to adiabaticity with respect to the optimal unitary
dynamics makes several demands of the underlying
physical model. The extent to which these can be re-
alized will set a stricter lower bound on Tmin. Below
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Figure 6: A possible physical realization of the STARE Lind-
bladian. The composite system (45) consists of a qubit and
an auxiliary system, where x0 scales the coupling. The aux-
iliary system, in turn, is coupled to a thermal bath at tem-
perature Θ and thermalizes at rate κ. The dynamics of the
composite system is described by master equation (44).

we argue that the physical model restricts the valid-
ity of the master equation to values for which γ ≪ g0,
showing that the minimal gap of the Hamiltonian ul-
timately limits the speed of the STARE protocol.

6.1 Constructing the STARE Lindbladian
The derivation of the STARE Lindbladian of Eq. (20)
from a microscopic model has been shown in Ref. [29].
The underlying physical model is that of a qubit cou-
pled to a damped auxiliary system, shown schemat-
ically in Fig. 6. Here we review the basic steps in
order to determine the bounds on the dephasing rate
that the Lindbladian’s regime of validity imposes. We
describe the dynamics of the density matrix χ on the
composite Hilbert space of the qubit and auxiliary
system by

∂tχ = −i[HSA(t), χ(t)] + κLA(χ(t)) , (44)

where HSA(t) is the Hamiltonian of the composite
system and the superoperator LA(χ(t)) is a Lind-
bladian whose jump operators act in the Hilbert
space of the auxiliary system HA. We impose that
[HSA(t), HS(t)⊗IA] = 0, whereHS is the qubit Hamil-
tonian (8), and assume that the Lindbladian LA de-
scribes the action of a thermal bath at temperature
Θ. We denote by κ the rate of thermalization. In
Ref. [29], it was shown that master equation (44) can
be reduced to the STARE Lindbladian (20) by taking

HSA(t) = HS(t)⊗IA +IS ⊗HA +x0HS(t)⊗XA , (45)

where HA is the Hamiltonian of the auxiliary system
in the absence of coupling, and operator XA is defined
in the Hilbert space HA such that [XA, HA] ̸= 0. The
parameter x0 is dimensionless and scales the coupling.
See Fig. 6 for an illustration. The STARE Lindbla-
dian is derived by extending the framework of the
adiabatic master equation of Ref. [51] to a dynam-
ics where the coupling between qubit and auxiliary
system is time-dependent and varies with the same
schedule as the system Hamiltonian HS. In the weak-
coupling limit, the resulting Lindbladian has the form

of Eq. (20), with the dephasing strength given by [29]

γ(t) = 1
2Γre(0)[E+(t) − E−(t)]2 , (46)

where E± are the qubit Hamiltonian eigenenergies of
Eq. (6). The rate is now time-dependent, and scales
with the square of the instantaneous gap. The pro-
portionality factor Γre(0) is the Fourier component at
ω = 0 of the Fourier transform of the auxiliary sys-
tem’s autocorrelation function,

Γre(ω) =
∫ ∞
−∞

dτ eiωτCA(τ) , (47)

CA(τ) ≡ x2
0 Tr

{
U†(τ)XAU(τ)XAϱA

}
,

with U(τ) = exp(−iHAτ) and

ϱA = exp(−HA/(kBΘ))/Tr {exp(−HA/(kBΘ)}

the density matrix of the auxiliary system in the Born-
Markov limit. Details of the derivation are reviewed
in Appendix D.

6.2 Conditions of validity
The quantities introduced in Sec. 6.1 are essential for
assessing the validity of the approximation that en-
ables us to derive the STARE Lindbladian of Eq. (20)
from Eq. (44). An important parameter is the
timescale τA characterizing the dynamics of the au-
tocorrelation function CA(τ) of the auxiliary system,
and thus the frequency width of its spectrum Γre(ω).
We first ignore the temporal variation of the qubit’s
Hamiltonian. In the weak coupling limit, x0 ≪ 1,
the timescale τA is determined by the thermaliza-
tion rate κ, namely τA ∼ 1/κ. In order to neglect
memory effects due to the coupling with the auxiliary
system, corresponding to the Markov approximation,
the characteristic timescale τS over which the system
evolves must satisfy τS ≫ τA. For a time-independent
Hamiltonian, τS ∼ 1/γ. Taking the minimum value
γ(0), we obtain the inequality γτA ≪ 1. Using that
CA(τ) ∼ x2

0 e
−τ/τA in our model, then from Eq. (46)

we have γ ∼ x2
0g

2
0τA, and the timescale separation

condition requires

(x0g0τA)2 ≪ 1 . (48)

Additionally, for the STARE Lindbladian, changes in
the system’s instantaneous energy eigenbasis |±⟩t, see
Eq. (5), will be negligible on the timescale of the aux-
iliary system τA, demanding that [51]

| t⟨+|∂tHS(t)|−⟩t|
|E+(t) − E−(t)| τA ≪ 1 (49)

is satisfied at each time t. The most stringent
condition is at the time instant t = 0 where
the energy gap |E+(t) − E−(t)| is minimal and,
up to a constant, equal to g0. We compute
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(a) (b) (c)

Figure 7: Subplots (a) and (b) display the infidelity I, Eq. (9), as a function of the rescaled time g0t obtained by integrating
Eq. (44) for the qubit coupled to a damped auxiliary two-level system. In (a) the sweep is linear, with the solid line corresponding
to the unitary case (x0 = 0) and the dashed line to the dissipative case with x0 = 2. In (b) the corresponding curves are
shown for the sweep by Roland and Cerf [32]. For comparison, we also provide the infidelity for x0 = 2 using the schedule of
the STARE Lindbladian, Eq. (39). Subplot (c) summarizes the results for the final infidelity I as a function of the coupling
parameter x0. Results are shown for three schedules: the linear schedule (LZ, solid), the Roland and Cerf schedule of Eq. (16)
(RC, dashed), and the STARE schedule of Eq. (39) (OS, dot-dashed), with x0 ⪆ 0.8 in the latter case to ensure that the
requirement T−1 ≪ γ0 is met. Remaining parameters are set to ωa = κ = g0, tf = −ti = 20/g0 and n = 0.

the transition amplitude using Eqs. (5) and (8)
with sin(θ) = 1/

√
1 + [s(t)/g0]2. Then, it follows

that | t⟨+|∂tHS(0)|−⟩t| ∼
∣∣∣ṡ(0)

(
1 + [s(0)/g0]2

)−1/2
∣∣∣.

Therefore, in order to realize the dynamics of Eq. (20),
the parameter values for master equation (44) must
be chosen such that they comply with the conditions
in Eqs. (48) and (49) above.
To understand the implication on the optimal

transfer time Tmin, see Eq. (43), it is convenient to
discuss the regimes of validity in terms of the dimen-
sionless parameters a = g0T (12) and b = γT (21).
We use the scaling of the timescale τA ∼ γ/(x0g0)2

and recast the two inequalities in the form

b

a
≪ x0 , (50)

b

a
≪ x2

0a

|ḋ0|
, (51)

with d0 = d(τ0) and the rescaled time τ0 = 1/2 corre-
sponding to t = 0, see Eq. (13). Keeping in mind the
weak coupling condition x0 ≪ 1, these inequalities
indicate that the dynamics of master equation (20) is
found from the setup of Fig. 6 for γ ≪ g0. Hence, in
satisfying conditions (50) and (51), the dynamics is
restricted to the regime where the unitary protocol is
most efficient and where the transfer time is bounded
by 1/g0. This result is in agreement with the study
in Ref. [34], and shows that the energy gap of the
Hamiltonian ultimately determines the speed limit of
the STARE protocol of Eq. (20).

6.3 Beyond the Born-Markov limit
The derivation of the STARE Lindbladian (20) from a
physical model shows that the protocol, as described
by Eq. (20), can only be realized in the parame-
ter regime where the unitary protocol is more effi-
cient. Therefore, there is no advantage in using the

reservoir-engineered STARE protocol over the opti-
mal unitary protocol. Nevertheless, numerical stud-
ies of Eq. (44) with the linear schedule show a defi-
nite improvement of the transfer fidelity outside the
Born-Markov regime [29]. Specifically, these studies
reported a monotonic decrease of the infidelity as the
strength of the coupling x0 is increased, see for ex-
ample Fig. 7(a). In this section we numerically study
the transfer efficiency as a function of x0 for different
schedules, including the optimal schedule for the co-
herent dynamics, Eq. (16), and the one of the STARE
Lindbladian, Eq. (39). The source code developed is
open-source and available online [56].
For this study, we assume that the auxiliary system

is a second qubit, with HA = ωaσ̂z/2 and XA = σ̂x,
which in turn is coupled to a bosonic thermal reser-
voir at temperature Θ. The damping processes of the
auxiliary qubit are described by the Lindbladian

LA(χ(t)) = (n+ 1)D(o)χ+ nD(o†)χ ,
D(o)χ = oχo† − {o†o, χ}/2 , (52)

where the jump operators o = IS⊗σ̂− and o† = IS⊗σ̂+
act on the composite Hilbert space HS ⊗ HA, and
n = (exp[ωa/(kBΘ)] − 1)−1 is the mean photon num-
ber of the harmonic oscillator at frequency ωa of the
bath in thermal equilibrium at temperature Θ. The
dephasing rate γ(t) in the Lindblad, Born-Markov
limit takes the form given in Eq. (46), with the qubit
autocorrelation function

Γre(ω = 0) = x2
0

κ(2n+ 1)
κ2(2n+ 1)2/4 + ω2

a

. (53)

In Fig. 7(b) we compare the time evolution of the in-
fidelity for the schedule of Roland and Cerf, Eq. (16),
with that of the optimal schedule of the STARE Lind-
bladian, Eq. (39), for different values of x0. We note
that, tuning x0 with respect to κ, is equivalent to tun-
ing the memory time of the qubit’s effective reservoir,
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see Ref. [29]. Figure 7(c) captures the behavior of the
infidelity at the end of the transfer for a range of x0
values. For x0 > 1 the transfer efficiency improves
by increasing the coupling strength. While an im-
provement is observed for all protocols, the optimized
schedules for the coherent dynamics and engineered
dephasing outperform the linear schedule by as much
as two orders of magnitude. In general, this result
shows the relevance of non-Markovian reservoirs for
noise-assisted quantum protocols.

7 Summary and Conclusions
Quantum reservoir engineering is being discussed as
an alternative strategy for quantum technologies. The
striking advantage is the robustness that these types
of protocols offer with respect to protocols based on
unitary dynamics. One key question is what is their
efficiency with respect to the corresponding optimized
protocols for unitary dynamics. In this paper, we have
performed a systematic analysis comparing the effi-
ciency of the optimal protocol for unitary adiabatic
quantum state transfer in a qubit with that of a pro-
tocol based on quantum reservoir engineering. This
protocol is based on a Lindbladian which we dubbed
by STARE Lindbladian.
An optimal open-system evolution schedule was de-

rived, allowing for the optimization of the STARE-
based dynamics. From this optimal schedule, we
could derive the lower bound to the transfer time of
the STARE Lindblad protocol. Our result rigorously
shows that the lower bound to the STARE protocol
timescale is determined by the interplay of the energy
gap and of the rate of the incoherent dynamics. If
it were possible to choose arbitrarily the rate γ scal-
ing the STARE Lindbladian, the STARE adiabatic
transfer time would be bound by 1/γ. Considering
that quantum state transfer is paradigmatic for the
adiabatic quantum search, this would provide a new
complexity class for STARE protocols. This conclu-
sion is based on postulating the possibility of freely
tuning the rate γ scaling the STARE Lindbladian.
A derivation of the STARE Lindbladian from first

principles, however, shows that the requirements for
the validity of the STARE Lindbladian limit the
choice of γ to values that are smaller than the energy
gap. This result indicates that, for the microscopic
model we considered, the STARE protocol provides
no net advantage with respect to the optimal unitary
protocol.

The work that we presented focussed on Born-
Markov master equations in Lindblad form. Prelim-
inary studies indicate that the use of an extended
Hilbert space, where the system strongly couples to
an auxiliary, dissipative system [29, 57, 58], could sig-
nificantly increase the efficiency of the transfer. Fu-
ture works will aim to perform an optimization in this
regime, and assess the ultimate limit to the timescale

of adiabatic transfer in an open-system setting.
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Numerical methods: implementation
and availability of source code
To provide a thorough analysis of the speed limits
of the STARE protocol, see Sec. 6, we extended our
study to go beyond the Born-Markov limit. This in-
vestigation utilized a numerical simulation of a phys-
ical model of a qubit coupled to a damped auxiliary
qubit. The source code and documentation to repro-
duce the results are available online at the link https:
//zenodo.org/records/11058607, see Ref. [56].
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T. Schulte-Herbrüggen, D. Sugny, and F. K. Wil-
helm. “Quantum optimal control in quantum
technologies. strategic report on current status,
visions and goals for research in europe”. EPJ
Quantum Technology 9, 19 (2022).

[10] L. Giannelli, P. Sgroi, J. Brown, G. S. Paraoanu,
M. Paternostro, E. Paladino, and G. Falci. “A
tutorial on optimal control and reinforcement
learning methods for quantum technologies”.
Physics Letters A 434, 128054 (2022).

[11] T. Caneva, M. Murphy, T. Calarco, R. Fazio,
S. Montangero, V. Giovannetti, and G. E. San-
toro. “Optimal control at the quantum speed
limit”. Phys. Rev. Lett. 103, 240501 (2009).

[12] S. Deffner and S. Campbell. “Quantum speed
limits: from heisenberg’s uncertainty princi-
ple to optimal quantum control”. Journal of
Physics A: Mathematical and Theoretical 50,
453001 (2017).

[13] J. F. Poyatos, J. I. Cirac, and P. Zoller. “Quan-
tum reservoir engineering with laser cooled
trapped ions”. Phys. Rev. Lett. 77, 4728–
4731 (1996).
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A Optimal transfer time for the linear sweep function
We analyze the scaling behavior of the transfer time when a linear sweep is implemented in the two-level
system Hamiltonian (8). The analysis accounts for both purely unitary dynamics and incoherent dynamics
with dephasing rate γ. Following Sec. 3.1, the sweep function is s(t) = ϵt, ϵ = (sf − si)/T , leading to a linear
evolution schedule, qLZ(τ) = τ , in dimensionless coordinates. In contrast with the optimized schedules, a (12)
and b (21) are no longer the natural parameters. Instead, we introduce

A2 = a

df − di
= g2

0
ϵ

and B = b

a
= γ

g0
. (54)

While keeping the dimensionless parameters A and B fixed, we take the limit df = −di → ∞, yielding the
infidelity

I(A,B) = lim
df→∞

I(A,B,−df , df ) . (55)

Note that keeping A fixed requires that the transfer time T scales as 1/g2
0 . This is the standard Landau-Zener

result, see Eq. (10). Consequently, if the minimum energy gap scales as g0 ∼ 1/
√
N , then T ∼ N and the

performance in terms of transfer time is no better than the classical case.

Let us now consider the STARE Lindbladian with the linear sweep. For B ̸= 0 and B to be constant, we
should scale g0 and γ simultaneously in an identical manner. This behavior is neatly captured in the following
expression:

I(κ2T, g0/κ, γ/κ) = I(T, g0, γ) , κ > 0 , (56)

and confirmed, up to order O(T−2), by the analytic result for I(A,B) that was derived in Ref. [59]. Now to
substantiate that the linear schedule does not lead to an optimal scaling of the transfer time, we consider two
asymptotic regimes: moderate dephasing where γ ≪ g0 and dominant dephasing with g0 ≪ γ. In the former
case, we find [59]

I ≈ 3π
16 A−2B , (57)

while for strong dephasing the infidelity is approximated by [59]

I ≈ π

4 A−2B−1 . (58)

If γ ∼ g0, as in the case of the optimized schedules, we obtain T ∼ N and the quadratic speed-up is lost. This
serves to highlight the sensitivity of the transfer time scaling behavior to the choice of schedule q.

B Power series expansion coefficients of the density matrix
In this appendix, we systematically compute each coefficient of Eq. (27) to produce the result in Eq. (29) of
the main text. Note that enforcing the initial condition ϱ(0) = P−(0) requires a0(0) = P−(0) and a1(0) =
a2(0) = 0. This leads to the following coefficients, which are required to produce an expansion to O(λ−2

0 ), with
λ0 ≡ T

√
g2

0 + γ2:

a0(τ) = W (τ, 0)P−(0) = P−(τ) , (59)
b1(τ) = L−1(τ)Ṗ(τ)a0(τ) , (60)

a1(τ) =
∫ τ

0
dτ ′W (τ, τ ′)Ṗ(τ ′)b1(τ ′) , (61)

b2(τ) = L−1(τ)Ṗ(τ)a1(τ) + L−1(τ)Q(τ)ḃ1(τ) , (62)

a2(τ) =
∫ τ

0
dτ ′W (τ, τ ′)Ṗ(τ ′)b2(τ ′) . (63)

The first coefficient, a0(τ) = P−(τ), is trivially determined using the intertwining property of the propagator,
see Ref. [50]. To calculate b1, we insert the result for a0 and note that PṖ± = 0, as well as P±Ṗ±P± = 0. This
leads to

Ṗ(τ)P−(τ) = d

dτ
(P(τ)P−(τ)) = Ṗ−(τ) , (64)
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where we have used definition (23) for the superprojector P acting on the spectral projection P− of the Hamil-
tonian. Before the inverse Lindbladian acts on the result in Eq. (64), we manipulate the expression to obtain

Ṗ− = 2Ṗ− − Ṗ− = 2Ṗ− − P−Ṗ− − Ṗ−P−

= (I − P−)Ṗ− + Ṗ−(I − P−)
= P+Ṗ− + Ṗ−P+ . (65)

Combining the result above with Ṗ− = d
dτ (|−⟩⟨−|) = |−̇⟩⟨−| + |−⟩⟨−̇|, we observe that Ṗ−(τ) in Eq. (64) can

be expressed as
Ṗ−(τ) = ⟨+|−̇⟩ |+⟩⟨−| + ⟨−̇|+⟩ |−⟩⟨+| = ⟨+|−̇⟩S+,− + ⟨−̇|+⟩S−,+ , (66)

where Sij = |i⟩⟨j|, i, j ∈ {+,−}, are the right eigenvectors of L. Since the Lindbladian’s inverse in Eq. (60)
is defined on ran(L), the kernel only contains the null vector, hence L is invertible. The eigenvalue equation
LSij = λijSij , with i ̸= j, can therefore be rewritten as L−1Sij = λ−1

ij Sij . In addition, we can infer that

Ṗ− ∈ ran(L) from the identity PṖ± = 0, and it follows that

L−1(τ)Ṗ−(τ) = 1
λ+,−

⟨+|−̇⟩S+,− + 1
λ−,+

⟨−̇|+⟩S−,+ . (67)

Using the shorthand notation λ+ ≡ λ+,− and λ− ≡ λ−,+ of the main text, the resulting expansion coefficient is

b1(τ) = P+(τ)Ṗ−(τ)
λ+(τ) + Ṗ−(τ)P+(τ)

λ−(τ) , (68)

with λ± the time-dependent (dimensionless) eigenvalues of the STARE Lindbladian, see Eq. (31).
We proceed by calculating the coefficient a1(τ), which is given in Eq. (61). Substituting in the result for

b1(τ) (68), we obtain

a1(τ) =
∫ τ

0
dτ ′W (τ, τ ′)Ṗ(τ ′)

[
P+(τ ′)Ṗ−(τ ′)

λ+(τ ′) + Ṗ−(τ ′)P+(τ ′)
λ−(τ ′)

]
. (69)

Using the projector identities

P±P̈∓P± = 2P±Ṗ 2
∓P± and P±P̈±P± = −2P±Ṗ 2

±P± , (70)

as well as the fact that PP+Ṗ− = 0, the superprojecter Ṗ (23) acts on the combination of projectors P+Ṗ− to
give

Ṗ(P+Ṗ−) = d

dτ
(PP+Ṗ−) − PṖ+Ṗ− − PP+P̈− = PṖ 2

− − PP+P̈− = P−Ṗ
2
−P− − P+Ṗ

2
+P+ . (71)

Now using Eq. (65) we recast the projectors in the second term of Eq. (69) as Ṗ−P+ = Ṗ− −P+Ṗ−. The result
for Ṗ(P+Ṗ−) has already been calculated in Eq. (71), therefore we continue by calculating ṖṖ−:

ṖṖ− = d

dτ
(PṖ−) − PP̈− = −P−P̈−P− − −P+P̈−P+ = 2(P−Ṗ 2

−P− − P+Ṗ
2
+P+) , (72)

where we exploited the condition PṖ− = 0 and applied identity (70) in the second step. Implementing Eqs. (71)
and (72), the coefficient a1 can be simplified to

a1(τ) =
∫ τ

0
dτ ′

(
1

λ+(τ ′) + 1
λ−(τ ′)

)
W (τ, τ ′)

[
P−(τ ′)Ṗ 2

−(τ ′)P−(τ ′) − P+(τ ′)Ṗ 2
+(τ ′)P+(τ ′)

]
. (73)

The final step involves the application of the adiabatic evolution generator W on the sequence of projectors.
To simplify the calculation, we reformulate W (τ, τ ′) (25) in the convenient form [51]

W (τ, τ ′) =
∑
j=±

|j(τ)⟩⟨j(τ ′)| , (74)

where | ± (τ)⟩ are the eigenstates forming the adiabatic basis of the two-level system Hamiltonian (8). The
propagator (74) now acts on the projectors, leading to

W (τ, τ ′)
[
P−(τ ′)Ṗ 2

−(τ ′)P−(τ ′) − P+(τ ′)Ṗ 2
+(τ ′)P+(τ ′)

]
(75a)

= | − (τ)⟩⟨−(τ ′)|Ṗ 2
−(τ ′)P−(τ ′) − | + (τ)⟩⟨+(τ ′)|Ṗ 2

+(τ ′)P+(τ ′) (75b)
= ⟨−(τ ′)|Ṗ 2

−(τ ′)| − (τ ′)⟩ | − (τ)⟩⟨−(τ ′)| − ⟨+(τ ′)|Ṗ 2
−(τ ′)| + (τ ′)⟩ | + (τ)⟩⟨+(τ ′)| (75c)

= Tr
{
P+(τ ′)Ṗ 2

−(τ ′)
}

(| − (τ)⟩⟨−(τ ′)| − | + (τ)⟩⟨+(τ ′)|) I , where I = P−(τ ′) + P+(τ ′) (75d)
= Tr

{
P+(τ ′)Ṗ 2

−(τ ′)
}

[P−(τ) − P+(τ)] . (75e)
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Note that the trace enters via the expectation values, with ⟨−(τ ′)|Ṗ 2
−(τ ′)| − (τ ′)⟩ = ⟨+(τ ′)|Ṗ 2

−(τ ′)| + (τ ′)⟩ =
Tr{P+(τ ′)Ṗ 2

−(τ ′)}. Inserting the final result of Eq. (75) into Eq. (73) leads to

a1(τ) = [P−(τ) − P+(τ)]J (τ) , J (τ) ≡
∫ τ

0
dτ ′

2Re[λ−(τ ′)]
|λ−(τ ′)|2 Tr

{
P+(τ ′)[Ṗ−(τ ′)]2

}
≤ 0 . (76)

The two remaining coefficients, a2 and b2, contribute to the term of quadratic order in 1/λ0 in the expansion
of the density matrix, see Eq. (28). We start with the expansion coefficient b2(τ) (62). The first term depends
on the coefficient a1 (76), with its explicit form given by

L−1(τ)Ṗ(τ)a1(τ) = J (τ)L−1(τ)(Ṗ−(τ) − Ṗ+(τ)) = 2J (τ)L−1(τ)Ṗ−(τ) , (77)

where we have used result (64). Using Eq. (67), we can simplify this directly to obtain

L−1(τ)Ṗ(τ)a1(τ) = 2J (τ)
(
P+(τ)Ṗ−(τ)

λ+(τ) + Ṗ−(τ)P+(τ)
λ−(τ)

)
. (78)

The second term of b2 (62) depends on the complement Q = I − P of superprojector P, and the derivative of
b1 (68) with respect to τ , where the latter is given by

ḃ1(τ) = − λ̇+

λ2
+
P+Ṗ− − λ̇−

λ2
−
Ṗ−P+ + 1

λ+

(
P+P̈− − Ṗ 2

−
)

+ 1
λ−

(
P̈−P+ − Ṗ 2

−
)
. (79)

Evaluating [ḃ1(τ) − P(τ)ḃ1(τ)], and performing some manipulation of the projectors, results in

ḃ1(τ) − P(τ)ḃ1(τ) = − λ̇+

λ2
+
P+Ṗ− − λ̇−

λ2
−
Ṗ−P+ + 1

λ+

(
P+P̈− − Ṗ 2

− − P+P̈−P+ + P+Ṗ
2
−P+ + P−Ṗ

2
−P−

)
+ 1
λ−

(
P̈−P+ − Ṗ 2

− − P+P̈−P+ + P+Ṗ
2
−P+ + P−Ṗ

2
−P−

)
(80a)

= − λ̇+

λ2
+
P+Ṗ− − λ̇−

λ2
−
Ṗ−P+ + 1

λ+
P+P̈−P− + 1

λ−
P−P̈−P+ . (80b)

From previous calculations it is straightforward to show that the inverse Lindbladian L−1 acts on the first two
terms of (80), with P+Ṗ− = ⟨+|−̇⟩S+,− and Ṗ−P+ = ⟨−̇|+⟩S−,+, to give

− λ̇+

λ3
+
P+Ṗ− − λ̇−

λ3
−
Ṗ−P+ . (81)

Noting that P̈− = d2

dτ2 (|−⟩⟨−|) and d
dτ |±⟩ = |±̇⟩ = ∓⟨+|−̇⟩|∓⟩, it is now possible to show that

P+P̈−P− = d

dτ
(⟨+|−̇⟩)S+,− , P−P̈−P+ = d

dτ
(⟨−̇|+⟩)S−,+ . (82)

Consequently, the inverse Lindbladian L−1 acts on the final two terms in Eq. (80), resulting in

+ 1
λ2

+

d
dτ (⟨+|−̇⟩)

⟨+|−̇⟩
P+Ṗ− + 1

λ2
−

d
dτ (⟨−̇|+⟩)

⟨−̇|+⟩
Ṗ−P+ . (83)

Finally, defining

x1(τ) =
(

2J (τ)
λ+(τ) − λ̇+(τ)

λ3
+(τ) + 1

λ2
+(τ)

d
dτ (⟨+|−̇⟩)
⟨+|−̇⟩(τ)

)
(84)

and

x2(τ) =
(

2J (τ)
λ−(τ) − λ̇−(τ)

λ3
−(τ) + 1

λ2
−(τ)

d
dτ (⟨−̇|+⟩)
⟨−̇|+⟩(τ)

)
, (85)

we combine the results in Eqs. (78), (81) and (83) to acquire

b2(τ) = x1(τ)P+(τ)Ṗ−(τ) + x2(τ)Ṗ−(τ)P+(τ) . (86)
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To recover a simple expression for coefficient a2 (63), we use Eq. (86) and follow the same set of steps as for
coefficient a1. After some manipulation, a2 takes the form

a2(τ) = [P−(τ) − P+(τ)]
∫ τ

0
dτ̄ Tr

{
P+(τ̄)[Ṗ−(τ̄)]2

} (
x1(τ̄) + x2(τ̄)

)
, (87)

with x1 and x2 defined in Eqs. (84) and (85), respectively. The sum of x1 and x2 can be simplified to

x1 + x2 = q̇d(df − di)
T 2 (γ2 + ∆2)

[
− 8γ2g2

0

(γ2 + ∆2)2 +
2
(
g2

0
(
d2 + 1

)
− 4γ2)

(d2 + 1) (γ2 + ∆2) + 4
(d2 + 1) − 4γTJ

q̇d(df − di)

]
, (88)

where d = d(τ) = s(τ)/g0 is defined in Eq. (15), with initial and final values di and df , respectively, and q
is the evolution schedule. The dephasing strength γ enters via the spectrum of the Lindbladian (31), and the
instantaneous energy gap ∆ = ∆(τ) = E+(τ) − E−(τ) of the isolated two-level system comes from λ± (31) in
Eqs. (84) and (85), with its minimum value denoted by g0. Recall that J = J (τ) is the integral of Eq. (76).
As required, the integrand in Eq. (87) is then dimensionless. Combining the results of all the coefficients, we
arrive at the power series expansion (28) of the density matrix ϱ, with the expansion coefficients summarized
in Eq. (29) of the main text.

C Derivation of the function M(q) in the infidelity of the non-unitary protocol
In Sec. 4 of the main text we provide an analytic expression for the infidelity I of adiabatic transfer for a
non-unitary protocol with an evolution schedule q. To derive the closed-form expression of Eq. (33), we insert
the expansion of ϱ(1) from Eq. (28) into I = 1 − Tr{P−(1)ϱ(1)}. Note that due to the cyclic property of the
trace and orthogonality of the basis states |±⟩τ , implying that P+P− = 0, the b1 and b2 terms in the expansion
of Eq. (28) vanish. The zeroth-order term a0 trivially leads to 1 upon evaluating the trace, and the a2 term,
which is of order 1/λ2

0, is viewed as a correction term C, see Eq. (35). We therefore focus our attention on the
contribution of the O(1/λ0) term to the infidelity, with

I = −Tr {P−(1)[P−(1) − P+(1)]J (1)} + O(λ−2
0 ) . (89)

The function J may be extracted from the trace, leading to

I = −J (1) + O(λ−2
0 ) . (90)

In Appendix B we derived the integral expression for J (τ) (76), which is negative and has an integrand that takes
the form A(τ) = 2Re[λ−(τ)]Tr

{
P+(τ)[Ṗ−(τ)]2

}
/|λ−(τ)|2. Upon inserting the eigenvalues λ±(τ) of Eq. (31),

the integrand of J reads

A(τ) = 1
T

−2γ(τ)
γ2(τ) + ∆2(τ) Tr

{
P+(τ)[Ṗ−(τ)]2

}
. (91)

We perform the replacement Ṗ− → q̇P ′−, where the prime denotes the derivative with respect to the evolution
schedule q, and evaluate the trace:

Tr
{
P+(τ)[P ′−(τ)]2

}
= g2

0(s(tf ) − s(ti))2

4 (g2
0 + [q(s(tf ) − s(ti)) + s(ti)]2)2 . (92)

Using the shorthand notation of Eq. (15), the expression above reduces to the compact form
(df − di)2/[4(1 + d2(τ))2]. Combining this result with the prefactor of Eq. (91), in which we recast the in-
stantaneous energy gap ∆(τ) as [E+(τ) − E−(τ)]2 = g2

0
(
1 + d2(τ)

)
, we obtain

A(τ) = −2γ(τ)q̇2(df − di)2

4T [γ2(τ) + g2
0 (1 + d2(τ))] (1 + d2(τ))2 . (93)

After inserting the function J (1) =
∫ 1

0 dτ A(τ), with A of Eq. (93), into the expression for the infidelity (90),
we extract the factor −2q̇2, and write the minimum gap g0 and dephasing rate γ in terms of the dimensionless
parameters a (12) and b (21), respectively. This leads directly to the result stated in the main text:

I = 2
∫ 1

0
dτ M(q)q̇2 + O(λ−2

0 ) , M(q) = b(df − di)2

4 (1 + d2)2 (a2 (1 + d2) + b2)
≥ 0 , (94)

where the q-dependence of the function M enters via the parameter d. It can be shown that this result is a
special case of the more general result reported in Ref. [33].
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D Adiabatic Markovian master equation microscopic derivation
In this appendix, we outline the microscopic derivation of the adiabatic, Markovian, STARE master equation
with the Lindbladian of Eq. (20). To arrive at the STARE master equation from a physical microscopic model,
we require several approximations to be made and must impose constraints on various parameters to satisfy
the adiabatic condition. In Sec. D.1 we discuss these approximations, which are typically grouped together
and collectively referred to as the Born-Markov approximation [44]. This is followed by the application of the
adiabatic theorem in Sec. D.2, which closely follows Ref. [51]. We close this appendix with Sec. D.3, which
combines the results of the previous sections to arrive at the adiabatic Markovian Lindblad master equation
utilized in the main text.

D.1 Born-Markov approximation
In this section, we will apply the Born-Markov approximation to reduce the von Neumann equation to an
integro-differential equation for the reduced density matrix ϱ. To separate the interaction dynamics from
the free dynamics, we continue by working in the interaction picture, where operators and density matrices
are distinguished from their Schrödinger picture counterparts by means of a tilde ■̃. To transform to the
interaction picture, we define the unitary evolution operator U0(t, t′) of the free system and reservoir as U0(t, t′) =
US(t, t′) ⊗ UR(t, t′), where

US(t, t′) = T← exp
(

−i
∫ t

t′
dτ HS(τ)

)
(95)

acts on the system and depends on the time-ordering operator T←, while

UR(t, t′) = exp (−iHR(t− t′)) (96)

acts on the reservoir. Similarly, the composite system-reservoir evolution operator USR(t, t′) is obtained by
solving the time-dependent Schrödinger equation, but now in the interacting case, giving

USR(t, t′) = T← exp
(

−i
∫ t

t′
dτ HSR(τ)

)
. (97)

It follows that ŨSR(t, 0) = U†0 (t, 0)USR(t, 0). For all other operators, as well as the density matrix, we relate the
original Schrödinger picture variable ■ to the interaction picture via

■̃(t) = U†0 (t, 0)■U0(t, 0) . (98)

This enables us to write the von Neumann equation in terms of the incoherent contribution to the dynamics as
[44, 60]

d

dt
ϱ̃SR(t) = −i[H̃I(t), ϱ̃SR(t)] , ϱ̃SR(0) = ϱSR(0) , (99)

with the solution [44, 51]

ϱ̃SR(t) = ϱ̃SR(0) − i

∫ t

0
dτ
[
H̃I(τ), ϱ̃SR(τ)

]
. (100)

Note that Eq. (99) can be expanded self-consistently to an arbitrary order by inserting solution (100).
Now, we outline three assumptions that will be imposed in the remaining steps [44, 60]:

i. Born approximation. The initial correlations between the system and reservoir are negligible such that
ϱ̃SR = ϱ̃(t) ⊗ ϱ̃R(t) + χ(t), where χ(t) ≈ 0.

ii. Weak-coupling limit. The coupling x0 is adequately weak to leave the state of the reservoir globally constant
over time, i.e. ϱ̃SR ≈ ϱ̃(t) ⊗ ϱR.

iii. Markov approximation. There exists a sufficiently large timescale separation between the times over which
the system and reservoir evolve, denoted by τS and τR, respectively, with the dynamics of the former being
much slower than the dynamics of the latter, i.e. τS ≫ τR.

The consequences of these assumptions are discussed in Sec. 6 of the main text, together with the restrictions
they impose on certain parameters and timescales, such as x0, τS and τR. Now we expand the equation of motion
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(99) to first order, perform a partial trace over the reservoir degrees of freedom and neglect the inhomogeneous
contribution, leading to [44, 51, 60]

d

dt
ϱ̃(t) = −

∫ t

0
dτ TrR

{[
H̃I(t), [H̃I(t− τ), ϱ̃SR(t− τ)]

]}
. (101)

The shifted time has been introduced through a change of variables. After inserting the interaction Hamiltonian
H̃I, see the final term of Eq. (45) which is recast in the interaction picture via Eq. (98), and carrying out
assumption (i) and (ii) above, we find [44, 51, 60]

d

dt
ϱ̃(t) = ˙̃ϱ(t) = −

∫ t

0
dτ
{
H̃S(t)H̃S(t− τ)ϱ̃(t− τ) − H̃S(t− τ)ϱ̃(t− τ)H̃S(t)

}
CR(t, t− τ) + h.c. , (102)

with the reservoir autocorrelation functions

CR(t, t− τ) ≡ x2
0 TrR

{
X̃R(t)X̃R(t− τ)ϱR

}
= x2

0
〈
X̃R(t)X̃R(t− τ)

〉
. (103)

The stationarity of the reservoir, see assumption (ii), imposes a time homogeneity in the correlation functions
such that CR(τ, 0) = C∗R(0, τ). Therefore, we denote the time homogeneous correlation functions by CR(τ) for
notational simplicity. Assuming Markovian dynamics, we consider the density matrix to be roughly constant
over the interval τ ∈ [0, t], permitting the replacement ϱ̃(t− τ) → ϱ̃(t) in Eq. (102), as well as the extension of
the integral’s upper bound [44, 51, 60]:

˙̃ϱ(t) =
∫ ∞

0
dτ
{
H̃S(t− τ)ϱ̃(t− τ)H̃S(t) − H̃S(t)H̃S(t− τ)ϱ̃(t− τ)

}
CR(τ) + h.c. (104)

This is in line with assumption (iii).

D.2 Adiabatic limit
Our goal is to further simplify the integro-differential equation (104) by requiring that the dynamics satisfy the
adiabatic condition. Introducing this adiabatic “limit” ensures that the coherent part of the dynamics remains
adiabatic, while warranting the approximation of the system time evolution operator of Eq. (95) by its adiabatic
counterpart Uad

S (t, t′). The approximation US(t, t′) ≈ Uad
S (t, t′) provides a good description of the evolution up

to O(h/g2
0); see Ref. [51] for an extensive discussion. Below, we summarize the derivation of Ref. [51] for

Uad
S (t, t′) and then apply it to Eq. (104).
The rigorous treatment in Ref. [51] starts with the adiabatic propagator

W (t, t′) =
∑
j=±

|j(t)⟩⟨j(t′)| , (105)

which was inspired by Kato’s formulation of the adiabatic theorem [36] and analyzed extensively by Avron
et al. [47]. Roughly speaking, W evolves an instantaneous eigenstate |j(t′)⟩ of the system at time t′ to the
corresponding eigenstate |j(t)⟩ at a later time t. Moving to the so-called adiabatic interaction picture, we apply
the propagator W to US(t, t′) (95),

V̄ (t, t′) = W †(t, t′)US(t, t′) , (106)
where the overscore, which signifies that an operator is in the adiabatic interaction picture, should not be
confused with the tilde notation reserved for the standard interaction picture. Then it can be shown that V̄ obeys
the Schrödinger equation dV̄ (t, t′)/dt = −iH̄ad

S (t, t′)V̄ (t, t′), where H̄ad
S = H̄S − iW †(t, t′)[Ṗ−(t), P−(t)]W (t, t′)

[47, 51]. Since the commutator in H̄ad
S is the generator for purely adiabatic evolution [47], H̄ad

S acts as a
perturbation in the adiabatic limit. Hence, we solve the Schrödinger equation using perturbation theory, leading
to [51]

V̄ (t, t′) = V̄0(t, t′)
[
I + V̄1(t, t′) + . . .

]
, V̄0(t, t′) = T← exp

(
−i
∫ t

t′
dτ (H̄S(t, t′) − H̄G(t, t′))

)
. (107)

The system Hamiltonian is given in Eq. (8), while HG(t) =
∑

a ϕa(t)Pa(t), with Berry connection ϕa(t) =
i t⟨a|ȧ⟩t, accounts for the geometric phase [51]. We only consider the leading-order term V̄0(t, t′) in perturbation
theory, giving rise to the adiabatic evolution operator

Uad
S (t, t′) = W (t, t′)V̄0(t, t′) =

∑
j=±

|j(t)⟩⟨j(t′)|e−iµj(t,t′), (108)

where the phase is µj(t, t′) =
∫ t

t′ dτ [Ej(τ) − ϕj(τ)].
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D.3 Full adiabatic Markovian master equation
To arrive at the full adiabatic, Markovian, STARE master equation, we combine the results of the previous two
sections. First, recall that the unitary evolution operators US(t− τ, 0) = U†S(t, t− τ)US(t, 0) and US(t, 0) enter
via the interaction picture Hamiltonians H̃S in Eq. (104). In the adiabatic limit, we can perform the replacement
US(t, 0) → Uad

S (t, 0). Furthermore, consistency with the Markov approximation necessitates short-lived reservoir
correlations, inferring that the system Hamiltonian is approximately time-independent over the interval [t−τ, t].
We therefore take US(t − τ, 0) ≈ eiHS(t)τUad

S (t, 0) in the integro-differential equation of Eq. (104). After some
manipulation, we arrive at

˙̃ϱ(t) =
∑

a,b=±
Γ(0)Ea(t)Eb(t)Pa(0) [ϱ̃(t), Pb(0)] + h.c. , (109)

where projections onto the instantaneous eigenstates of the two-level system are denoted by P±, and

Γ(ω) =
∫ ∞

0
dτ eiωτCR(τ) (110)

is the reservoir spectral density. For convenience, we replace the one-sided Fourier transform by a complete
Fourier transform [51]

Γ(ω) = Γre(ω)/2 + iΓim(ω) , (111)

where the real and imaginary components are1

Γre(ω) =
∫ ∞
−∞

dτ eiωτCR(τ) and Γim(ω) = 1
2π

∫ ∞
−∞

dω′ Γre(ω′)P
(

1
ω − ω′

)
. (112)

Finally, we rewrite Eq. (109) in the Schrödinger picture using relation (98), resulting in a quantum master
equation in Lindblad form:

ϱ̇(t) = Lϱ(t) = −i[HS(t) +HLS(t), ϱ(t)] + Dad(ϱ(t)) (113)

with the adiabatic dissipative superoperator

Dad(ϱ(t)) = Γre(0)
∑

a,b=±
Ea(t)Eb(t)

[
Pa(t)ϱ(t)Pb(t) − 1

2{Pa(t)Pb(t), ϱ(t)}
]
. (114)

The Lamb-shift Hamiltonian HLS in master equation (113) is

HLS(t) = Γim(0)
∑

a,b=±
Ea(t)Eb(t) ([Pb(t), ϱ(t)]Pa(t) − Pa(t)[ϱ(t), Pb(t)]) . (115)

Independent of the choice of reservoir, i.e. for any spectral density Γim(0), the Lamb-shift Hamiltonian will
vanish. This can be shown using the completeness relation for the projectors.

1In this context, P refers to the Cauchy principal value.
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