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We present a general denoising algorithm
for performing simultaneous tomography of
quantum states and measurement noise. This
algorithm allows us to fully characterize state
preparation and measurement (SPAM) errors
present in any quantum system. Our method
is based on the analysis of the properties of
the linear operator space induced by unitary
operations. Given any quantum system with
a noisy measurement apparatus, our method
can output the quantum state and the noise
matrix of the detector up to a single gauge
degree of freedom. We show that this gauge
freedom is unavoidable in the general case, but
this degeneracy can be generally broken using
prior knowledge on the state or noise properties,
thus fixing the gauge for several types of
state-noise combinations with no assumptions
about noise strength. Such combinations
include pure quantum states with arbitrarily
correlated errors, and arbitrary states with
block independent errors. This framework can
further use available prior information about
the setting to systematically reduce the number
of observations and measurements required
for state and noise detection. Our method
effectively generalizes existing approaches to
the problem, and includes as special cases
common settings considered in the literature
requiring an uncorrelated or invertible noise
matrix, or specific probe states.

1 Introduction
Quantum computing promises to have the potential
to solve complex problems that are beyond the reach
of classical computers [1, 25, 54, 71], but realizing
this full potential requires overcoming the various
challenges posed by noise [5, 13, 57]. These errors
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can arise from a number of sources, including noise
in the specific hardware architectures [6, 7, 10, 28, 33,
37, 61, 63], inaccuracies in control and limitations in
the operations that can actually be performed on such
systems [2, 17, 19, 58, 67].

To tame these errors, researchers have developed
various and still growing number of approaches
and strategies that can be included in the macro-
categories of quantum error correction [9, 14, 16, 22,
35, 39, 56, 59, 62], quantum error mitigation [8, 21,
31, 64, 65], and noise learning, which includes specific
techniques such as, among others, quantum process
tomography [15, 47, 48, 55], gate set tomography
[24, 51] and randomized benchmarking [27, 34, 43, 44].

Among these sources of noise, state preparation
and measurement (SPAM) errors can prove to be
particularly significant. As an example for the
current best superconducting qubit-based devices,
they can be in the range 1-3%, see e.g. [3, 20,
53]. These errors occur when the initial state of
a quantum system and/or the measurement of its
final state are not precisely known or controlled.
SPAM errors can result in systematic biases that can
greatly impact the accuracy of quantum information
processing in noisy devices both in quantum error
correction and in the so-called “noisy intermediate
scale quantum” (NISQ) tasks see e.g. [3, 60, 70].
SPAM errors are the focus of this paper, specifically,
we address the issue of the simultaneous correct
identification of the (possibly arbitrarily correlated
and of arbitrary strength) noise affecting detectors
after the preparation of a state ρ and the correct
identification of ρ itself. Despite these two tasks
being some of the most fundamental operations one
could imagine for quantum information processing,
their simultaneous realization is hindered by the fact
that state preparation and measurement noise matrix
can be determined only up to a gauge transformation
[4, 30, 40]. This fact presents a severe limitation
for state tomography and noise characterization as
the knowledge of the real underlying noise process is
essential for diagnostics and the optimization of the
device. To address this in recent years some attempts
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have been made to develop techniques that resolve
these kinds of gauge degeneracy [38, 41, 42, 46].
Our work presents a significant contribution in

this direction: we provide a general framework for
identifying conditions under which noise models and
prepared states can break the gauge freedom, which
includes as special cases many previously proposed
approaches. We achieve this by introducing a
denoising algorithm that can simultaneously estimate
both the state of the system and detector noise up
to a single gauge parameter. The output of this
algorithm gives a complete characterization of the
SPAM errors in the system as it gives the maximum
possible information about the true state prepared in
the system and the stochastic matrix governing the
measurement noise.

The main contributions of this work are as follows:
First, we completely characterize the gauge freedom
in our problem, and prove that the simultaneous
characterization of state and noise is only hindered
by a single gauge parameter. Next, we give a general
algorithm to simultaneously estimate a quantum
state and any stochastic matrix characterizing SPAM
errors in a quantum system, up to this unavoidable
gauge parameter. We also outline methods using
which this gauge can be fixed given many forms
of prior information about the state or the noise
matrix, including practically relevant cases, such
as states with known purity, independent ancilla
qubits, and known expectation values. To address
more practical settings, we devise a randomized
version of our algorithm that uses computational basis
measurements that only involves the application of
Clifford circuits. Finally, we also provide a sample
complexity analysis of our algorithm and show that
the number of samples required depends naturally on
the distance of the state and the noise matrix from
a maximally mixed case. The paper is structured as
follows:

• In Sec. 2: we state the problem of noise-
state simultaneous tomography, set the notation,
and discuss the gauge freedom intrinsic in the
problem. Here, we prove that the problem has
only a single gauge degree of freedom.

• In Sec. 3: we outline the noise-state simultaneous
tomography algorithm for any POVM. We also
show the special case of the algorithm using
computational basis measurements and derive
the sample complexity of the randomized version.
We support our analysis of the randomized
algorithm using numerical results that show the
tightness of our analysis.

• In Sec. 4: we show how prior knowledge about
the system can be used to fix the gauge and also
to improve the algorithm in terms of resource
efficiency.

• In Sec. 5: we draw the conclusions and discuss
the perspectives of this work.

The summary of this structure and our approach is
provided in Fig. 1.

2 Problem statement, setting, and
notation
2.1 The problem of simultaneous tomography
We consider the problem of fully characterizing
persistent errors as well as recovering the underlying
quantum state in a quantum system affected by
imperfect state preparation protocols or measurement
errors. The quantum system consisting of n qubits
is prepared in a state ρ and measured using a
general Positive Operator Valued Measure (POVM)
[52]. Given the n−qubit POVM, {Mk| k ∈
[D], Mk ≽ 0,

∑
k Mk = I}, we define the

measurement probabilities obtained after applying a
unitary transformation (U) to the quantum state as
follows,

yk(U) := Tr(UρU†Mk), k = 1, . . . , D. (1)

Now we model the measurement noise in the quantum
system as a general stochastic matrix, A, acting on the
probability distributions defined in (1).

ỹk(U) :=
∑

k′∈[D]

Ak k′ yk′(U). (2)

We will simplify the notation to yk and ỹk in the
case where U is just the identity transformation.
This transition matrix (A) model is quite universal
as it models a general measurement error one
can have assuming that this error is independent
of the operations performed on the computer
before measurement. This is a commonly assumed
simplification in the SPAM literature [30, 38, 42]. We
also assume that any unitary U in the above equations
can be applied without any errors.

The main aim of this work will be to use these types
of noisy measurements to fully characterize the system
and the noise. We refer to this task as simultaneous
tomography, which can be defined as the problem of
designing a set of unitary operators U1, . . . , Ul that are
efficiently implementable on a given quantum system,
and a procedure that uses the noisy measurements
ỹk(U1), . . . , ỹk(Ul) along with prior information about
the system to estimate the state ρ and the matrix of
measurement noise A.

Simultaneous tomography is directly related to
SPAM error characterization. The recovered state ρ
can be compared with the state that was intended to
be prepared and the state preparation error rates can
be computed from their difference [42]. While the
noise matrix A represents the errors in measurement
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Figure 1: Summary of our approach to simultaneous tomography of quantum states and SPAM noise. In
section II of the paper, we state the problem of simultaneous tomography : the process of estimating the quantum state (ρ)
and the noise matrix associated with measurement errors (A) using a unified set of measurements. In section III, we introduce
a universal algorithm for performing the simultaneous tomography in full generality up to the fundamental and unavoidable
gauge ambiguity, prove that this degeneracy is one-dimensional, and discuss the sample-complexity of our algorithm. Finally, in
section IV, we provide many examples of prior information about either the state or the noise that allows one to unambiguously
recover the quantum state and the noise matrix. These examples include many settings considered in previous work.

device.

The number of gates, measurements, and classical
processing required to perform simultaneous
tomography is expected to be larger than those
for noiseless state tomography. The exact overhead
depends on the structure of the noise, the underlying
state, and access to prior knowledge of the state and
noise model. In practice, the best choice of gates
U1, . . . UL will depend on which gates are native
and least noisy for the specific quantum system in
consideration.

2.2 Linear operator framework
The process of simultaneous tomography consists
of two steps: (i) implementing a set of chosen
unitaries on the quantum system and obtaining
the corresponding noisy measurements, and
(ii) performing a set of classical post-processing
computations on the measurements to obtain the
estimates of the state and measurement noise. By
considering only linear classical post-processing,
the overall procedure can be viewed as a linear
transformation on the underlying state which we
describe below.

In a quantum system, the action of any unitary on
a state (ρ → UρU†) can be represented by a linear
superoperator. To demarcate between operators and
superoperators, we use the standard notation of |ρ⟩⟩
for the 4n-dimensional vector representing ρ in the
space acted on by superoperators [51]. Other objects,
such as the 2n × 2n identity matrix I or POVM
operators, can be represented by a 4n-dimensional
vector in a similar way. Naturally, for two operators

P and Q the inner-product ⟨⟨P |Q⟩⟩ is defined as
⟨⟨P |Q⟩⟩ = Tr(P †Q).
It is advantageous to isolate the action of a unitary

on the traceless subspace of operators,

UρU† = Φ(U) |ρ⟩⟩ = |Î⟩⟩
2n/2 + ϕ(U) |ρ̄⟩⟩ . (3)

Here, Φ(U) is the complete superoperator
corresponding to the action of U , ϕ(U) is the
traceless part of this superoperator. We also define
Î = I/2n/2, the normalized identity matrix, as well as
|ρ̄⟩⟩ = |ρ⟩⟩ − |Î⟩⟩/2n/2 for the 4n-dimensional vector
representing the traceless part of ρ.

In this notation, the noisy measurements take the
form,

ỹk(U) =
∑

k′∈[D]

Ak k′

(
⟨⟨Mk′ |Î⟩⟩

2n/2 + ⟨⟨Mk′ |ϕ(U) |ρ̄⟩⟩
)

.

(4)
In general, this expression can be expanded using any
basis in the traceless subspace. Let BL and BR be
two sets of traceless and hermitian operators. Further,
assume that BR is a normalized set of operators (i.e.
⟨⟨P |P ⟩⟩ = 1) whose linear span is the space of all
traceless hermitian operators. Also, assume that the
measurement operators lie in the linear span of BL.
Then we can always expand the state in one of the
basis sets, and the measurement operators in the other
as follows:

|ρ̄⟩⟩ =
∑

P ∈BR

sP |P ⟩⟩ , (5)

mk I = ⟨⟨Mk|Î⟩⟩, mk Q = ⟨⟨Mk|Q⟩⟩ , Q ∈ BL . (6)
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Using these relations we can expand (4) in this specific
basis as,

ỹk(U) =
∑

k′∈[D]

Ak k′mk′I

2n/2 +

∑
k′∈[D],

P ∈BR,Q∈BL

sP ϕ(U)P Q Ak k′mk′ Q . (7)

Here ϕ(U) |P ⟩⟩ =
∑

Q∈BL
ϕ(U)P Q |Q⟩⟩+|b⊥

L ⟩⟩, where
|b⊥

L ⟩⟩ is an operator orthogonal to every operator in
BL.
As an example of the setup described above, take

the set of all n-qubit normalized Pauli strings, P̂ ≡
{ I√

2 , X√
2 , Y√

2 , Z√
2}

⊗n. We can take the basis sets

to be the traceless operators in this set, BL =
BR = P̂ \ {Î}. In this case, the matrix ϕ(U) ∈
R4n−1×4n−1 will just be the well-known Pauli Transfer
Matrix representation for U. And sP would simply be
expectation values of the state with the Pauli strings
[42].

Running example: To illustrate the ideas in
this paper we will use an example of a noisy
two-qubit system. The same system will be used
throughout the paper at various points as a
pedagogical tool.

Consider a 2-qubit system with ρ = |01⟩⟨01| =
(I+Z)⊗(I−Z)

4 . If BR is the normalized Pauli basis,
then the non-zero coefficients are sI⊗I , sZ⊗I =
1
2 , sI⊗Z , sZ⊗Z = − 1

2 . For measurements in the
computational basis the noise matrix is a 4 × 4
matrix which we take to be A = (0.9I +0.1X)⊗2.

To perform simultaneous tomography, the noisy
measurements ỹk(U) are passed through linear
classical post-processing where we compute linear
combinations

zk =
∑

l

clỹk(Ul) , where
∑

l

cl = 1 . (8)

Using (4) the quantities zk can be expressed in a basis
independent fashion as,

zk =
∑

k′∈[D]

Ak k′mk′ I

2n

+
∑

k′∈[D]

Ak k′⟨⟨Mk′ |

(∑
l

clϕ(Ul)
)
|ρ̄⟩⟩. (9)

Thus computing the quantities zk can be viewed
as applying the effective non-unitary linear
transformation

Φ =
∑

l

clΦ(Ul) (10)

on the state ρ and then obtaining noisy measurements.
The affine constraint (

∑
l cl = 1) makes these

transformations trace-preserving.

In the context of simultaneous tomography,
the following two points are important regarding
these linear operators. First, which of these
linear transformations are sufficient for successfully
performing simultaneous tomography? Second, what
set of unitaries is required for efficiently implementing
the linear transformations (9)?

To this end, let U(2n) be the unitary group
on n qubits. For a chosen subset, S =
{U1, . . . , Ul} ⊆ U(2n), the overall computational
power of implementing them on the quantum system
and performing classical linear post-processing can be
summarized by the linear operator space defined by.

L(S) =
{∑

l

clΦ(Ul)

∣∣∣∣∣Ul ∈ S,
∑

l

cl = 1
}

. (11)

Using the linear operator space allows us to view
the requirements of a given simultaneous tomography
task in a general way without reference to a chosen
basis or a given set of gates. If it is determined that
a such subset of unitaries is sufficient for a given
simultaneous tomography task, then depending on
the quantum system there may be multiple ways of
realizing this subset. Note that L does not correspond
to any single quantum channel, rather it represents a
set of quantum channels.

We call a set of unitaries Sg ⊆ U(2n) the generator
set for a given subset S ⊆ U(2n) if Sg has fewer
elements than S, and L(S) ⊆ L(Sg). Notice that
there might be multiple ways to choose Sg given S.
The appropriate choice will depend for example on
what set of gates are least noisy and natively available
on a given quantum architecture and how much
classical post-processing power is available. Working
with the super-operator space L(S) allows us to
separate what is needed to perform simultaneous
tomography and how to realize it with a given
quantum device and classical processing resource.

For instance, we will show that using a complete set
of superoperators L(U(2n)) is sufficient to perform
simultaneous tomography. But for performing
simultaneous tomography in the computational basis,
we can also use a smaller subset of the Clifford group
as a generator set for this super-operator space.Using
only CNOT and arbitrary single qubit gates, this
generator set can be implemented with circuits of
linear depth [45]. We will also discuss some cases
of performing this task in the presence of prior
information where a limited subset L(S) ⊂ L(U(2n))
is sufficient.
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2.3 Identifiability for the simultaneous
tomography problem
Given noisy observations of the form in (7),
the pertinent question is whether simultaneous
tomography of ρ and A is even possible without any
additional information? Interestingly, the answer is
“no” in the most general case. To see this, consider a
one-parameter family of transformations on the state
and noise channel defined as follows,

Ak k′ → A′
k k′(α) = αAk k′+(1−α)

∑
j∈[D] Ak jmj I

2n/2 ,

ρ→ ρ′(α) = ρ

α
+
(

1− 1
α

)
I

2n
, α ∈ R \ {0} . (12)

By simple algebra, we can check that this
simultaneous transformation of the state and noise
will leave the noisy outputs in (7) invariant thus
leaving us with no means to distinguish between them.
In literature, this kind of invariance has been called
gauge freedom [8, 30, 40]. The gauge freedom implies
that any simultaneous tomography method will have
at least a one-parameter ambiguity. These gauge
transformations represent a one-parameter manifold
in the (ρ, A) space. While the transformations
are mathematically well defined for any non-zero
α, the set of physically allowed α will be those
such that ρ′(α), A′(α) are respectively valid density
and stochastic matrices. But even these physical
constraints cannot unambiguously fix α in general.

The gauge freedom can be viewed as the
inability to separate whether the randomness in
the observations comes from the random nature of
quantum measurements or if it is a product of classical
noise. An extreme example is as follows; suppose we
are given a single qubit state and a noisy measurement
apparatus. Suppose we also observe that when
this qubit is measured in the computational basis
after applying any U , both 1 and 0 are seen with
equal probability. Given such a system there is no
way to distinguish whether the state is maximally
mixed or whether it is the measurement device that
is completely noisy. However, if we have prior
information (confidence about the state preparation
itself) that the state is pure, we can ascertain that
the randomness came from the measurement device.
The gauge freedom in the simultaneous tomography
problem generalizes this inherent ambiguity in the
problem.
The question remains whether there are other

transformations that also leave (7) invariant. The
theorem below shows that the transformation in (12)
represents the only possible ambiguity in the problem.

Theorem 1. Gauge freedom is the only
ambiguity.
Let ỹA,ρ(U) be the noisy measurement distribution

produced by the quantum state UρU†, with the noise

characterized by A, as in (7). If for another system in
a state ρ′ with noisy measurements characterized by
A′, it is given that ỹA,ρ(U) = ỹA′,ρ′(U), ∀ U ∈ U(2n),
then there must exist a gauge parameter α ∈ R \ {0}
such that (12) holds.

The proof of this theorem rests on the fact that
when we have access to all possible unitary gates in
U(2n), the induced linear operator space L(U(2n))
defined in (11) is complete. The precise statement of
this completeness result is given in Appendix A. The
full proof of the theorem can be found in Appendix
B.

This gauge ambiguity can be overcome if we
have some prior information about the system that
uniquely identifies the correct ρ and A from the one-
parameter family in (12). In Sec. 4, we show multiple,
physically and operationally relevant cases of prior
information that can fix this gauge.

3 Simultaneous tomography:
conditions and algorithm
In this section, we will demonstrate how noisy
measurements generated according to (7), can be used
to reconstruct both ρ and A up to a single gauge
parameter. As in the case of noiseless tomography,
simultaneous tomography can also be performed by
using measurement outcomes produced by observing
the state after rotating it using a set of pre-defined
unitary operations.

3.1 Sufficient conditions for simultaneous
tomography
Beyond the gauge degree of freedom, few edge cases
can make simultaneous tomography impossible. For
instance, if the A matrix always outputs the uniform
distribution in D dimensions, then we can never
recover the exact state ρ from the noisy measurement
outcomes. To avoid these types of pathological cases
we assume that the output of A always has some
correlation with the input:

Condition 1. ∃k, i, j ∈ [D], such that Aki ̸= Akj .

If this condition does not hold, then the probability
of observing a certain output conditioned on an input,
Pr(k|k′) = Ak k′ , would be independent of the input.
We call such an A the erasure channel.

Similarly, simultaneous tomography is impossible if
ρ is a maximally mixed state (ρ ∝ I). This would
imply that UρU† = ρ, and full information about A
would not be recoverable from noisy measurements
defined in (7). To avoid this case we must assume
that the state has some non-zero overlap with the
space of traceless operators i.e. at least one of the
sP coefficients is non-zero
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Condition 2. ∃P ∈ BR, such that, sP ̸= 0.

Additionally, we also require the set of
measurement operators to be linearly independent:

Condition 3. {Mi|i ∈ [D]} are linearly independent.

If this condition is not satisfied, then the definition
of the measurement operators are non-unique and it
is impossible to reconstruct A. But given a linearly
dependent POVM, we can always construct a reduced
set from it such that this new POVM is linearly
independent (see Appendix C).
To describe our algorithm, in 3.2, we assume

that the noisy measurement probabilities are directly
available to us, i.e., for any U the distribution ỹ(U)
is fully specified. We will discuss the more practical
variant of our algorithm with finite measurement
shots and randomized measurements in 3.3.

3.2 Simultaneous tomography algorithm
The algorithm relies on the completeness of the linear
operator space used in the proof of Theorem 1. The
proof is a constructive one and naturally leads to the
algorithm described in this section.
While simultaneous tomography can be performed

on any basis in the operator space, we find that the
presentation of the algorithm simplifies considerably
if we fix BL to be the traceless POVM operators,

BL = {M̄i|i ∈ [D]}, (13)

where, M̄i = Mi − ⟨⟨Mi|I⟩⟩ I
D .

If BL does not span the space of traceless
operators, there will be a space orthogonal to it
which is unobservable by the POVM. We denote this
orthogonal space by B⊥

L . As an example, if BL is given
by the traceless computational basis measurement
operators, then B⊥

L will span the space of all off-
diagonal operators:

B⊥
L = {Q|Tr(Q) = 0, ⟨⟨Q|Q′⟩⟩ = 0 ∀Q′ ∈ BL, Q = Q†}.

(14)
Notice that while BL is a basis set, B⊥

L is a vector
space.

Running example: For the two qubit system
measured in the computational basis BL =
{|00⟩⟨00|− I

4 , |01⟩⟨01|− I
4 , |10⟩⟨10|− I

4 , |11⟩⟨11|−
I
4}. Since this spans all tracelss diagonal
operators, B⊥

L is the set of all off-diagonal 2-qubit
operators.

A key step in the algorithm is the construction of
a set of canonical super-operators. The first one is
EI , which is a trace-preserving superoperator that
effectively eliminates all operators in BR

EI |I⟩⟩ = |I⟩⟩, EI |P ′⟩⟩ ∈ B⊥
L ∀P ′ ∈ BR . (15)

Then we define a set of trace-preserving canonical
super-operators that effectively maps a specific
operator in BR to a specific operator in BL. For any
P ∈ BR and M̄i ∈ BL

EP,i |I⟩⟩ = |I⟩⟩, EP,i |P ⟩⟩ − |M̄i⟩⟩ ∈ B⊥
L ,

EP,i |P ′⟩⟩ ∈ B⊥
L ∀P ′ ∈ BR \ {P} . (16)

These mappings are “effective”, as they always
have some component in B⊥

L , which we have left
uncharacterized in the above definitions. But this is
inconsequential as these components are not observed
by the POVM. In what follows, we refer to EI and
EP,i as to the eliminator operators, or eliminators.

Running example: Since the unobservable
part is left unspecified, the definition of the
eliminators are not unique. For the two-qubit
example we take BR as all normalized, traceless
Pauli strings. In that case we can always take,
EI = 1

4 (|I⟩⟩⟨⟨I|+ |X⟩⟩⟨⟨X|)⊗2.
From this definition,

EI |I⟩⟩ = 1
4(Tr(I) I + Tr(X ⊗ I) X ⊗ I

+ Tr(I ⊗X) I ⊗X + Tr(X ⊗X)X ⊗X) = I
(17)

Similarly we can check that this eliminates all
the diagonal Pauli strings owing to the anti-
commutation relation between Z and X. This
will not eliminate Pauli strings with only X for
instance. But these are off-diagonal operators
which lie in B⊥

L . Similarly other eliminators
can also be constructed for this case. The
general formula for these constructions in the
computational basis is given in Section 3.3.

Now to perform simultaneous tomography, we need
to apply these canonical operators to the state by
aggregating measurement outcomes as described in
(9). To do this, it is sufficient to have a set of
unitary operators such that these canonical operators
lie in their span. We call such a set of unitaries
tomographically complete and use noisy measurement
outcomes generated by these unitaries, as in (7), to
perform simultaneous tomography.

Definition 1 (Tomographically complete set).
We call a set of unitary operators Utom = {U1 . . . UL}
tomographically complete if for all P ∈ BR, i ∈
[D], we have EP,i ∈ L(Utom) and EI ∈ L(Utom).

This implies that if the set Utom is tomographically
complete, then there exists coefficients cP,i

l such that∑
l cP,i

l = 1 and

L∑
l=1

cP,i
l Φ(Ul) = EP,i. (18)
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Further, there exist coefficients, cI
l , such that

∑
l cI

l =
1 and,

L∑
l=1

cI
l Φ(Ul) = EI . (19)

The definition of this set of unitaries and the
corresponding coefficients for constructing the
eliminators will obviously depend on the basis sets
BR and BL. For the special case of computational
basis measurements with BR taken to be the Pauli
operator basis, we can show that this set is a subset
of the Clifford group on n−qubits (see (31)).

Now using these coefficients in (8) we can aggregate
the noisy measurement outcomes to effectively apply
the canonical operators to the state,

zI
k :=

L∑
l=1

cI
l ỹ(Ul)k , (20)

zP,i
k :=

L∑
l=1

cP,i
l ỹ(Ul)k , ∀P ∈ BR, i, k ∈ [D] . (21)

Now from the definition of the eliminators and (9) we
can connect the z values to ρ and A.

zI
k =

∑
k′

Ak k′mk′ I

2n/2 , (22)

zP,i
k = zI

k + sP

∑
k′

Ak k′Ck′ i , (23)

where C is the covariance matrix associated with the
POVM,

Cij := ⟨⟨Mi|M̄j⟩⟩ = Tr(MiMj)− Tr(Mi)Tr(Mj)
D

.

(24)
To emphasize, the z−values are obtainable from
measurements. Our aim is to invert the relations in
(22) and (23) to find ρ and A up to the unknown
gauge.

Given the ability to obtain these z values, the
simultaneous tomography algorithm can be broken
down into three steps; finding the positions of the non-
zero coefficients of ρ in the BR basis, computing A up
to a gauge, and computing the other state coefficients
of ρ up to gauge. Below we will give a brief description
of each of these steps. The full algorithm is given in
Algorithm 1. Full technical details of the algorithm
can be found in Appendix D.

Running example:
We see from (17) that EI = 1

4
∑

U∈{I,X}⊗2 Φ(U).
So from this explicit construction, we get the cI

l

values and we can compute zI
k from this.

We can group these z−values by the k and i
indices into 4 dimensional vectors and matrices.
For the 2-qubit example we compute these values
to be

zI = [0.25, 0.25, 0.25, 0.25] ,

zI⊗Z = zZ⊗Z =


−0.03 0.33 0.33 0.37
0.33 −0.03 0.37 0.33
0.33 0.37 −0.03 0.33
0.37 0.33 0.33 −0.03

 ,

zZ⊗I =


0.53 0.17 0.17 0.13
0.17 0.53 0.13 0.17
0.17 0.13 0.53 0.17
0.13 0.17 0.17 0.53

 .

We get the uniform stochastic matrix for the
other cases where sP = 0.

Step 1: Finding non-zero coefficients
To find a non-zero state coefficient, we first have to
isolate all the rows of A that are not all zeros. From
(22), this can be clearly done by finding all l ∈ [D]
such that zI

l ≠ 0. Now for one such l and for j ∈ [D],
if zP,j

l − zI
l ≠ 0, then sP must be non-zero. On the

other hand if for all j ∈ [D] if zP,j
l − zI

l = 0, then sP

must be zero.
We can repeat this step for the same l for each

P ∈ BR to find every non-zero sP . We also store one
particular (j, l), obtained from zP,j

l − zI
l ≠ 0 for any

P , to use in the final step.

Running example: For sP = 0, we will get
zP to be the matrix of all 0.25. Only zI⊗Z , zZ⊗I ,
and zZ⊗Z will differ from this and we can identify
these with the non-zero coefficients of the state.

Step 2: Finding noise matrix up to gauge
At this step, we choose R ∈ BR such that sR ≠ 0. To
work around the gauge problem we have to choose one
noise matrix from the one-parameter family described
by (12). We make this choice by taking α = sR. This
makes the explicit sR dependence vanish from (23).
In terms of the gauge transformed noise matrix, (22)
and (23) can be expressed as follows.

zI
k =

∑
k′

A′(sR)k k′mk′ I

2n/2 , (25)

zR,i
k = zI

k +
∑
k′

A′(sR)k k′Ck′ i , ∀ i, k ∈ [D] . (26)

Once we obtain the z−values by aggregating the
measurements; we can invert the system of linear
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equations to find A′(sR). This inversion step is always
possible if the POVM is linearly independent, i.e., if
the Condition 3 holds.

Running example: Choose the gauge to be
sZ⊗I . Covariance matrix for computational
measurements is Cij = δij − 0.25. Now by
plugging z−values in (23) we can compute

A′(sZ⊗I) =


0.53 0.17 0.17 0.13
0.17 0.53 0.13 0.17
0.17 0.13 0.53 0.17
0.13 0.17 0.17 0.53

 .

We can check that this matrix is indeed equal to
sZ⊗IA + (1− sZ⊗I)0.25 .

Step 3: Finding state up to gauge
In this step, we exploit the gauge transformation to
find the ratio of every non-zero state coefficient with
sR. From (22) and (23) the following relation holds,

sP

sR
=
∑

k′ A′
k k′(sP )Ck′ i∑

k′ A′
k k′(sR)Ck′ i

=
zP,j

l − zI
l

zR,j
l − zI

l

. (27)

Our choice of (j, l) in Step 1 ensures that the
denominator in this expression is always non-zero.

Running example: Choose j, l = 1. This
choice is made so that zZ⊗I,l

j ̸= zI⊗I
l . From the

expression given above,

sI⊗Z

sZ⊗I
=

zI⊗Z
1,1 − zI⊗I

1

zZ⊗I
1,1 − zI⊗I

1
= −0.03− 0.25

0.53− 0.25 = −1 ,

Similarly we get, sZ⊗Z

sZ⊗I
= −1.

After these steps, we will know ρ and A up to
the unknown parameter sR. This unknown has to
be fixed from prior information, and we will describe
various ways of fixing this gauge in Section 4. In
the next subsection, we will specialize to the case of
computational basis measurements, and analyze the
number of measurement shots required to implement
this algorithm.

3.3 Simultaneous tomography with randomized
measurements and shot error
The simultaneous tomography algorithm, as
described, does not consider the fact that every
ỹk(U) has to be estimated using a finite number
of measurement outcomes. In this section, we
will specialize the algorithm to the case where
measurements are made in the computational
basis and analyze the number of measurement
shots required to estimate the state and noise in
the system up to gauge. Additionally, we will

Algorithm 1: Simultaneous tomography up to
gauge degree of freedom
// Step 1. Find non-zero coefficients

of the state
1 Compute zI

k ∀ k ∈ [D] using (22)
2 K ← {k ∈ [D] | zI

k ̸= 0}
3 C ← {} // Empty set
4 S ← [D]×K // Search space of index

tuples
5 for P ∈ BR do
6 sP ← 0
7 for (i, k) ∈ S do
8 Compute zP,i

k using (23)
9 if zP,i

k ̸= zI
k then

10 S ← {(i, k)}
// Replace index set with a

single tuple
11 C ← C

⋃
{P}

12 continue // To the next P

13 end
14 end
15 end

// Step 2. Find A up to gauge symmetry
16 choose R ∈ C
17 Compute zR,i

k for all k ∈ K, i ∈ [D]
18 for k ∈ [D] do
19 if k ∈ K then
20 Solve for A′

kk′ in
21

∑
k′ A′

kk′Ck′i = zR,i
k − zI

k ∀i ∈ [D]
22

∑
k′ A′

kk′mk′I = 2n/2zI
k

23 else
24 A′

kk′ ← 0 ∀k′ ∈ [D]
25 end
26 end
27 end

// Step 3. Find other state
coefficients up to a multiplicative
constant

28 {(j, l)} ← S
29 for P ∈ C do
30 sP

sR
← zP,j

l
−zI

l

zR,j
l

−zI
l

31 end
32 return {(P, sP

sR
)|P ∈ C}, A′

also use a randomized measurement procedure to
estimate the z values required for tomography. The
sample complexity bounds in Theorem 2 specify the
number of such randomized measurements required
for simultaneous tomography. This randomized
measurement method can significantly reduce the
overhead of simultaneous tomography as the number
of operators in the tomographically complete set can
be exponentially large in the system size.

We will present our results exclusively for the case
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of computational basis measurements, as this is the
most pertinent case for practical applications.

3.3.1 Simultaneous tomography in the computational
basis

For computational measurements the POVM is
simply {|k⟩⟨k| |k ∈ [2n]}, and the covariance operator
takes a simple form,

Cik = δik −
1
2n

. (28)

For these types of measurements, the natural choice
for the right basis set BR is the set of all normalized
Pauli strings,

BR =
{

I√
2

,
X√

2
,

Y√
2

,
Z√
2

}⊗n

\
{

I

2n/2

}
. (29)

Remarkably for this choice of BR, the effective
elimination operators, defined in (15) and (16), can
be constructed using only Clifford operations.
Let PX (or PZ) be the set of Pauli strings composed

of only X (or Z) and I. Now define HlQ =
⟨l|Q|l⟩ /2n/2, ∀Q ∈ PZ . Then we can show that,

EI = 1
2n

∑
P ∈PX

Φ(P ) , (30)

EP i = (1−
∑
Q̸=I

HiQ)EI + 2
2n

∑
Q̸=I

HiQ

∑
Q′∈PX

[Q′,Q]=0

Φ(Q′UP Q) .

(31)

Here UP Q is a member of the n−qubit Clifford
group that maps P to Q. Proof of this construction is
given in Appendix E. The overhead of applying these
eliminators can be decreased significantly by using a
randomized measurement scheme (see Appendix F).
Due to the simplified nature of the covariance

matrix and the POVM, the z values in this setting
take the following simple forms,

zI
k =

∑
k′ Akk′

2n
, (32)

zP,i
k = zI

k + sp(Aik − zI
k) . (33)

This means that if the gauge is fixed to sR, we get
the following simple relation between the noise matrix
and gauge sR,

A′
ik(sR) = zRi

k . (34)

So for the case of computational basis
measurements, the linear inversion in the second step
of Algorithm 1 is unnecessary.

3.3.2 Sample complexity

The number of measurements required to estimate
ρ and A up to a certain error depends on how far
they are from violating the sufficient conditions 1

and 2. The third condition is automatically satisfied
as computational basis measurements form a POVM
that is linearly independent. More measurements are
required for simultaneous tomography the closer ρ is
to a maximally mixed state and the closer A is to
erasure channel. To measure the distance from these
pathological cases, we define the following metrics for
ρ and A.

||ρ||mix ≡ max
P ∈BR\I

|sP | , (35)

||A||uni ≡ max
k,k′∈[2n]

∣∣∣∣Akk′ −
∑

i Aki

2n

∣∣∣∣ . (36)

The sufficient conditions 1 and 2 are just non-zero
lower bounds on these metrics. These metrics allow us
to state the sample complexity for the simultaneous
tomography algorithm:

Theorem 2. Complexity in computational basis
Given an n−qubit quantum system such that ||ρ||mix >
0, ||A||uni > 0. Choose a threshold parameter
0 < β < ||ρ||mix/2. Then the three main steps
of the simultaneous tomography algorithm can be
implemented using randomized measurements in the
computational basis with the following complexities,

1. Using O(8n cn+log(1/δ)
β2||A||2

uni
) randomized measurements,

we can identify a non-empty subset C ⊂ BR

such that with probability 1 − δ the following
implications hold,

P ∈ C =⇒ |sP | ≥ β ,

|sP | ≥ 1.01β =⇒ P ∈ C .

2. Given R ∈ C, using O(2n cn+log(1/δ)
ϵ2 ) randomized

measurements, we can give an estimate Â′(sR)
for the noise matrix up to gauge such that,

Pr

(
max

i,j∈[D]
|Â′

i,j(sR)−A′
i,j(sR)| > ϵ

)
≤ δ .

3. Let ϵ < β/2. Then for a fixed R ∈ C and for every

P ∈ C, we can compute an estimate ŝP

sR
using a

total of O(2n|C| cn+log(1/δ)
ϵ2β2||A||2

uni
) such that,

Pr

max
P ∈C

∣∣∣ ŝP

sR
− sP

sR

∣∣∣∣∣∣ sP

sR

∣∣∣ > ϵ

 ≤ δ .

See Appendix F for details on the randomized
measurement framework used and the proof of this
theorem

The three parts of this theorem correspond to the
three steps of Algorithm 1. In the first step of the
algorithm our aim is to find the positions of the
non zero coefficients of the state. The finite shot
version of this step is the construction of the set C
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which is guaranteed (with high probability) to contain
every operator in BR whose overlap with the state
is greater than or equal to 1.01β in absolute value.
Moreover it is also guaranteed with high probability
that C will only have operators such that their overlap
with the state is guaranteed to be greater than or
equal to β in absolute value. Now if we choose
β = 1

1.01 minP :sp ̸=0 |sP |, then C will exactly contain
all the positions of the non-zero coefficients. On the
other hand, if we are only concerned about recovering

the noise matrix, we can take β = ||ρ||mix
2 , which

guarantees that C is non-empty. This will give us at
least one non-zero coefficient to set the gauge for the
problem.
The second part of the theorem concerns the

estimation of the noise matrix up to gauge in the
finite shot setting. This is straightforward in the
computational basis as we do not have to perform any
linear inversion. Notice that the sample complexity of
this step is independent of ||ρ||mix and ||A||uni. This
gives a considerable sample complexity advantage in
the setting where we are only interested in recovering
A.

Corollary 1. Estimating measurement noise (M
error)
Fixing β = ||ρ||mix/2 in Theorem 2, we can recover the
noise matrix up to gauge with the error ϵ, with high
probability using Õ

(
8n

||ρ||2
mix||A||2

uni
+ 2n

ϵ2

)
randomized

measurements.

Here we have used the Õ notation to hide linear
factors in n and log(1/δ) for the sake of readability.

The third part of the theorem concerns the
estimation of state coefficients up to gauge. We only
do this for P ∈ C and we set sP = 0 for P /∈ C.
Thus the threshold parameter (β) implicitly fixes the
error in estimating these coefficients. The sample
complexity of this step depends on |C| and hence can
be considerably low if the state is sparse in the Pauli
basis.
Suppose our aim is to fully characterize the state

preparation error. To estimate every element of the
state with an additive error of ϵ we show the following
Corollary of Theorem 2 in Appendix F.3.

Corollary 2. Estimating prepared state (SP
error) Every coefficient of the state up to gauge can be
estimated with additive error of ϵ ≤ ||ρ||mix/2 with high
probability using a total of Õ

(
8n

ϵ4||A||2
uni

)
randomized

measurements

The exponential dependence on n in these
sample complexities is unavoidable because we are
attempting to estimate an exponential number of
independent, unknown quantities in the most general
case. But this dependence can be possibly improved
for special cases, like for unentangled states or binary
symmetric noise channels. We leave the analysis of
such special cases for future work.

3.4 Numerical results
The tomography procedure outlined here uses
independent state copies and does not use coherent
measurement. In this setting, recent results have
shown a sample complexity of Θ(8n) for noiseless
tomography [12]. Hence we do not expect a
substantial improvement in the n dependence in
Theorem 2. More interesting is the dependence of the
sample complexity w.r.t to ||A||uni and ||ρ||mix (via the
β parameter). To check the tightness of our analysis
w.r.t these quantities, we numerically study the
sample complexity scaling for a few different 2−qubit
examples. The results are given in Figure 2. In
these experiments, we estimate the sample complexity
of Steps 1 and 3 while varying β and ||A||uni
independently for a family of two-qubit states. In
all the cases, we empirically observe that the number
of measurement shots scale as the inverse square of
these quantities, corroborating Theorem 2.

4 Incorporating prior information:
Gauge fixing and efficiency
improvements
We have shown that the gauge freedom in (12)
is the only obstacle in performing simultaneous
tomography. This gauge can be fixed if we
have access to prior information about the state
and measurement noise or access to additional
measurements. Further, especially from a practical
point of view, prior information can be used to
significantly reduce the number of measurements
and classical post-processing required to perform
simultaneous tomography. The linear operator
framework provides a natural way to incorporate
several types of prior information. We also find that
many of the example priors we use correspond to
assumptions made in the error mitigation literature
previously [26, 42, 49, 50, 66]

4.1 Using prior information to fix the gauge
We start with examples of prior information about
ρ and A that are sufficient to fix the gauge. Each
of these conditions imply that no two pairs (ρ, A)
and (ρ′, A′) can satisfy the conditions enforced by
the prior information and lie in the one-dimensional
gauge manifold (12).

Block independent noise:
Suppose that the POVM is described by Mkl =
M1

k⊗M2
l where k ∈ [D1] and l ∈ [D2] with D1D2 = D.

This can refer to a partitioning of a set of binary
valued outcomes into two parts. Suppose that the
noise acts independently on the two parts such that
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(a) (b)

(c) (d)

Figure 2: Simultaneous tomography with randomized measurements in 2-qubit systems. (a), (b) We study
the scaling of Step 1 in Theorem 2 for a two qubit system. N∗

1 here is the number of measurements that was required to find
the correct positions of the non-zero coefficients in the Pauli basis with a success rate of at least 90%. (c), (d) We study the
scaling of Step 3 in Theorem 2. Here N∗

3 is the number of measurement shots that were required to compute every state
coefficient up to gauge with a multiplicative error of at most ϵ = 1/3 . In (a) and (c) , the state is fixed to be ρ = |01⟩ ⟨01|
and A is chosen from the one-parameter family A(τ) = ((1 − τ)I + τX)⊗2 to vary ||A||uni. We fix β = 1/4. In (b) and (d),
the state is chosen from the one-parameter family ρ(τ) = I

4 + τ(Y ⊗ I + Z ⊗ Z) and A is fixed to A(0.05). β is taken to
be ||ρ(τ)||mix/2 = τ and τ is varied to select β. In all cases, N∗

1 and N∗
3 are found using logistic regression on the empirical

success probability. For each value of N the empirical success probability is estimated using 50 random runs.

A = A1 ⊗ A2 where A1 acts on M1 and A2 acts on
M2. We show that the gauge can be uniquely fixed
with this information. The details of the proof of
uniqueness and the algorithm to find the unique gauge
are given in Appendix I.1. Similar uncorrelated noise
models have been used as a simplifying assumption in
the literature [26, 32, 49, 50, 66]

Information on purity of the state:
Let the state ρ satisfy the following purity conditions:

1. Tr(ρ2) = ν

2. There exists |v⟩ such that ⟨v|ρ|v⟩ > 2−(n−1).

If the state ρ satisfies these purity conditions then
the gauge can be fixed in any system of at least two
qubits. In general if the purity of ρ is known, and if its
min-entropy [11, 69] is less than n−1, then the gauge
can be fixed. As an important special case, we note
that any pure state satisfies the purity conditions with
ν = 1 and there exists an eigenvalue equal to one.

We can use this purity information to find the
gauge as follows. Algorithm 1 returns a set of state
coefficients s′

P up to the gauge freedom such that the
actual state coefficients sP are related to the ones
computed by the algorithm by

sP = αs′
P , ∀P ̸= I. (37)

Using the first purity condition Tr(ρ2) = ν, we get

α2 = ν − 2−n∑
P,P ′ ̸=I s′

P s′
P ′⟨⟨P |P ′⟩⟩

. (38)

This specifies the state up to a sign

ρ = I

2n
± α

∑
P ̸=I

s′
P P . (39)

Denote the two candidates by ρ+ and ρ− with
ρ+ + ρ− = I

2n−1 . Using the second purity condition,

there exists a state |v⟩ such that ⟨v|ρ+|v⟩ > 2−(n−1).
This gives that ⟨v|ρ−|v⟩ < 0 which in turn implies

Accepted in Quantum 2024-06-26, click title to verify. Published under CC-BY 4.0. 11



that ρ− is not a positive semi-definite matrix. Hence
one of the two candidate states will not be a valid
quantum state and can be used to pick the correct
sign and fix the gauge.

Probe state:
The ability to have a known state (for instance |0⟩⊗n

)
prepared can be used to fix the gauge as in this case α
can be directly inferred from (12). This type of prior
information is used in [66], along with Pauli twirling
for the purpose of error mitigation.
Suppose that ρpb is a known probe state that is

measured using the Mk to give

yprobe
k =

∑
k′∈[D]

Akk′Tr(ρpbMk). (40)

Since Algorithm 1 outputs a candidate A′(α) up to
the gauge degeneracy, we have

yprobe
k = 1

α

∑
k′

A′
kk′(α)Tr(ρpbMk)+

(1− 1
α

)
∑

j A′(α)k jmj I

2n/2

∑
k′

Tr(ρpbMk′).

(41)

As α is the only unknown quantity, it can be easily
computed from the above equation.

4.2 Using prior information for computational
improvements
In this section, we list a set of prior information that
can both fix the gauge and can be used within the
linear operator framework to obtain reductions in
number of measurements and post-processing.

Linearly represented prior information:
We consider a set of linearly represented prior
information available on the state and the noise
matrix. For the state ρ this refers to a set of known
expectation values that may for example correspond
to known physical properties of the unknown state.
Using a basis we can represent this information as
follows. ∑

P ∈BR

sP bi
S,P = di

S , i = 1, . . . , Ns (42)

Further assume that d1
S ̸= 0 which will allow us to

fix the gauge. For the noise matrix A, linear prior
information refers to the action of A on known vectors.
This for example, can be used to represent knowledge
about A from previous experiments or from the use
of multiple probe states. We denote these known
quantities by

Abi
A = di

A, i = 1, . . . , NA. (43)

With access to the information in (42) and (43), we
will need access to only a subspace of superoperators
Llin ⊂ L to perform simultaneous tomography.
Essentially we need to access information in the
orthogonal subspace to those given in (42) and
(43) by using appropriate operators from the linear
operator space. The details are given in Appendix I.2.

Denoising and hierarchical tomography:
We consider a special case of linearly represented
prior information on ρ that provides backward
compatibility with some previously designed noise-
free tomography method. Suppose that a set of
unitaries Unf = {U1, . . . , UL} have been designed to
perform tomography on an unknown state ρ in the
absence of measurement noise. The set Unf essentially
encodes the prior information on ρ in a linear way.
This is because we assume that the state can be
uniquely specified, in the noiseless setting, from the
set of coefficients {Tr(UρU†Mi)|U ∈ Unf , i ∈ [D]}.

Our goal is to utilize the set Unf and provide a
method to perform simultaneous tomography in the
presence of measurement noise.

In this setting, we can use BL = BR = B = {M̄i |
i ∈ [D]} and our goal is to find the noise matrix A and
the coefficients of UρU† in the basis B for all U ∈ Unf .
For this, we need access to a subset Lden ⊂ L of linear
operators given by

Lden = {Eij , i, j ∈ [D]} , (44)

where Eij is defined as

Eij |M̄i⟩⟩ − |M̄j⟩⟩ ∈ B⊥
L , Eij |M̄i′⟩⟩ ∈ B⊥

L ∀i′ ̸= i ,

Eij |Q⟩⟩ ∈ B⊥
L ∀Q ∈ B⊥

L . (45)

The set of operators in (45) are sufficient to
denoise each of the original measurements. If Uden

is a generator set for Lden then the generator
set for performing simultaneous tomography in the
hierarchical setting is given by

Uhier = {U1U2 | U1 ∈ Uden, U2 ∈ Unf}. (46)

Essentially, we are first using the previously
designed tomography gate set Unf to prepare the
states U1ρU†

1 . . . ULρU†
L, and then use a simultaneous

tomography procedure to estimate the projection of
these states into the subspace defined by the POVM.

Running example:
Suppose we have prior information that ρ is
diagonal in the computational basis. So if we use
the computational basis measurements, Unf =
{I}. As another example, if we know that the
state, when expanded in the Pauli basis, has only
X terms (e.g. ρ ∝ I + X ⊗X), then Unf would
contain the global rotation operator that takes X
to Z.
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Binary symmetric channel:
In this part, we consider a special case of hierarchical
tomography where the measurements are along
the computational basis. The binary symmetric
channel refers to the case where each of the n
binary observables is flipped with a given probability
independent of the rest. Let the bit flip probabilities
be p1, . . . , pn where pi ≠ 1/2. Then the output noise
matrix has the special form

A =
n⊗

i=1
Asym

i , where Asym
i =

[
1− pi pi

pi 1− pi

]
(47)

By Theorem 4, the family of binary symmetric
channel noise matrices allows us to fix the gauge
degree of freedom. Although this is a special case
of block independent noise matrtices, the extra
structure can be exploited to obtain a simpler
denoising algorithm. The required subset LBSC ⊆ L
for performing this task is relatively small and the
corresponding generator set can be realized by depth
n circuits consisting of CNOT and SWAP gates.
The details of the algorithm is given in Appendix I.4.

Independent ancilla:
We consider the availability of a set of ancilla
qubits where the state and measurement noise are
independent of the rest. The presence of such an
independent ancilla has been assumed in the work [42].
We can view this as a special case of uncorrelated noise
and therefore we can fix the gauge. The POVM is the
set {Manc

i ⊗Mj | i ∈ [Da], j ∈ [Dr]}. The overall
state and the corresponding suitable choice of basis
for the traceless subspaces can be written as

ρ = ρa ⊗ ρr, BL = Ba
L ⊗ Br

L, BR = Ba
R ⊗ Br

R, (48)

where as before we choose Ba
L = {Ma

i | i ∈ [Da]} and
Br

L = {Mr
i | i ∈ [Dr]}. By independence of noise on

the ancilla qubits, we can decompose the noise matrix
as

A = Aa ⊗Ar. (49)

This special structure also allows us to significantly
reduce the set of operators Lanc ⊆ L that we need to
perform tomography on the state ρ. The specification
of these operators and the corresponding algorithm
is given in Appendix I.3. This serves as a partial
generalization of the construction in [42].
We defer a complete analysis and optimization of
all the priors discussed in this section, including
sample complexities and construction of eliminators,
for future work.

5 Discussion
In this work, we have introduced a general framework
for simultaneous tomography. We have completely

characterized the gauge ambiguity inherent to this
problem and have shown many different ways to
get around this limitation. The various scenarios
discussed in this context also subsume many
assumptions made in prior literature to solve this
problem.

There are several directions along which this work
can be extended. Like any method attempting to
perform full tomography on a quantum system, we
find that our method also has exponential complexity
in the number of qubits. Recent advances in classical
shadows have given more practical methods that help
in estimating accessible, but limited information from
quantum states [29]. Developing a similar technique
for simultaneous tomography would help us extract
useful information from ρ and A. Recent works on
classical shadows in the presence of noise [36] show
promise in this direction.

The ideas presented here can also be extended to
the simultaneous characterization of ρ along with
more general forms of physical transformations acting
on it. Gauge ambiguities also exist in such general
cases and the same type of priors discussed here might
not be able to fix the gauge. For example, the nature
of the gauge transformations will change when trying
to estimate ρ and a CPTP map Φ given the ability
to measure states of the form of Φ(UρU†) [40]. And
in the general case, the gauge group can have a much
more complicated structure than the one-parameter
case discussed here. We anticipate that the present
work can be possibly extended to study a much richer
class of problems that naturally arise in the study of
quantum systems.
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A Completeness of Linear operator space
In this section we show that the linear operator space induced by hybrid unitary gate operations and linear
classical post-processing (8) is complete.

Theorem 3. Completeness Let U(2n) be the unitary group on n-qubits. For any ϕ ∈ R4n−1×4n−1 the matrix[
1 0
0 ϕ

]
∈ L(U(2n)). (50)

To prove the theorem, we will use a basis representation where BL,BR are the Pauli basis. However, once
the completeness is proved, the result carries over to any pair of basis of the traceless space. The proof of the
theorem relies on the existence of two constituent families of linear operators. We call the first the eliminator
operators.

Lemma 1 (Eliminator operators). For any P ∈ P there exist operators EP ∈ L(U(2n)) such that

EP |I⟩⟩ = |I⟩⟩, EP |P ⟩⟩ = |P ⟩⟩,
EP |Q⟩⟩ = 0 for all Q ∈ P \ {P, I}. (51)

The second corresponds to unitary transformations that take one Pauli operator to another. We call these
permutation operators.

Lemma 2 (Permutation operators). For any P, Q ∈ P with P ≠ Q, there exists a unitary UP Q such that
Φ(UP Q) |P ⟩⟩ = |Q⟩⟩. Moreover UP Q can be implemented using a circuit of at most O(n) depth.

Proof of Theorem 3. We prove the theorem by constructing a set of canonical linear operators. For P, Q ∈ P
let eP Q ∈ R4n−1×4n−1 such that [eP Q]P,Q = 1 and [eP Q]P ′,Q′ = 0 whenever (P ′, Q′) ̸= (P, Q). Let α ∈ R and
define the linear operator Eα

P Q given by

Eα
P Q =

[
1 0
0 αeP Q

]
(52)

We will show that Eα
P Q ∈ L using an explicit construction. Showing this is sufficient to prove the theorem as

every super-operator that preserves |I⟩⟩ can be written as a linear combination of these eliminators, such that
the coefficients sum to unity.

Accepted in Quantum 2024-06-26, click title to verify. Published under CC-BY 4.0. 17

https://doi.org/10.1063/1.5115814
https://doi.org/10.1038/s41534-022-00618-z
https://doi.org/10.1038/s41534-022-00618-z
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevA.105.032620
https://doi.org/10.1103/PhysRevA.105.032620
https://doi.org/10.1109/ISSCC.2017.7870244
https://doi.org/10.1109/ISSCC.2017.7870244
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596
https://doi.org/10.1016/0034-4877(91)90045-O
https://doi.org/10.1016/0034-4877(91)90045-O
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1093/nsr/nwy072
https://doi.org/10.1093/nsr/nwy072


Using Lemma 2 and since UP Q is unitary, we get ϕ(UP Q) |P ⟩⟩ = |Q⟩⟩ and for any P ′ ̸= P the
orthogonality condition Tr(ϕ(UP Q) |P ′⟩⟩, Q) = 0. Therefore, using the eliminator operators in Lemma 1
we get EQϕ(UP Q) |P ′⟩⟩ = 0 for all P ′ ̸= P . So the operator E1

P Q can be explicitly constructed as

E1
P Q = EQϕ(UP Q). (53)

By closedness under composition from Lemma 14, we get E1
P Q ∈ L. For arbitrary α ∈ R, we can construct

Eα
P Q := α(EP Q − EI) + EI . (54)

It follows that Eα
P Q ∈ L from closedness under linear combination in Lemma 13. Finally, any operators can be

constructed as [
1 0
0 ϕ

]
=

∑
P,Q∈P\I

1
(4n − 1)2 E

(4n−1)2ϕP Q

P Q . (55)

We now establish the existence of the eliminators and permutation operators. For P ̸= I, let FP = EP −EI .
These are rank-1 projectors to the operator P . For consistency, we will also take FI = EI .

Proof of Lemma 1. For the case of one qubit, we can easily verify that the operators

F 1
I = E1

I = 1
4(ϕ(I) + ϕ(X) + ϕ(Y ) + ϕ(Z)) , (56)

F 1
X = 1

4(ϕ(I) + ϕ(X)− ϕ(Y )− ϕ(Z)) , (57)

F 1
Y = 1

4(ϕ(I) + ϕ(Y )− ϕ(X)− ϕ(Z)) , (58)

F 1
Z = 1

4(ϕ(I) + ϕ(Z)− ϕ(X)− ϕ(Y )) , (59)

satisfy (51). For the n-qubit case when P = ⊗n
i=1Pi, we can construct the n-qubit projector operator as

FP = ⊗n
i=1F 1

Pi
. Now EP = FI + FP = 1

4n

∑
P ′ ϕ(P ′) + FP . It is clear that the expansion of FP in terms of

superoperators Φ(P ′) will have positive coefficients if and only if P ′ commutes with P . This is because for P ′ and
P to commute they should have either zero or an even number of anti-commuting pairs of single qubit operators
when they are matched qubit-wise. From this argument, it is clear that EP = 2

4n

∑
P ′:[P ′,P ]=0 ϕ(P ′)

This is akin to what is known as twirling in the literature [18].

Proof of Lemma 2. Circuits that map between Pauli strings from the Clifford group are well studied in the
literature. These circuits are examples of stabilizer circuits, i.e. they can be constructed using only CNOT,
Hadamard, and Phase gates [23]. Any such stabilizer circuit can be constructed using only O(n) depth [45].

B Identifiability: Proof of Theorem 1
Let sP , s′

P , with P ∈ Pn, denote the coefficients of ρ and ρ′ in the Pauli basis. Then using the assertion of the
theorem and (7), we have for all k ∈ [D],

2−n/2
∑

k′∈[D]

(Akk′ −A′
kk′)mk′I +

∑
k′∈[D],

P,Q∈P\I

(sP Akk′ − s′
P A′

kk′)ϕ(U)P Qmk′Q = 0, (60)

for all U ∈ U . Thus for any set of unitary operators U1, . . . , UL and scalars c1, . . . , cL such that
∑

l cl = 1,

2−n/2
∑

k′∈[D]

(Akk′ −A′
kk′)mk′I +

∑
k′∈[D],

P,Q∈P\I

(sP Akk′ − s′
P A′

kk′)ϕP Qmk′Q = 0, (61)
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where ϕ =
∑

l clϕ(Ul) ∈ L(U). Since (61) holds for any ϕ ∈ L(U), and by Theorem 3, the linear operator[
1 0
0 0

]
∈ L(U), we must have

∑
k′

Akk′mk′I =
∑
k′

A′
kk′mk′I . (62)

Similarly, using Theorem 3 we get that

[
1 0
0 eP Q

]
∈ Ln for all P ∈ BR and Q ∈ BL. An identical argument

yields for all k ∈ [D], ∑
k′

(sP Akk′ − s′
P A′

kk′)mk′Q = 0, (63)

or equivalently in matrix form,

(sP A− s′
P A′)m\I = 0, ∀P ∈ BR. (64)

Using this with Lemma 12, we can see that the matrix (sP A− s′
P A′) must have the following form,

sP Akk′ − s′
P A′

kk′ = −dk. (65)

Here dk is as of yet undetermined. In the following steps, we will fix the value of dk from (62). Defining
sP /s′

P = α, we get

A′ = αA + diag(d)
s′

P

1. (66)

Combining with (62) and using the fact that
∑

k mkI = 2n/2, we get,∑
k′

A′
kk′mk′I = α

∑
k′

Akk′mk′I + dk

s′
P

2n/2, (67)

which gives

dk =
s′

P (1− α)
∑

k′ Akk′mk′I

2n/2 . (68)

This completes the proof of Theorem 1.

C Making a POVM linearly independent
Lemma 3. Given a D-outcome POVM such that the linear span of this POVM has only dimension r, then we
can always construct an r−outcome , linearly independent POVM by taking linear combinations of the original
POVM elements.

Proof. Our aim is to construct a new r− outcome POVM,

M ′
j =

D∑
i=1

pjiMi, j ∈ [r]. (69)

If the matrix p is full rank (rank r). Then it is easy to check that M ′
j is satisfies condition 3. Moreover the

outcomes probabilities corresponding to the new POVM can calculated from the outcome probabilities of the
old POVM.

Because of the linear dependence between the POVM elements, there exists D− r independent vectors (c⃗i) 1 in
RD, such that

∑
k ck

i Mk = 0. Now take some PSD matrix O with nonzero overlap with all the POVM operators.
Define uk = Tr(MkO): it follows ⟨u⃗, c⃗i⟩ = 0. Thus there exists one vector (u⃗) with positive coefficients that is
orthogonal to every c⃗i.

Now let F be the r dimensional subspace of RD consisting of all the vectors orthogonal to the set {c⃗i|i =
1, . . . , D − r}. We know that u⃗ ∈ F . We now claim that F can be spanned by a set of r linearly independent,
positive vectors.

1u⃗ notation hides the superscript index which runs from 1 to D.
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Suppose u⃗, v⃗1 . . . v⃗r−1 is a linearly independent set that spans F . We can always chose a positive αi such
that v⃗′

i := v⃗i + αiu⃗ is positive. Now we need to prove that these newly defined positive vectors are linearly
independent.

Suppose there was some linear dependence between the new vectors, such that u⃗ +
∑

i v⃗′
iai = 0. This would

imply a linear relation between the original v⃗i and u⃗. This would obviously contradict the initial statement that
this is a linearly independent set that spans F.

Thus we can always construct a set of linearly independent, positive vectors {u⃗, v⃗′
1, . . . v⃗′

r−1} that span F . For
purely notational convenience define,

µ⃗1 := u⃗ ,

µ⃗j := v⃗′
j−1 , j = 2 . . . r .

With these vectors as coefficients we can recombine the old POVM operators to construct an r-outcome POVM.,

M ′
j =

D∑
i=1

µi
j

Mi∑
l µi

l

, j ∈ [r] . (70)

The positivity of µ⃗i ensures that these new operators are positive. The normalization used in this relation
ensures that the new operators sum to identity. Now comparing (69) and (70), we see that the desired p matrix
is, pji = µi

j∑
l

µi
l

. By construction the matrix of µi
j has rank r. Matrix p is obtained by normalizing all the columns

of the µ matrix. Since this cannot change the number of independent columns, p must also have rank r. Which
in turn implies that {M ′

j |j = 1, . . . , r} satisfies the condition 3.

D Detailed description of Algorithm 1
In Step 1, we want to find a non-zero state coefficient to set this as the gauge for the entire problem. From (12),
it is clear that sP must be non-zero to act as a valid gauge parameter. To this end we must first find all rows
of A that are not all zeros. This is done by checking that zI

k ≠ 0, as this will imply that the k−th row of A is
non-zero. Using this we can construct a set K that holds the location of all non-zero rows. Since,

zP,i
k − zI

k = sP

∑
k′

Akk′Ck′i , ∀P ∈ BR , i, k ∈ [D] ,

if zP,i
k − zI

k = 0, that can either be due to sp = 0 or
∑

k′ Akk′Ck′i = 0.
Now to eliminate the second case, we check if zP,i

k − zI
k = 0 for all values of i and k ∈ K. If this is the case

and sP ̸= 0; then that is only possible if all the non-zero rows of A are in the null space of C. But if the POVM
is independent then C has a rank of D− 1 (see Lemma 4). It is easy to check from the definition of C that the
null space consists only of the uniform vector. So if all the non-zero rows of A are uniform vectors, then A is
an erasure channel and it violates Condition 1, necessary for simultaneous tomography. So assuming that this
condition holds, sP ≠ 0 must imply that there exist some j, l such that zP,j

l − zI
l ̸= 0.. Note that this pair j, l

is such that
∑

k′ Alk′Ck′j ̸= 0. Once found for some P can be reused to check other state-coefficients as it is
state-independent. We also store this j, l for the last step of the algorithm.

In Step 2, we pick an sR from R ∈ C as the unknown gauge for our problem. In terms of A′(sR), we have the
equations,

zR,i
k − zI

k =
∑
k′

A′(sR)kk′Ck′i, ∀P ∈ BR, i, k ∈ [D] ,

and

zI
k =

∑
k′

A′(sR)kk′mk′I

2n/2 .

Now since the columns of C along with the uniform vector form a full rank system in RD, we can invert this
system of equations to find A′(sR).
In Step 3, we use the gauge transform equations (12) again to find relations between state coefficients

A′
kk′(sR) = sR

sP
A′

kk′(sP ) + (1− sR

sP
)
∑

k′ A′
ki(sP )miI

2n/2 .

Lemma 4. The D ×D covariance matrix has rank D − 1 if the POVM is linearly independent. And the null
space of the covariance matrix is spanned by the uniform vector.
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Proof. The Covariance matrix can be equivalently expressed as,

Cij = ⟨⟨M̄i|M̄j⟩⟩ . (71)

This is the Gram matrix associated with the set of traceless measurement operators, C = W †W , where
W =

∑
i |M̄i⟩⟩⟨i| . From the definition of Gram matrix, it is clear that the rank of C will be equal to the dimension

of the subspace spanned by the traceless measurement operators. Now the space spanned by the measurement
operators has dimension D, by the independence assumption. The normalization constraint on the measurement
operators gives, ∑

i

Mi = I =⇒
∑

i

M̄i = 0 . (72)

This implies that the subspace spanned by the traceless operators has dimension D − 1 or less. Suppose that
there was some other set of coefficients ci such that

∑
i ciM̄i = 0. This would then imply,

∑
i

ciMi −

∑
j

cj⟨⟨Mj |I⟩⟩

 I

D
= 0 (73)

=⇒
∑

i

(
ci −

∑
j cj⟨⟨Mj |I⟩⟩

D

)
Mi = 0 . (74)

This is only possible if all the ci are the same. So the only possible linear relation between the traceless
measurements is

∑
i M̄i = 0. This fixes the dimension of their span, and the rank of the covariance matrix to be

D − 1.
The null space of C is spanned by the uniform vector as

∑
j Cij = 0.

E Elimination operators for the Pauli basis and computational measurements
For computational basis measurements, we take BR to be the set of all normalized Pauli operators on n−qubits,
P̂n = {I/

√
2, X/

√
2, Y/

√
2, Z/

√
2}⊗n

BR = P̂n \ {I/
√

2n} . (75)

For BL we take the traceless part of the computational basis POVM

BL = {M̄k = |k⟩⟨k| − I

2n
| k ∈ [2n]} . (76)

From this definition, it is clear that B⊥
L will be the space of all fully off-diagonal operators in the computational

basis.
We also denote by PX (PZ), the set of all Pauli strings consisting of only X(Z) operators and I. As before

the normalized matrices are given by Q̂ = Q/
√

2n.
Now using these definitions we prove the relations in (30) and (31).

Lemma 5. Let BR and BL be as defined in (75) and (76). Let EI be the n−qubit superoperator defined as in
(15). Then,

EI = 1
2n

∑
P ∈PX

Φ(P ) ,

where PX = {I, X}⊗n .

Proof. First let us look at the one-qubit version of this superoperator, E1
I = Φ(I)+Φ(X)

2 . It is clear that this
superoperator satisfies all the conditions outlined in (15). It leaves the identity invariant and maps the Pauli
operators to either zero or an off-diagonal operator.

E1
I |I⟩⟩ = |I⟩⟩ , E1

I |X⟩⟩ = |X⟩⟩ ,

E1
I |Z⟩⟩ = 0 , E1

I |Y ⟩⟩ = 0 .
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Now by elementary linear algebra, the following relation holds

Φ(A)⊗ Φ(B) = Φ(A⊗B) . (77)

This is because for any operators V and W

Φ(A)⊗ Φ(B) |V ⟩⟩ ⊗ |W ⟩⟩ = (AV A†)⊗ (BWB†)
= (A⊗B)(V ⊗W )(A⊗B)†

= Φ(A⊗B) |V ⟩⟩ ⊗ |W ⟩⟩ .

From this elementary fact, EI = 1
2n

∑
P ∈PX

Φ(P ) =
(

Φ(I)+Φ(X)
2

)⊗n

= (E1
I )⊗n. This implies that EI acting on

any operator in BR will either give zero or an operator in PX . On the other hand, it is clear that EI leaves the
identity invariant. Thus EI = 1

2n

∑
P ∈PX

Φ(P ) is consistent with the definition in (15).

Now, to prove the same for EP i eliminators defined in (16), first we define some auxiliary eliminators. These
eliminators effectively map between normalized Pauli strings. Let P ∈ BR and Q ∈ PZ \ {I}.

EP Q |I⟩⟩ = |I⟩⟩, EP Q |P ⟩⟩ − |Q̂⟩⟩ ∈ B⊥
L ,

EP Q |P ′⟩⟩ ∈ B⊥
L ∀P ′ ∈ BR \ {P} . (78)

Using these we can write EP i as follows,

EP i = (1−
∑

Q∈PZ \{I}

HiQ)EI +
∑

Q∈PZ \{I}

HiQEP Q , (79)

where HiQ = ⟨i|Q|i⟩√
2n

= Tr(M̄iQ̂). Since PZ \ I is an orthogonal basis for traceless diagonal matrices, we have

M̄i =
∑

Q∈PZ\{I} HiQQ̂. From this, it is easy to check that (79) holds.

Now, if UP Q is a member of the Clifford group on n-qubits that maps from P to Q, then EP Q = EQQΦ(UP Q).
So to show the relation in (31), we only need to show that EQQ = 2

2n

∑
Q′∈PX

Q′:[Q,Q′]=0

Φ(Q′).

Lemma 6. Let BR and BL be as defined in (75) and (76). Let EQQ be the n−qubit superoperator defined as in
(78) for all Q ∈ PZ \ I. Then,

EQQ = 2
2n

∑
Q′∈PX

Q′:[Q,Q′]=0

Φ(Q′) ,

where PX = {I, X}⊗n .

Proof. The proof idea here is similar to that used in Lemma 1.
For n = 1 we can easily verify that EZZ = Φ(I). Let FQQ = EQQ − EI . For the single qubit case we get

FZZ = 1
2 (Φ(I)− Φ(X)). For consistency we will denote FII = EI .

Now, for any n−qubit Z string Q = Q1 ⊗ . . . Qn, we can easily check that FQQ = ⊗n
i=1FQiQi

. Since EQQ =
EI + FQQ, the operator strings that remain in the expansion for EQQ will be those which have an even number
of single qubit X operators at positions where Z operators are present in Q. In the positions where Z does not
exist in Q, the operators in the expansion can either be X or I. This precisely describes all the operator strings
in PX that commute with Q.

F Sample complexity of simultaneous tomography
F.1 Randomized version of simultaneous tomography in the computational basis.
First we describe how to use a finite number of measurement shots to estimate the z−values.

Finite sample estimator for zI
k

Choose an n qubit Pauli string uniformly at random from PX . Now apply this operator to the quantum state
and measure the outcome. Repeat this procedure N times using independent copies of the state and record the
N measurement outcomes.
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Let now X l
1, . . . X l

N be binary random variables such that X l
i records whether the i−the measurement outcome

is l. We then define the estimate

ẑI
l := 1

N

∑
i

X l
i . (80)

This is an unbiased estimate for zI
l

EX l
i = Pr(X l

i = 1) = 1
2n

∑
P ∈PX

Pr(X l
i = 1|P )

= 1
2n

∑
P ∈PX

ỹl(P ) = zI
l .

Notice that the same N measurement outcomes can be processed in different ways to get estimates zI
l for all

l ∈ [2n].

Finite sample estimator for zP,i
k

Let us define

zP Q
l := 2

2n

∑
Q′∈PX

[Q′,Q]=0

ỹl(Q′UP Q) , (81)

where UP Q is a member of the Clifford group that maps P to Q. From (31)

zP,i
l = (1−

∑
Q∈PZ \I

HiQ)zI
l +

∑
Q∈PZ \I

HiQzP Q
l .

We can estimate zP Q
l in the following way. Choose an n qubit Pauli string Q′ uniformly at random from with Q.

Since half of P commutes with Q this can be done with constant overhead. Now apply Q′UP Q to the quantum
state and measure the outcome. Repeat this procedure N ′ times using independent copies of the state and
record the N ′ measurement outcomes.

Let X l
1, . . . X l

N ′ be binary random variables such that X l
i records whether the i−the measurement outcome is

l. Then we can define the following estimates

ẑP Q
l := 1

N ′

∑
i

X l
i , (82)

ẑP,i
l := (1−

∑
Q∈PZ \I

HiQ)ẑI
l +

∑
Q∈PZ \I

HiQẑP Q
l . (83)

These are also unbiased estimates since

EX l
i = Pr(X l

i = 1) = 2
2n

∑
Q′∈PX

[Q′,Q]=0

Pr(Xi = 1|Q′) (84)

= 2
2n

∑
Q′∈PX

[Q′,Q]=0

ỹl(Q′UP Q) = zP Q
l . (85)

The unbiasedness of ẑP,i
l hence follows from linearity of expectation. Notice that the same N ′ measurement

outcomes can be processed in different ways to get estimates ẑP Q
l for all l ∈ [2n]. These estimates can then be

combined to get ẑP,i
l .

The number of shots required to guarantee a certain error in these estimates is given in Lemma 7 and 8.
The proofs use the Hoeffding’s inequality and properties of subgaussian random variables. In Algorithm 2 we
describe how this estimates can be used to perform simultaneous tomography.
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Algorithm 2: Finite-shot simultaneous tomography in computational basis
Data: β, ||A||uni
// Refer Theorem 2 for the number of shots required for each step
// Step 1. Find non-zero coefficients of the state

1 C ← {} // Empty set
2 Estimate {ẑI

k|k ∈ [2n]}
3 for P ∈ BR do
4 Estimate {ẑP,i

k |k, i ∈ [2n]}
5 sP ← 0
6 if maxk,i∈[2n] |ẑP,i

k − ẑI
k| ≥ 1.005β||A||uni then

7 C ← C
⋃
{P}

8 end
9 end

// Step 2. Find A up to gauge symmetry
10 choose R ∈ C
11 for (k, i) ∈ [2n]× [2n] do
12 A′

ki ← ẑR,i
k

13 end
// Step 3. Find other state coefficients up to a multiplicative constant

14 Re-estimate {ẑR,i
k |k, i ∈ [2n]} with ϵ = β||A||uni

4 // see Lemma 8
15 Re-estimate {ẑI

k|k ∈ [2n]} with ϵ = β||A||uni
4 // see Lemma 7

16 i′, l′ ← argmaxi,l|ẑ
R,i
l − ẑI

l |
17 for P ∈ C do

// In this step use the ẑ estimates that were compupted from the most amount of
shots

18 sP

sR
← ẑP,i′

l′ −ẑI
l′

ẑR,i′
l′ −ẑI

l′

19 end
20 return {(P, sP

sR
)|P ∈ C}, A′

F.2 Proof of Theorem 2
Proof. We will use randomized measurements to estimate the z values required for the algorithm.

The definitions in (30) and (31) show that the z values for performing simultaneous tomography can be
estimated by using simple Monte-Carlo estimates as defined in (80) and (83).
For instance, from the definition of EI in (30) we see that zI

k can be estimated by choosing a random unitary
from PX , applying it to the state and recording the noisy measurement outcomes. The number of shots required
to guarantee a certain accuracy in these estimates with high probability are given by Lemma 7 and Lemma 8.

The covariance matrix for computational basis measurements is given by

Cik = δik −
1
2n

.

From (23), given any P , we have
zP,i

k − zI
k = sP (Aki − zI

k) . (86)

The first step of Algorithm 1 is finding the non-zero state coefficients. To perform the analogous step in the
randomized setting we set a positive parameter 0 < β < ||ρ||mix and construct a set C ⊂ P such that for
every P ∈ C we can guarantee with high probability that |sP | > β. Similarly, we can also show that with
high probability, if P /∈ C then |sP | < 1.01β. We show in Lemma 9 that such a set can be constructed using
O(8n cn+log(1/δ)

β2||A||2
uni

) shots.
From this set C we can choose R such that sR can be used as the unknown gauge in the problem, which gives us
the noise matrix upto sR

A′
l i(sR) = zR,i

l . (87)

Due to the simple form of the covariance matrix, the estimation error in the noise matrix is also given by Lemma
8.
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For the final phase of the algorithm, we first have to find an element of the noise matrix that is sufficiently
bounded away from its corresponding row average. To this end let us first estimate |ẑR,i

l − ẑI
l | up to a

max error of ϵ with high probability using Lemmas 8 and 7. Now let i∗, l∗ = argmaxi,l|z
R,i
l − zI

l |. From (86)
maxi,l|zR,i

l −zI
l | = |sR|||A||uni. So |ẑR,i∗

l∗ −ẑI
l∗ | must be ϵ close to |sR|||A||uni w.h.p. Let i′, l′ = argmaxi,l|ẑ

R,i
l −ẑI

l |,
then with high probability the following relations hold

|zR,i′

l′ − zI
l′ | ≥ |ẑR,i′

l′ − ẑI
l′ | − ϵ , (88)

≥ |ẑR,i∗

l∗ − ẑI
l∗ | − ϵ , (89)

≥ |sR|||A||uni − 2ϵ . (90)

Substituting (86) in the LHS of the above relation gives

|Ai′l′ − zI
l′ | ≥ ||A||uni −

2ϵ

|sR|
. (91)

Since |sR| ∈ C, we have that |sR| ≥ β. So choosing ϵ = ||A||uniβ
4 would give us |Ai′l′ − zI

l′ | ≥ ||A||uni/2 w.h.p..
According to Lemma 8, the number of measurements required to find the indices i′ and l′ will be O(2n cn+log(1/δ)

β2||A||2
uni

).
Using these indices, for every P ∈ C we can estimate sP

sR
as

ŝP

sR
=
|ẑP,i′

l′ − ẑI
l′ |

|ẑR,i′

l′ − ẑI
l′ |

. (92)

The key observation here is that the true values of both the numerator and the denominator in the above
expression is greater than β||A||uni/2 because of the i′, l′ indices we have chosen. Now using this observation
in Lemma 10, we show O(2n cn+log(1/δ)

ϵ2β2||A||2
uni

) measurements are sufficient to get the above estimate to within ϵ in
multiplicative error.

Now we have to repeat this procedure for every P ∈ C with the same values of i′ and l′ to get estimates for
the state coefficeints up to gauge.

From the standard union-bound argument we can show that a total of O(2n|C| cn+log(1/δ)
ϵ2β2||A||2

uni
) measurements are

sufficient to ensure a maximum multiplicative error of ϵ with probability at least 1− δ.

F.3 Proof of Corollary 2
Proof. The argument here is similar to the proof of Theorem 2. To begin with, perform the first step of the
randomized algorithm with a threshold β = ϵ ≤ ||ρ||mix/2 to construct a C. We set ŝP = 0 for any P /∈ C.
This gives an estimate with additive error of ϵ for all P /∈ C. From the proof of Lemma 9 we know that this
construction requires the estimation of |zP,i

k − zI
k| with error ϵ′ = 0.005ϵ||A||uni.

Let

R, i′, k′ = argmax
P ∈C,i,k∈[2n]

|ẑP,i
k − ẑI

k| , (93)

P ∗ = argmax
P ∈C

|zP,i
k − zI

k| = argmax
P ∈C

|sP | . (94)

From the definition of P ∗, we have |zP ∗,i
k − zI

k| = ||ρ||mix|Aik − zI
i | ≤ ||ρ||mix||A||uni.

For any i, k we have

|sR||Aik − zI
i | = |z

R,i
k − zI

k| (95)
≥ |ẑR,i

k − ẑI
k| − 0.005ϵ||A||uni (96)

≥ |ẑP ∗,i
k − ẑI

k| − 0.005ϵ||A||uni (97)

≥ |zP ∗,i
k − zI

k| − 0.01ϵ||A||uni (98)
= ||ρ||mix|Aik − zI

i | − 0.01ϵ||A||uni (99)

Maximizing this inequality over all i, k ∈ [2n] we have

|sR| ≥ ||ρ||mix − 0.01ϵ . (100)
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From this, with high probability for all P ∈ C we have∣∣∣∣sP

sR

∣∣∣∣ ≤ ||ρ||mix

||ρ||mix − 0.01ϵ
≤ 1

0.995 . (101)

Here we have used the fact that ϵ ≤ ||ρ||mix/2.
Using the above fact in the multiplicative error bound in step 3 of Theorem 2 gives
Pr
(

maxP ∈C

∣∣∣ ŝP

sR
− sP

sR

∣∣∣ > ϵ
0.995

)
≤ δ .

Notice that the error incurred in the last step is slightly higher than ϵ. But this can be rectified by substituting
ϵ with a slightly lower value (0.995ϵ) in the above procedure.

The sample complexity for this procedure can be found by adding the sample complexities of the first and
third step of Theorem 2.

F.4 Technical lemmas for randomized measurements
Lemma 7 (Estimating zI values). For an n−qubit system, let N = O( cn+log(1/δ)

ϵ2 ), for a constant c < 10. By
post-processing N randomized noisy measurement outcomes obtained from applying a random operator in PX to
the state ρ, we can find ẑI

l such that
Pr(max

l∈[2n]
|ẑI

l − zI
l | > ϵ) ≤ δ . (102)

Proof. Consider the estimate ẑI
l computed as defined in 80. By Hoeffding’s inequality, we can obtain a tail

bound for these estimates
Pr(|ẑI

l − zI
l | > ϵ) ≤ 2e−2Nϵ2

. (103)

Choosing N = c log(2n/δ)
ϵ2 for a constant c gives us

Pr(|ẑI
l − zI

l | > ϵ) ≤ δ

2n
. (104)

Let Al be the event that |ẑI
l − zI

l | ≤ ϵ, then using the union bound

Pr(max
l∈[2n]

|ẑI
l − zI

l | ≤ ϵ) = Pr(∧2n

l=1Al) (105)

= 1− Pr(∨2n

l=1Āl) (106)
> 1− δ . (107)

Lemma 8 (Estimating zP,i values). For an n−qubit system, let N = O(2n cn+log(1/δ)
ϵ2 ), for a constant c < 10.

Given a Pauli string P ̸= I, by post-processing N randomized noisy measurement outcomes obtained from applying
a random unitary from an efficiently characterizable subset of the Clifford group, we can find ẑP i

l such that

Pr( max
l,i∈[2n]

|ẑP i
l − zP i

l | > ϵ) ≤ δ . (108)

Proof. Consider the finite sample estimate defined in (82) for zP Q
l using N ′ measurement shots. Now, let

eP Q
l = ẑP Q

l − zP Q
l . By Hoeffding’s inequality, we find that, eP Q

l is a sub-gaussian random variable [68]:

Definition 2. Subgaussian random variable A zero-mean random variable X is Subgaussian with a variance
proxy of σ2 if

Pr(|X| > t) ≤ 2e− 2t2
σ2 . (109)

We denote this by: X ∼ SubG
(
σ2) .

The tail bound from Hoeffding’s inequality gives us

eP Q
l ∼ SubG

(
1

N ′

)
. (110)

In total, estimating all ẑP Q
l for all Q ∈ PZ \ I and l ∈ 2n requires N = O(2nN ′) independent measurement

outcomes.
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Similarly, we can use N ′′ randomized measurements to estimate zI
l as in Lemma 7. We define the error

eI
l = (1−

∑
Q∈PZ \I HiQ)(ẑI

l − zI
l ). From (103) we have

eI
l ∼ SubG

(
(1−

∑
Q∈PZ \I HiQ)2

N ′′

)
. (111)

Using these we can compute the following estimates ẑP,i
l = (1−

∑
Q∈PZ\I HiQ)ẑI

l +
∑

Q∈PZ \I HiQẑP Q
l , for all

i, l ∈ [2n]. With the total number of measurements required being N = N ′′ + 2nN ′.
The error in this estimate can be computed as, eP,i

l = ẑP,i
l − zP,i

l = eI
l +

∑
Q∈PZ \I HiQeP Q

l . This error is a linear
combination of subgaussian random variables, which is also subgaussian by the following fact [68].

Fact 1. (Theorem 2.6.3 in [68]) Let {Xi ∼ SubG(σ2
i ) ∀i ∈ [D]} be independent, mean zero, subgaussian

random variables, and a = (a1, . . . , aD) ∈ RD. Then, for every t ≥ 0, we have

Pr(|
∑

i

aiXi| > t) ≤ 2 exp
(
−2t2

σ2||a||22

)
,

where σ2 = maxi σ2
i .

From this we have,

eP,i
l ∼ SubG

max
(

(1−
∑

Q̸=I HiQ)2

N ′′ ,
1

N ′

)
(1 +

∑
Q̸=I

H2
iQ)

 . (112)

Now, HiQ defined as ⟨i|Q|i⟩
2n/2 is just the n−qubit Hadamard operator. From its unitarity we have 1+

∑
Q̸=I H2

iQ < 2.
The first row and column of H (corresponding to |i = 1⟩ = |0⟩ ⊗ . . .⊗ |0⟩ and Q = I respectively) is a vector of
all 1/

√
2n. Again from unitarity of H we have∑

Q̸=I

H1Q =
√

2n − 1√
2n

, (113)

∑
Q ̸=I

HiQ = − 1√
2n

, i ̸= 1 . (114)

This gives in the worst case (1−
∑

Q̸=I HiQ)2 < 2n.
Combining these upper-bounds in (112) we get

eP,i
l ∼ SubG

(
2 max

(
2n

N ′′ ,
1

N ′

))
, (115)

and if we choose N ′′ = 2nN ′, we get eP,i
l ∼ SubG

( 2
N ′

)
, with the total number of measurements required being

N = 2nN ′ + N ′′ = O(2nN ′). From the definition of Subgaussian random variables it follows that

Pr(|eP,i
l | > ϵ) ≤ 2 exp

(
−N ′ϵ2) .

Choosing then N ′ = c log(4n/δ)
ϵ2 for a constant c gives us

Pr(|eP,i
l | > ϵ) ≤ δ

4n
. (116)

Using the same union bound argument used in Lemma 7, we can show that

Pr( max
l,i∈[2n]

|eP,i
l | > ϵ) ≤ δ , (117)

and the total number of measurements required is N = O(2nN ′) = O(2n cn+log(1/δ)
ϵ2 )

Lemma 9. Given 0 < β < ||ρ||mix/2, we can construct C ⊂ BR such that

1. For every P ∈ C we can guarantee with probability 1− δ that |sP | ≥ β.
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2. For every P /∈ C we can guarantee with probability 1− δ that |sP | < 1.01β.

The construction of such a C requires a total of O(8n cn+log(1/δ)
β2||A||2

uni
) randomized measurements.

Proof. From the definition of ||A||uni we know that for every P ∈ P

max
i,k∈[2n]

|zP,i
k − zI

k| = |sP | ||A||uni . (118)

From Lemma 7 and 8, for each P , we can estimate |ẑP,i
k − ẑI

k| such that, with probability 1− δ, the maximum
error in the LHS is at most 0.005β||A||uni using O(2n cn+log(1/δ)

β2||A||2
uni

) measurements.
Once we compute these estimates for every P ∈ P by using a total of O(8n cn+log(1/δ)

β2||A||2
uni

) measurements, we can
define C such that

C = {P | max
k,i∈[2n]

|ẑP,i
k − ẑI

k| ≥ 1.005β||A||uni} . (119)

From the error in the estimates we can guarantee with high probability that for every P ∈ C we will have
maxk,i∈[2n] |zP,i

k − zI
k| ≥ β ||A||uni and hence |sP | ≥ β. Similarly, if P /∈ C, then maxk,i∈[2n] |ẑP,i

k − ẑI
k| <

1.005β||A||uni, which gives maxk,i∈[2n] |zP,i
k − zI

k| < 1.01β ||A||uni with high probability. This in turn implies that
|sP | < 1.01β.

Lemma 10. Suppose we have P, R ∈ P \ I, such that |sP |, |sR| > α. And we also know l, i ∈ [2n], such that
|Ail − zI

l | > γ . Then we can estimate sP

sR
such that

Pr(
∣∣∣∣ ŝP

sR
− sP

sR

∣∣∣∣ > ϵ

∣∣∣∣sP

sR

∣∣∣∣) ≤ δ , (120)

using N = O(2n cn+log(1/δ)
ϵ2α2γ2 ) randomized measurements.

Proof. We know that for indices satisfying the assumptions in the lemma

sP

sR
=

zP,i
l − zI

l

zR,i
l − zI

l

, (121)

So an estimate for the ratio sP /sR can be computed using ratios of the appropriate estimates of z values obtained
from measurements. From (86) we also know that

|zP,i
l − zI

l | ≥ αγ . (122)

From the assumption in the lemma, we know an l, i for which this condition holds. Now using N = O(2n cn+log(1/δ)
ϵ2α2γ2 )

randomized measurements we can find estimates for zP,i
l − zI

l such that

Pr(|(ẑP,i
l − ẑI

l )− (zP,i
l − zI

l )| > ϵ αγ

2 ) ≤ δ . (123)

Using Lemma 11, we have w.h.p, ∣∣∣∣∣ ẑP,i
l − ẑI

l

ẑR,i
l − ẑI

l

− sP

sR

∣∣∣∣∣ ≤ ϵ

∣∣∣∣sP

sR

∣∣∣∣ . (124)

Lemma 11 (Error in ratios). Let x̂ = x + ϵx and ŷ = y + ϵy such that |x|, |y| ≥ α and |ϵx|, |ϵy| ≤ ϵ ≤ α
2 . Then∣∣∣∣ x̂ŷ − x

y

∣∣∣∣ ≤ O
( ϵ

α

) ∣∣∣∣xy
∣∣∣∣ . (125)

Proof.

x̂

ŷ
= x + ϵx

y + ϵy
=
(

x

y

) 1 + ϵx

x

1 + ϵy

y

, (126)

so 1+ ϵx
x

1+ ϵy
y

is the exact multiplicative error term that we have to bound.

Since |ϵx/x| < 1
2 , we have 1

2 < 1 + ϵx

x < 3
2 . Also since |ϵy/y| < 1

2 , we have, 1− ϵy/y ≤ 1
1+ϵy/y ≤ 1 + 2|ϵy/y|.
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Lower bound on error

1 + ϵx

x

1 + ϵy

y

≥ (1 + ϵx

x
)(1− ϵy

y
) (127)

= 1 + ϵx

x
− ϵy

y
(1 + ϵx

x
) (128)

≥ 1 + ϵx

x
− c

ϵy

y
(129)

≥ 1− ϵ

α
− c

ϵ

α
≥ 1− (1 + c) ϵ

α
. (130)

Where c is either 1
2 or 3

2 depending on the sign of ϵy

y .

Upper bound on error

1 + ϵx

x

1 + ϵy

y

≤ (1 + ϵx

x
)(1 + 2|ϵy

y
|) (131)

≤ 1 + ϵx

x
+ 3

∣∣∣∣ϵy

y

∣∣∣∣ (132)

≤ 1 + 4 ϵ

α
. (133)

Combining these two bounds on the multiplicative error gives us the claimed inequalities in the lemma.

G Properties of measurement operators
Recall that the overlap of the POVM on any traceless basis BL is defined as

mkI = ⟨⟨Mk|Î⟩⟩, mkQ = ⟨⟨Mk|Q⟩⟩, Q ∈ BL. (134)

Define the D × 4n matrix m with elements given by mkQ, and let m\I be the submatrix of m obtained by
removing the column corresponding to Q = I. Then the following lemma holds.

Lemma 12. If the POVM is linearly independent, then the matrix m has full row rank D. Furthermore, the
matrix m\I has row rank D − 1 and the only vector v in the left null space that satisfies

vm\I = 0, (135)

is given by v = 1 which is the vector of all ones.

Proof. The fact that the matrix m has full row rank D follows directly from linear independence of the POVM.
Consequently, the matrix m\I has row rank D− 1 and must have a one dimensional left null space. By definition
of POVM,

∑
k∈[D] Mk = I. Therefore, for all Q ∈ BL we get∑

k∈[D]

mkQ = Tr(Q
∑

k∈[D]

Mk) = Tr(QI) = 0, (136)

since Q ∈ BL is traceless.

H Induced linear operator space of unitary operators
Recall that for any subset S ⊆ U of unitary operators on n qubits, the induced linear operators space representing
hybrid quantum-classical operations is given by (11)

L(S) =
{∑

l

clΦ(Ul) | Ul ∈ S,
∑

l

cl = 1
}

. (137)

These induced operator spaces L(S) have many natural properties as given below.
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Lemma 13 (Closedness under linear combination). Let S ⊆ U and let Φ1, . . . , Φm ∈ L(S). Then for any
c1, . . . , cm such that

∑m
i=1 ci = 1, we have

∑m
i=1 ciΦi ∈ L(S).

Proof. Follows directly from the definition of L(S). Φi ∈ L(S) implies that

Φi =
Li∑

l=1
ci

lΦ(U i
l ),

Li∑
l=1

ci
l = 1, i = 1, 2, (138)

where all U i
l ∈ S. Then

∑
i ciΦi =

∑
i,l cic

i
lΦ(U i

l ) ∈ L(S)

Lemma 14 (Closedness under composition). Let S ⊆ U be such that for all U1, U2 ∈ S we have that the unitary
U1U2 ∈ S. Let Φ1, Φ2 ∈ L(S). Then the composition of the these operators Φ1Φ2 ∈ L(S).

Proof of Lemma 14. By definition of L(S) we have

Φi =
Li∑

l=1
ci

lΦ(U i
l ),

Li∑
l=1

ci
l = 1, i = 1, 2, (139)

where all U i
l ∈ S. By using the composition of the two we get

Φ1Φ2 =
∑
l1,l2

c1
l1

c2
l2

Φ(U1
l1

)Φ(U2
l2

)

=
∑
l1,l2

c1
l1

c2
l2

Φ(U1
l1

U2
l2

), (140)

where we have used Φ(U1)Φ(U2) = Φ(U1U2) by definition of Φ(U) for a unitary U . The proof follows from the
assertion that U1

l1
U2

l2
∈ S and because the coefficients sum to one since

∑
l1,l2

c1
l1

c2
l2

=
∑

l1
c1

l1

∑
l2

c2
l2

= 1.

Lemma 15 (Closedness under tensor product). If Φ1 ∈ L(S1) and Φ2 ∈ L(S2) then Φ1 ⊗ Φ2 ∈ L(S1 ⊗ S2).

Proof of Lemma 15. Similar to proof of Lemma 14.

Φ1 ⊗ Φ2 =
∑
l1,l2

c1
l1

c2
l2

Φ(U1
l1

)⊗ Φ(U2
l2

)

=
∑
l1,l2

c1
l1

c2
l2

Φ(U1
l1
⊗ U2

l2
). (141)

The last implication holds because, by elementary linear algebra, the following relation holds

Φ(A)⊗ Φ(B) = Φ(A⊗B) . (142)

This is because for any operators V and W

Φ(A)⊗ Φ(B) |V ⟩⟩ ⊗ |W ⟩⟩ = (AV A†)⊗ (BWB†)
= (A⊗B)(V ⊗W )(A⊗B)†

= Φ(A⊗B) |V ⟩⟩ ⊗ |W ⟩⟩ .

I Incorporating prior information
I.1 Block independent noise
I.1.1 Proof of uniqueness

We first show that under the assumption of block independence we can break the gauge degeneracy.

Theorem 4 (Uniqueness for block-independent noise).
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Suppose that the POVM is described by Mkl = M1
k ⊗M2

l where k ∈ [D1] and l ∈ [D2] with D1D2 = D. Also
let the qubit numbers for these two systems be n1 and n2, with n1 + n2 = n. For example, when the POVM is
the computational basis, and the outcome of observing each qubit is binary valued as in (76), this refers to a
partitioning of n qubits into two parts. Suppose that the noise acts independently on the two parts such that
A = A1 ⊗ A2 where A1 acts on M1 and A2 acts on M2. Let A′ = A′1 ⊗ A′2 be another such noise matrix and
assume that A1, A2, A′1, A′2 are not erasure type matrices discussed with Condition 1. Then if A and A′ are
related by the gauge equivalence (12) we must have A = A′.

Proof. Since A = A1 ⊗A2 and A′ = A′1 ⊗A′2, we will explicitly use double indices to represent each dimension.
From (12) we have

A′ = αA + (1− α)diag(d)1 , (143)

where

dkl =
∑

k′,l′ Akl,k′l′mk′l′,I

2n/2 =
∑

k′,l′ A′
kl,k′l′mk′l′,I

2n/2 . (144)

Since Mkl = M1
K ⊗M2

l we have mkl,I = m1
K,Im2

l,I . Then

dkl =
∑

k′,l′ Akl,k′l′mk′l′,I

2n/2 (145)

=
∑

k′ A1
kk′m1

k,I

2n1/2

∑
l′ A2

ll′m2
l,I

2n2/2 = d1
kd2

l , (146)

where for i = 1, 2 we define di
k =

∑
k′ Ai

kk′ m1
k,I

2ni/2 . Using the independence of the noise in (143), we get

A′1 ⊗A′2 = αA1 ⊗A2 + (1− α)diag(d1)1⊗ diag(d2)1 . (147)

Multiplying (147) on the left by I ⊗ 1T
D1

and on the right by I ⊗ 1D2 , we get

A′1 = αA1 + (1− α)diag(d1)1 . (148)

A similar computation yields

A′2 = αA2 + (1− α)diag(d2)1 . (149)

Using A = A1 ⊗A2 and substituting (148) and (149) into (143) yields

αA1 ⊗A2 + (1− α)(diag(d1)1D1)⊗ (diag(d2)1D2) =
(αA1 + (1− α)diag(d1)1D1)(αA2 + (1− α)diag(d2)1D2) .

Rearranging the above gives

α(1− α)(A1 − diag(d1)1D1)(A2 − diag(d2)1D2) = 0 .

Since none of A, A1, A2 can be the erasure channel by assertion, we must have α = 1 and hence A = A′.

I.1.2 Algorithm to fix the gauge

By Theorem 4, no two noise matrices can be both block independent and be related by the gauge relation (12).
Recall that Algorithm 1 returns a candidate noise matrix A′ that is related to the true noise matrix A by the
relation

A = αA′ + (1− α)diag(d′)1 . (150)

Our goal is to find α such that the matrix A decomposes as A = A1 ⊗A2. Define the operations

T1[·] = (1T
D1
⊗ ID1)(·)(1D1 ⊗ ID2) , (151)

T2[·] = (ID1 ⊗ 1T
D2

)(·)(ID1 ⊗ 1D2) . (152)
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Since A = A1 ⊗A2 we have

T2[A] = A1 = αT2[A′] + (1− α)T2[diag(d′)1] , (153)
TS1 [A] = A2 = αT1[A′] + (1− α)T1[diag(d′)1] . (154)

Using (153) in (150) we get

(αT2[A′] + (1− α)T2[diag(d′)1]) (155)
⊗ (αT1[A′] + (1− α)T1[diag(d′)1])

= αÃ + (1− α)diag(d)1 . (156)

Since A is not the erasure channel, we can assume α ̸= 0 and get

α(T2[A′]⊗ T1[A′]− T2[A′]⊗ T1[diag(d′)1]
− T2[diag(d′)1]⊗ T1[A′] + T2[A′]⊗ T1[diag(d′)1]

= T2[A′]⊗ T1[diag(d′)1] + T2[diag(d′)1]⊗ T2[A′]
− diag(d)1−A′ , (157)

The equation above is a matrix equality of the type αM1 = M2, so we just need to find a matrix element
M1

ij ̸= 0 such that α = M2
ij/M1

ij .

I.2 Linearly representable prior information
Let bi

S , i = NS + 1, . . . 4n − 1 and bi
A, i = NA + 1, . . . , D be any set of vectors that span the space orthogonal

to bi
S , i = 1 . . . , NS and bi

A, i = 1, . . . , NA respectively. Then simultaneous tomography can be performed by
constructing canonical linear operators Eij which we describe below. Let m be the matrix of coefficients of the
POVM given by [m]k,Q = mkQ. By independence of the POVM, the matrix m has full rank. Therefore, we
can construct vectors b̃j such that∑

Q∈BR∪I

b̃j
QmkQ = bj

A,k , k ∈ [D] , j = NA + 1, . . . , D . (158)

Let Eij be the linear operator such that its matrix representation using the bases BL,BR is given by

Eij
P Q = bi

S,P b̃j
Q , ∀P ∈ BR , Q ∈ BL . (159)

Then, similar to (9) and (23), we can compute the following quantities using linear combinations of observations

zij
k = zI

k +
∑

k′∈[D],
P ∈BR,Q∈BL

sP Eij
P QAkk′mk′Q

= zI
k + (

∑
P ∈BR

bi
S,P sP )(

∑
k′∈[D]

Akk′

∑
Q∈BL

b̃j
Qmk′Q)

= zI
k + (

∑
P ∈BR

bi
S,P sP )(

∑
k′∈[D]

Akk′(bj
A,k′ − b̃j

Imk′I))

= zI
k + (

∑
P ∈BR

bi
S,P sP )(

∑
k′∈[D]

Akk′bj
A,k′ − b̃j

IzI
k) . (160)

We also construct the linear operators required to fix the gauge denoted by Ej and defined as

Ej
P Q = b1

S,P b̃j
Q , ∀P ∈ BR , Q ∈ BL . (161)

and the corresponding computable quantity

zj
k = zI

k + (
∑

P ∈BR

b1
S,P sP )(

∑
k′∈[D]

Akk′bj
A,k′ − b̃j

IzI
k)

= zI
k + d1

S(
∑

k′∈[D]

Akk′bj
A,k′ − b̃j

IzI
k) . (162)

We will need to exploit the fact that A is not the erasure channel to perform simultaneous tomography. This is
given in the lemma below.
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Lemma 16. Assume that A is not the erasure channel. Then there exists k ∈ [D] for which there is a j ∈ [D]
such that ∑

k′∈[D]

Akk′bj
A,k′ − b̃j

IzI
k ̸= 0 . (163)

Proof. Summing (158) for k ∈ [D] we get that

b̃j
I =

∑
k∈[D]

bj
A,k . (164)

Suppose that for a given k ∈ [D] we have∑
k′

Akk′bj
A,k′ = b̃j

IzI
k = (

∑
k′∈[D]

bj
A,k′)zI

k , ∀j ∈ [D].

Since by construction the vectors bj
A form a complete basis of the D dimensional space, we can invert the above

relation to get Akk′ = zI
k, ∀k′ ∈ [D], implying that A is the erasure channel. Then proof follows from using the

fact that A is not the erasure channel.

Algorithm 3: Simultaneous tomography with linear prior information
1 Compute zI

k ∀ k ∈ [D] using (9)
// Step 1.

2 for j ∈ [MA] do
3 for k ∈ [D] do
4 Compute

∑
k′∈[D] Akk′bj

A,k′ − b̃j
IzI

k = zj
k

−zI
k

d1
S

.

// Step 2. Find noise matrix A
5 for k ∈ [D] do
6 Solve the system of equations to obtain Akk′ ∀k′ ∈ [D]:
7

∑
k′∈[D] Akk′bj

A,k′ − b̃j
IzI

k = zj
k

−zI
k

d1
S

, j ∈MA,
8

∑
k′∈[D] Akk′cj

A,k′ = dj
A, j ∈ [NA].

// Step 3. Find state ρ

9 Choose k ∈ [D] and j ∈ [D] as per Lemma 16 such that
∑

k′∈[D] Akk′bj
A,k′ − b̃j

IzI
k ̸= 0.

10 for i ∈ [MS ] do
11 Compute

∑
P ∈BR

sP bi
S,P = zij

k
−zI

k∑
k′∈[D]

Akk′ bj

A,k′ −b̃j
I

zI
k

12 Return {sP | P ∈ BR, A}.

I.3 Independent ancilla qubits
By running Step 1 of Algorithm 1 on the ancilla qubits, we can identify P ∈ Ba

R and i ∈ [Da] such that

zP i
k − zI

k = sP

∑
k′

Aa
kk′Ca

k′i ̸= 0 . (165)

Construct the set of operators {EQ | Q ∈ Br
R} given by

EQ |P ⊗Q⟩⟩ − M̄a
i ⊗ I ∈ (Ba

L ⊗ I)⊥ ,

EQ |P ′ ⊗Q′⟩⟩ ∈ (Ba
L ⊗ I)⊥ if P ′ ̸= P or Q′ ̸= Q . (166)

The above operators can be constructed using linear combinations in (10) since P ⊗Q and M̄anc
i ⊗ I are both

traceless. Measuring the ancilla qubits independently is equivalent to tracing out the other measurements and
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effectively using the measurement operators {Ma
i ⊗ I | i ∈ [Danc]}. Using the operators in (166), we can

compute the quantities for all Q ∈ Br
R

zP Qi
k − zI

k = sP sQ

∑
k′

Aa
kk′Ca

k′i . (167)

We can then recover the state coefficients {sQ | Q ∈ Br
R} as

sQ =
zP Qi

k − zI
k

zP i
k − zI

k

. (168)

We now compare to the setting in [42] where they consider the hierarchical setting described in Sec. 4.2, with one
ancillary qubit and orthogonal POVMs. In this case, the basis for the ancilla can be chosen to be {I, Ma

1 −Ma
2 }

where Ma
1 −Ma

2 is traceless by definition of POVMs. Since the POVMs are orthogonal, any unitary operator
Ui such that

Ui((Ma
1 −Ma

2 )⊗Mr
i )U†

i = (Ma
1 −Ma

2 )⊗ I , (169)

will satisfy the conditions of the operator described in (166). The construction of this operator when the POVM
is the computational Z-basis can be found in [42].

I.4 Denoising the binary symmetric channel
For each Q ∈ Pn the vector of measurement operator coefficients mQ is an eigenvector of A. Since mI = 1 we
have AmI = mI . For every other Q ∈ Pn

Z the coefficients are given by mQ = ⊗n
i=1[1,±1]. Let SQ ⊂ [n] be the set

of indices for which the component of mQ is [1,−1]. Then we have AmQ = λSQ
mQ, where λS =

∏
i∈SQ

(1−2pi).
Thus for any operator Φ the corresponding measurements are given by

y =
∑
P,Q

sP ΦP QAmQ =
∑
P,Q

sP ΦP QλSQ
mQ . (170)

This allows for the less expensive denoising in Algorithm 4. The generator gate set is given by

GBSC = {I, SWAP (i, j), CNOT (i, j) | i, j ∈ [n]}. (171)
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Algorithm 4: Denoising for binary symmetric output noise.
// Step 1: Identifying non-zero state coefficients

1 Initialize Snz = ∅;
2 for P ∈ Pn

Z \ In do
3 Compute sP λP = [1± 1]T y ;
4 If [1± 1]T y ̸= 0, update Snz ← Snz ∪ {P} ;
5 end

// Step 2: Decode non-zero state coefficients
6 for P =

⊗n
i=1 Pi ∈ Snz do

7 Identify S = i ∈ [n] | Pi = Z. ;
8 if |S| = 1 then
9 Let S = {i} and pick any j ̸= i ;

10 Obtain measurements mP,G for each gate G ∈ {I, CNOT (i, j), SWAP (i, j)} ;
11 Decode sP ←

mP,I mP,SW AP (i,j)
mP,CNOT (i,j)

;
12 else
13 Let S = {i1 < i2, . . . < i|S|} ;
14 Obtain measurements mP,G for each gate G ∈ {I, CNOT (i1, i2), . . . , CNOT (i|S|, 1)} ;
15 Compute (1− 2pj) = mP,I

mP,CNOT (i,j)
;

16 Decode sP ← mP,I∏
i∈S

(1−2pi)
;

17 end
18 return {sP | P ∈ Pn

Z};
19 end
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